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ABSTRACT

We describe an on-line system for automated classification of X-ray sources,

ClassX, and present preliminary results of classification of the three major cat-

alogs of ROSAT sources, RASS BSC, RASS FSC, and WGACAT, into six class

categories: stars, white dwarfs, X-ray binaries, galaxies, AGNs, and clusters of

galaxies. ClassX is based on a machine learning technology. It represents a sys-

tem of classifiers, each classifier consisting of a considerable number of oblique

decision trees. These trees are built as the classifier is ‘trained’ to recognize var-

ious classes of objects using a training sample of sources of known object types.

Each source is characterized by a pre-selected set of parameters, or attributes;

the same set is then used as the classifier conducts classification of sources of

unknown identity. The ClassX pipeline features an automatic search for X-ray

source counterparts among heterogeneous data sets in on-line data archives using

Virtual Observatory protocols; it retrieves from those archives all the attributes

required by the selected classifier and inputs them to the classifier. The user

input to ClassX is typically a file with target coordinates, optionally comple-

mented with target IDs. The output contains the class name, attributes, and

class probabilities for all classified targets. We discuss ways to characterize and

assess the classifier quality and performance and present the respective validation

procedures. Based on both internal and external validation, we conclude that the

ClassX classifiers yield reasonable and reliable classifications for ROSAT sources
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and have the potential to broaden class representation significantly for rare object

types.

Subject headings: methods: statistical — surveys — X-rays: general — X-rays:

binaries — X-rays: stars

1. Introduction

The classification of astronomical sources into physically distinct classes is a key element

of research in all domains of astrophysics. Traditionally this has involved painstaking manual

analysis of detailed, homogeneous sets of observations. More recently automated classifier

tools have been used to help in the classification of objects from huge but still largely

homogeneous surveys. Examples include analysis of the First (Odewahn 1995) and Second

(Weir et al. 1995) Digital Sky Surveys and the Sloan Digital Sky Survey (SDSS; Adelman

et al. 1995). In this paper we discuss how we can go beyond using single large surveys and

combine information from multiple heterogeneous databases to classify astronomical sources.

Using dynamic cross-correlations of electronically available datasets, our ClassX team has

developed a series of classifiers that rapidly sort X-ray sources into classes. These facilities

are now available to the community at the ClassX web site7.

Our initial work has concentrated on the more than one hundred thousand unclassified

sources detected by the ROSAT observatory8 from 1990 to 1999. These high-energy sources

are particularly rich in interesting objects: QSOs and other AGNs, clusters of galaxies, young

stars, and multiple systems containing white dwarf, neutron star, or black hole companions.

The ROSAT samples have been used in prior investigations (e.g., Rutledge et al. 2000; Zhang

& Zhao 2003), but still only about 10% of the sources observed by ROSAT have a reliable

classification. In most cases this identification rests upon cross-correlation between the

ROSAT object and tables of classified sources. In some cases detailed follow-up observations

have been performed on a source by source basis. This is extraordinarily expensive in both

telescope time and the time of astronomers analyzing these data. Direct comparison of

ROSAT sources with massive optical catalogs (e.g., Rutledge, Brunner and Prince 2000)

enables the cross-identification of ROSAT sources, but unless the class of the counterpart is

known, this does not determine the type of the source. However, using the flux information

from multiple catalogs allows us to try to classify sources with more information than is

7http://heasarc.gsfc.nasa.gov/classx

8http://wave.xray.mpe.mpg.de/ROSAT
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available from the X-ray observations alone.

With the recent and pending publication of several very large datasets covering much

of the sky to considerable depth, we have begun to explore how well objects can be classified

using data from these large new surveys. The thousands of known sources are used to train

classifiers and these trained classifiers are then used to classify the previously unclassified

sources. In Section 2 we discuss the sources of information we have used in our classifiers and

how we dynamically extract information from the catalogs as needed using capabilities that

prototype generic Virtual Observatory tools9. Demonstrating the feasibility of this dynamic

approach to extracting information was a major technical goal for this project.

Section 3 describes the actual classification tools and the training process we have used.

We have a used supervised classification technique: oblique decision trees(Murthy, Kasif, &

Salzberg 1994). We discuss the reasons for this choice, and the applicability of our approach

to other supervised and unsupervised classification algorithms.

Section 4 discusses how we test our classifiers for accuracy. Internal validation looks at

the performance of the classifier with respect to the sources we used to train it, and to the

general characteristics of our newly classified sources. Can the classifier recover the classes

of the data used to train it?

External verification uses data independent of that used to train the classifier and com-

pares how well the classifier predicted these results. Substantial numbers of our sources

(several thousand) have been classified by other surveys, notably the SDSS. Comparing our

results with these external data sets is a powerful test of our classifiers especially when the

external data set is sufficiently deep. We have taken care to consider various selection effects

that may affect these tests.

Section 5 gives results for classification of the major ROSAT samples. We show the

classification probabilities for each source in our original samples. Since we are classifying

nearly 200,000 sources only stubs are included here but the full tables are available for

download from the ClassX web site.

The conclusion summarizes the state of the classifiers and describes how we plan to

extend our results to other non-ROSAT datasets and to integrate our classifiers in the growing

Virtual Observatory.

9See http://www.ivoa.net or http://us-vo.org.
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2. Data Sources and Data Collection

2.1. Datasets

2.1.1. WGACAT

The White-Giommi-Angelini Catalog (WGACAT; White et al. 2000) was created by

reprocessing the data from the pointed phase observations of the ROSAT PSPC. The result

was a catalog of 88,579 sources with X-ray count rates in three energy bands and a variety of

supporting data. About 20% of the sources in this sample have classifications derived from

cross-correlations with other catalogs. The cross-correlation catalogs are described by White

et al. (2000). The cross-correlations were performed from the less specific, i.e., giving only

limited information about the type of the counterparts, to more specific catalogs, and the last

match was used for the classification. The X-ray positions and fluxes from WGACAT were

supplemented with the source extent information derived from the ROSAT PSPC catalog10.

The pointed phase of ROSAT PSPC observations lasted nearly 8 years, and during that

time the observations provided coverage of about 15% of the sky, with fewer observations at

intermediate galactic latitudes. Many regions were observed more than once and objects in

those regions may have multiple entries in the WGACAT. When objects shared a common

WGACAT ID, only a single value was included in our sample. The catalog contains a quality

flag, and the data with higher quality was retained preferentially. In cases with equal quality

flags, the entry nearest the center of the field of view was retained. This resulted in a

WGACAT sample of 76,763 sources, 18% of which had existing classifications.

X-ray source extent measurements were not included in the WGACAT. We obtained the

required data by correlating the WGACAT sources against the ROSAT PSPC (ROSPSPC)

catalog, using a correlation radius of 30 arcsec, and selecting the closest candidate as the

desired counterpart. In this fashion, X-ray extent information was obtained for 34,633 of

the 76,763 distinct WGACAT sources; for the sources without such information the extent

parameter was set to zero. The ROSPSPC and WGACAT catalogs were derived from the

same set of observations (the pointed phase observations of the ROSAT PSPC instrument),

and therefore the source locations and uncertainties are likely a better match between these

two catalogs than they would be between WGACAT and survey-phase observations.

Setting the size to 0 where the extent is not known biases the classifier against classes

where sources have a real extent, notably clusters of galaxies. However such classes are

difficult to pick out of classifiers where the extent is completely omitted, so that this approach

10http://heasarc/W3Browse/rosat/rospspc.html
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is the most effective way to use the information we have. The presence a ROSAT PSPC

catalog counterpart is noted in the tables in section 5.

The distribution of the previously classified sources in both the full WGACAT sample

and our subset of it is shown in Table 1. While many objects had more specific classifications

(e.g., specific spectral types for stars, or Hubble types for galaxies) the set chosen represent

distinct physical origins for the X-ray emission. We felt that understanding classification in

these broad categories was necessary before attempting more detailed classifications. These

classes in Table 1 represent categories where there were sufficient entries to train the classifier.

There were some categories—supernova remnants, nebulae, open star cluster—for which

there were only a handful of classified sources. These were eliminated from our training set.

Figure 1 gives the photon count rate distribution for the WGACAT sample for the

classified and unclassified sources. While brighter sources are more likely to be classified,

there are many classified sources down to the faint end of the observed brightness distribution.

The classified sources sample the entire flux space of the WGACAT. Figures 2 and 3 give the

overall sky coverage of the WGACAT sources for both the entire sample and the classified

sources. Although the WGACAT source distribution is highly non-uniform, there is no

major difference between the distributions of the (known) classified WGACAT objects and

the entire catalog.

2.1.2. ROSAT All Sky Survey

The ROSAT All-Sky Survey (RASS) catalogs (Voges et al. 1999) contain X-ray sources

detected during the survey phase of the ROSAT mission with the PSPC instrument. The

entire sky was surveyed with exposures highest towards the ecliptic poles. While the survey

covers the entire sky, it is generally less deep than pointed observations. Overall 124,735

objects were detected: 18,811 of these were published in the RASS Bright Source Catalog

(BSC) and 105,924 in the Faint Source Catalog (FSC).

Figures 4 and 5 give the photon count rate distribution of the RASS classified and

unclassified sources. Since the classified sources were restricted to the BSC, the sampling of

faint objects is quite poor. On the other hand the sky distribution of objects is much more

uniform, which is seen in Figures 6 and 7. While there is a marked increase towards the

ecliptic poles, the enormous contrasts seen in the sky distribution of the WGACAT sources

are not present in this sample.
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Fig. 1.— Photon count rate distribution for all WGACAT sources (solid line), and classified

WGACAT sources (dashed line).
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Fig. 2.— Galactic distribution of all WGACAT sources.
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Fig. 3.— Galactic distribution of classified WGACAT sources.
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Fig. 4.— Photon count rate distribution for RASS BSC (solid line) and RASS FSC (dashed

line) sources.
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Fig. 5.— Photon count rate distribution for all RASS (solid line) and classified RASS (dashed

line) sources.
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Fig. 6.— Galactic distribution of all RASS sources.
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Fig. 7.— Galactic distribution of classified RASS sources.
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2.2. The ClassX Pipeline

The ClassX processing pipeline gathers the data used for classification. A generic

pipeline that can gather data from many catalogs in many wavebands was constructed for

ClassX and we have looked at many different sources of information. However in this paper

only X-ray, optical, and radio data were used. The catalogs used and information extracted

are shown in Table 2. The correlative data from each band is gathered separately, filtered,

and then combined to form a single package of data for use by the classifier itself. The

classifiers X, and XOR described further in Section 3.5. The ClassX pipeline makes exten-

sive use of the standard representation of tabular and catalog data developed in the Virtual

Observatory initiative, VOTable (Ochsenbein et al. 2000).

Optical counterparts of X-ray sources are found using a search radius of 30 arcsec;

this gives a reasonable completeness level while keeping the number of chance coincidences

manageable. The correlations were done using the VizieR (Ochsenbein, Bauer, & Marcout

2000) system.

If no counterpart was found, the object was dropped from consideration for use by clas-

sifiers needing information from that waveband. If a single counterpart was found, then the

data from that counterpart was used. When multiple counterparts were found, a rule for

resolving the ambiguity was needed. Both nearest and brightest counterparts were tried.

Using the brightest counterpart was found to provide generally more accurate results, how-

ever, a function combining the two would likely be better still. We have generally used the

brightest candidate counterpart.

For radio data, only the existence or non-existence of the radio counterpart was used

in the classifier. The combination of the NVSS and SUMSS catalogs gave us radio coverage

over approximately 92% of the sky. Since the determination of the coverage boundaries for

the SUMSS surveys is non-trivial, data in the 8% region not covered was treated as having

no counterpart. Even in classes where radio counterparts are most frequently found, most

objects do not have a radio counterpart. So the 8% of the sky remaining does not seem to

cause a significant bias.

In the final step before use by the classifier, the data from all tables were combined

to produce a pair of files for input to the classifier. Only data for which all parameters

required by the classifier were available (either from the table or by use of a default value)

were included in the final sample.
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2.3. Counterpart Validity

The errors in the X-ray positions of the objects in the WGACAT and RASS samples are

relatively large compared to the typical separation of objects detected in the USNO-B survey.

When we search for optical counterparts to the X-ray sources, we look for the brightest object

within 30 arcsec of the nominal X-ray position. Almost all objects have at least one candidate

counterpart within 30 arcsec and on average about 5 objects are seen within the limiting

radius. How much confidence can we have in the validity of our cross-identification with

optical and radio sources? Since we do not perform follow-up observations, this question can

only be addressed statistically.

One powerful check on the validity of the identifications is to look for counterparts at

positions near but slightly offset from the nominal positions. Both the WGACAT and, to a

lesser extent, RASS sources have non-uniform coverage, so that inferences drawn using the

statistics of objects over the entire sky are not necessarily appropriate. So in addition to

the actual correlation of each object in the WGACAT and RASS samples with the USNO-B

survey, we also correlated a point 6 arcmin away at a random position angle. If our cross-

correlations were dominated by spurious cross-identifications—i.e., the optical counterparts

had no relation to the x-ray sources—then we would expect that the statistics of cross-match

between the nominal target positions and the offset positions would be similar. By searching

for a set of virtual control objects relatively near the actual objects—much closer than the 2

degree field of view of the ROSAT PSPC—our control sample is subject to the same sample

biases as the real data.

It is certainly possible that some X-ray sources may have an extent comparable to our

6 arcmin offset, e.g., clusters of galaxies or nearby galaxies. However this will tend to lessen

differences between the nominal and offset samples so that any observed difference between

the samples should be considered a lower limit.

Table 3 shows that there are very significant variations between the actual objects

and the control sample. The effect is overwhelming in the RASS BSC sample. There the

brightnesses of the candidate optical counterparts are about 4 magnitudes greater than for

the control sample. A 4 magnitude brightness offset corresponds to a factor of about 200 in

the surface density of sources. Clearly the counterparts picked out for the RASS BSC are

very special objects so that it seems unlikely that there can be more than a few percent of

the counterparts chosen can be unrelated to the X-ray source.

We should note that finding an optical object associated with the X-ray source is distinct

from finding the optical counterpart to the X-ray source. For example, consider an X-ray

detected cluster of galaxies. Here our procedure might select a particular galaxy in that
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cluster as our candidate counterpart. While this galaxy is associated with the X-ray source,

it would not be correct to identify the actual source of the observed X-ray emission as a

galaxy.11

The RASS FSC and WGACAT samples are much deeper so that we would anticipate

that counterparts would be fainter. This is borne out in Table 3 but the selected candidate

counterparts to the nominal sample are still approximately a magnitude brighter than for the

offset control sample. This suggests that while there is some contamination of these samples,

most of our candidate counterparts are still associated with the X-ray source. If our optical

sources are uniformly distributed in space so that we have a b−1.5 brightness distribution,

a one magnitude shift in magnitudes corresponds to a factor of 4 of the surface density of

objects. We might expect that 20% of our selected counterparts are not associated with the

X-ray source. In many of these cases, the actual X-ray counterpart may have been one of

the candidate counterparts but not the brightest within the 30 arcsec radius.

The number of counterparts near the nominal positions is substantially greater than near

the offset position. Given than only a tiny fraction of optical objects have X-ray emission

detected by ROSAT, we would expect that the number of optical counterparts near the

nominal positions would be increased by the number of optical sources associated with the

X-ray source, i.e., we get the random background plus the signal. For some X-ray sources

there may be multiple optical objects associated with it. For the fainter samples the total

number of candidates is roughly consistent with there being one associated optical source for

each X-ray object. For the BSC sample, the excess of sources near the nominal positions is

substantially greater than the number of objects in the sample so that on average more than

3 optical sources are associated with the X-ray sources. These likely include many clusters

of galaxies where a number of galaxies are found near the center of the X-ray emissions.

While we cannot, and do not, assert the validity of any specific positional association,

the analysis of the statistical properties of the counterparts assures us that overall, they are

dominated by real associations.

11Since our classifier uses purely empirical techniques, the classifier might still handle such clusters cor-

rectly. Even though the cross-identification is ‘wrong’, if this happened consistently the classifier will be

trained to correctly recognize these objects as clusters.
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3. Classification Techniques

3.1. Introduction

Classification is the process of mapping the observable characteristics of an object to

a set of classes that typically represent different physical types; a classifier is the imple-

mentation of a classification algorithm to perform this mapping. We consider here methods

for supervised classification, meaning that a human expert both has determined into what

classes an object may be categorized and also has provided a set of sample objects with

known classes. This set of known objects, called the training set, is used by the classification

programs to learn how to classify objects. The process of creating such a classifier for a

particular data set is usually called training.

There are also unsupervised classification algorithms (e.g., clustering, mixture models)

that attempt to determine both the types of objects and how to separate them directly

from the parameter-space distribution of the unclassified sample. We have chosen to work

primarily with supervised classification methods, however, since we understand much of the

underlying physics for the electromagnetic emissions that are measured, and we can thus

choose intelligently from among the many measured parameters to build the best training

sets and select the best classes.

There are two steps to construct a supervised classifier. In the training phase, the

training set is used to decide how the parameters ought to be weighted and combined in order

to separate the various classes of objects. In the application phase, the weights determined

in the training set are applied to a set of objects that do not have known classes in order to

determine what their classes are likely to be.

If a problem has only a few important parameters, then classification is usually an

easy problem. For example, with two parameters one can often simply make a scatter-plot

of the feature values and can determine graphically how to divide the plane into homoge-

neous regions where the objects are of the same classes. The classification problem becomes

very hard, though, when there are many parameters to consider. Not only is the resulting

n-dimensional space difficult to visualize, but there are so many different combinations of

parameters that techniques based on exhaustive searches of the parameter space become

computationally infeasible. Practical methods for classification then involve a heuristic ap-

proach intended to find a good-enough solution to the optimization problem.
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3.2. Oblique Decision Trees

There are several ‘dimensions’ that we can vary in building classifiers. The input obser-

vational characteristics and the output physical classes can be varied. We can use different

sets of training information, and we can vary the basic algorithm for classification. In this

paper we report on results using only a single classifier algorithm, the OC1 system of oblique

decision trees (Murthy, Kasif, & Salzberg 1994) for a fixed set of output classes. We have

chosen the OC1 algorithm because it is freely available12, its accuracy is comparable to the

best available algorithms, and it is sufficiently fast (in both training and application). An

additional benefit is that the decision tree can be examined after it has been trained to de-

termine the key criteria for classification; this is difficult with, for example, neural networks.

Conceptually the oblique decision tree classifier is rather straightforward. It considers

the n-space defined by the set of n input observational characteristics, where each character-

istic is treated as a continuous variable. A binary tree is constructed in which at each node

a plane in the n-space (described by a linear combination of the parameters) divides the

objects into two groups. The first node represents a plane that divides the space into two

regions. Objects are sifted down the left or right branches of the tree depending on which

side of the plane they fall. The next node represents another plane that further divides the

two sub-spaces. Ultimately one reaches a leaf node of the tree where all the objects in the re-

gion are assigned to a single class. Some parts of parameter space may be well delineated by

only a few planes, while other parts might require many planes in order to separate complex

distributions.

Oblique decision trees are difficult to construct because there are many possible planes

to consider at each tree node. OC1 includes a flexible and efficient algorithm for creating

a decision tree given a training set. See the Murthy et al. (1994) paper for full details; we

describe here some key features of the algorithm.

OC1 uses a “greedy” algorithm in the initial tree construction. It first attempts to find

the plane in the n-space that most cleanly divides the training set sample into two samples

having distinct sets of classes. Various impurity measures are available for determining the

quality of a particular split. It then repeats the process recursively for the sub-space on the

two sides of the dividing plane. The algorithm continues until each remaining subregion is

perfectly classified, with all included training set objects having the same class.

In most cases this initial tree divides the parameter space too finely. For example, some

leaf nodes may contain only a single object, picked out by planes that separate it from a

12http://www.tigr.org/∼salzberg/announce-oc1.html
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mass of nearby objects having different classes but with similar parameters. The tree overfits

the training set data, tracking details much more closely than is justified. To address this

OC1 prunes its decision tree. A fraction of the training set objects is reserved during the

initial tree construction. This pruning sample is used to test the decision tree; decision nodes

are eliminated if their removal does not reduce the classification accuracy for the pruning

sample. The final tree does not classify the training set perfectly (some subregions contain

multiple classes of objects), but it has higher overall accuracy than the original overfitted

tree.

Oblique decision tree classifiers are not the only possible choices: other commonly used

algorithms include neural networks, nearest-neighbor methods, and axis-parallel decision

trees. See White (1997, 2000) for discussion of some astronomical applications and a more

detailed comparison of these algorithms.

3.3. Voting Decision Trees and Classification Probabilities

We have improved on the accuracy of the classification by using not just a single tree,

but rather a group of 10 trees that vote (White et al. 2000). This multiple-tree approach has

been shown to be effective at improving the accuracy of classifiers (Heath, Kasif, & Salzberg

1996). OC1 uses a complex search algorithm that includes some randomization to avoid

the classic problem of getting stuck in local minima in the many-dimensional search space.

Thus, one can run OC1 many times using different seeds for the random number generator

to produce many different trees.

Heath et al. (1996) used a simple majority voting scheme: classify the object with each

tree and then count the number of votes for each class. We have improved on this by using

a weighted voting scheme, where each tree splits its vote between classes depending on the

populations of the classes from the training set at that leaf. (Recall that after pruning a leaf

may contain objects of several different classes.) If an object winds up at a leaf node with N

training set objects of which Li are of class i (i = 1...C), the tree’s fractional vote in favor

of classification i is (Li + 1)/(N + C). (The particular form used for the ratio was derived

from the binomial statistics at the leaf.) The votes from all 10 trees are averaged to produce

a vector of probabilities that an object belongs to each of the possible classes in the training

sample. We associate the largest element of this vector with the ‘class’ of the source.
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3.4. The Output Classes

There are many distinct classes of X-ray sources, and one of the goals of this research

is to understand the level of detail to which we can successfully distinguish such sources

with the information we have at hand. In practice in this initial effort we have tended to be

conservative, using only six basic classes (Table 1).

A problem that needs to be addressed in the classifier design is that the same astro-

nomical object may legitimately belong to very different object types, especially as viewed

from different wavelengths. While the X-ray properties of an X-ray binary are likely to

be dominated by the accretion onto the compact companion, the optical appearance of the

system may be that of, say, a normal B-star—and it may be categorized as such in some

catalogs. Similarly, while the X-ray emission of a cluster of galaxies originates mostly in

the intracluster gas, the cluster optical or infrared counterpart would typically be a cluster

galaxy.

These ambiguities complicate all phases of the classification, including construction of

training sets, the training process itself, and interpreting the results. All classification errors

are not equally bad when the classes are ambiguous. Clearly if the classifier confuses AGNs

with galaxies, this is not nearly as serious as confusing AGNs with stars. We will return to

these issues below in our discussion of the results.

3.5. ClassX Classifiers

We introduce here four ‘basic’ ClassX classifiers derived from the WGACAT and RASS

BSC data (Table 2). They are used in the subsequent discussion to illustrate how the amount

and the nature of the information fed into a classifier affects classification results. The RASS-

X and WGACAT-X classifiers use ROSAT data only, including positional information. The

RASS-XOR and WGACAT-XOR classifiers additionally use optical data for the optical

counterparts and a flag indicating whether the source has or does not have a radio counterpart

in the NVSS and SUMSS surveys; objects for which no optical counterpart could be found

were not used in the training of these classifiers. All four illustrative classifiers are trained to

distinguish the same ‘basic’ set of classes: stars, white dwarfs (WD), X-ray binaries (XRB),

AGNs, galaxies, and clusters of galaxies.

Many more classifiers are available at the ClassX web site. These include classifiers using

correlations with other optical and infrared catalogs, other input parameters, and different

sets of output classes.
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4. Verification

4.1. Cross-Validation and Classifier Characterization

The statistical nature of ClassX classifiers means that one has to have some measure of

the quality of a classifier to tell if the classification results are of any value. To adequately

assess a classifier and interpret classification results one would also need to know what are

the differences between the classes and how relevant these differences are in a particular

application of the classification results. In the following, we describe some methods to assess

the quality of ClassX classifiers, and introduce a quantitative characterization of both the

classifiers (e.g., reliability and completeness of classification, classifier preference) and classes

(e.g., class affinity).

A natural dataset to use to confirm the quality of a classifier is the training set that was

used to develop it. The classifiers are tested using 5-fold cross-validation. The training set is

divided into 5 equal-sized, randomly selected subsets (“folds”). Setting aside the first fold,

10 decision trees are constructed by training on the other 4 folds. Then the trees are tested

for accuracy on the first fold, which was not used in the training. This process is repeated

5 times, each time holding back a different fold. When this is complete, we have classified

the entire training sample. This standard technique avoids the overly optimistic results for

classification accuracy one would get if one simply trained the classifier on all the data and

then tested it on the same data13.

The results of cross-validation can be viewed as a matrix with the input classes as the

row headers and the column headers as the output classes (see Table 4). For a perfect

classifier, only the diagonal of the matrix would be populated. In practice the ratio of

diagonal to off-diagonal elements gives us an immediate sense of how well the classifier has

worked. In most cases the accuracy of the classifier is going to be higher for the training

set sample than for originally unclassified sources, because the population of unclassified

sources may differ systematically from known sources (e.g., by being fainter.) On the other

hand, some disagreements between the OC1 classifier and the training set classification are

the result of classification errors in the (imperfect) training set. There the cross-validation

results correspondingly underestimate the classifier accuracy.

The cross-validation results are shown in Figures 8–9. Each panel in these figures gives

the fraction of objects in input class categories classified by ClassX as objects of a given type.

13Note that classifiers trained with 80% of the data are only used in cross-validation. The classifiers

installed at the ClassX web site and used in this paper for classifications of unknown objects are trained

using the entire sample of pre-classified sources.
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Fig. 8.— Classifier cross-validation: Distribution of input classes within a given ClassX class

(class affinity). Light and dark shadings refer to the results for the classifiers using X-ray

data only (from ROSAT) and X-ray plus optical and radio data, respectively. Each panel

shows the fraction of each of the input classes assigned by ClassX the class name given in

the panel. Ideally that fraction must be 100% for the input class having the same name,

which means 100% reliable classification for that name. In reality, ClassX assigns the given

name also to a fraction of objects whose actual class has a different name, which happens

more often for classes whose affinity with the given class in the parameter phase space is the

largest.
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Fig. 9.— Same as in Figure 8 but for the classifiers derived from WGACAT.
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Fig. 10.— Classifier cross-validation: Distribution of ClassX classes within a given input

class (classifier preference). Each panel exhibits the fraction of objects of the given input

class in each ClassX class. An ideal classifier would assign to all objects in a given input class

the name of that class. In reality, the classifier assigns different names, showing different

preference for different names. In the case of a good classifier, the preference is highest for

the name of the given input class.
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Fig. 11.— Same as in Figure 10 but for the classifiers obtained from the WGACAT training

sets.
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The diagonal across the panels gives, therefore, the fraction of correctly classified sources in

each class and thus represents reliability of classification. Because of closeness, or affinity,

of some classes in the parameter phase space (e.g., galaxies and AGNs), the classifier may

place some objects of a given input class into a class with similar properties. Figures 8–9

characterize quantitatively such class affinity. One can infer, for instance, from Figure 8

that there is a substantial affinity between the ROSAT BSC galaxies and AGNs when only

X-ray properties are considered. Addition of optical information decreases that affinity quite

noticeably. At the same time clusters of galaxies are obviously distinctly different from AGNs

in the X-ray. The affinity relationships between the classes are somewhat different for objects

from WGACAT (Figure 9).

In Figures 10 and 11, each panel gives the fraction of input objects of a given type clas-

sified by ClassX into different class categories. The diagonal across the panels shows us how

complete is the placement of sample objects of a given type into the correct class category,

giving us a measure of classification completeness. In general Figures 10 and 11 show us the

classifier preferences as it puts objects of a given type into different class categories.

Affinity and preference plots in Figures 8–11 come handy when one want to know what

outcome to expect from a particular classification. For instance, from the XRB panel in

Figure 10, one would know that less than half XRBs can be expected to get revealed in a

sample of X-ray sources. The same panel in the affinity plot, Figures 8, would tell one that

75% or more of sources classified as XRBs are expected to be real XRBs.

The actual counts of objects both in the input and ClassX classes used in cross-validation

are given in Table 4. The completeness of the classifier for a particular class is given by the

ratio of the diagonal element to the sum of the column. This indicates the fraction of a given

class where we recover the correct class. The reliability of the classifier is given by the ratio

of the diagonal element to the sum over the row. The normalized row is a measure of affinity

of a given class with other classes: for a given input class what class does the automated

classification yield? Of course, in both cases we must assume that the original classification

is correct.

The cross-validation matrices immediately show many interesting features. When data

is misclassified it is usually misclassified into related categories. For instance, clusters or

AGNs are misclassified as galaxies and vice versa.

The effect of large samples of one class versus smaller samples of another is also evident.

Since there are so many stars, they can significantly pollute samples of galaxies. Even though

a classifier may furnish relatively high completeness for a given class, classification reliability

for that class would be relatively low when occasional misclassification of a very common
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type overwhelms the correct classification of a rare type. The smaller the relative frequency

of the object, the more distinctive its observational signature needs to be to stand out against

the other classes. For example, white dwarfs are characterized by very soft X-ray spectra.

Thus even though they make up only a small subset, they are well handled by our classifiers.

4.2. Verification Using External Samples

While the cross-validation results are useful, they cannot address any issues involving

the selection of data for the training set itself. We can get some insight into that concern by

looking at how well the classifiers handle ROSAT sources of known class that were not in the

training set. Using our standard pipelines, we have classified samples of such sources from a

number of catalogs containing identified ROSAT objects. Three such samples are discussed

below in more detail.

4.2.1. Hipparcos F stars

Suchkov, Makarov, & Voges (2003) identified 2011 F stars from the Hipparcos catalog

as X-ray emitters that have X-ray counterparts in the RASS FSC and, to a lesser extent,

RASS BSC. Submission of the list of these stars to the classifier RASS-XOR resulted in an

output list of 1737 sources, all of which classified as stars (Figure 12). Also a smaller subset

of these stars found in the WGACAT by the WGACAT-XOR classifier was all identified

as stars. This result is consistent with a very high reliability of star classification for these

classifiers as inferred from Figures 8 and Figures 10, thus strongly supporting the credibility

of the cross-validation results.

4.2.2. New AGNs from the WGACAT

P. Padovani (private communication, 2003) supplied us with a sample of 251 WGACAT

sources that were identified by him and his collaborators as various types of quasars and

AGNs (Landt et al. 2001; Perlman et al. 1998; Padovani et al. in preparation). The results

of classification of this sample with the WGACAT-XOR and RASS-XOR classifiers are shown

in the middle panel of Figure 12. The classifier does a good job in distinguishing the AGNs

from all other classes.
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4.2.3. AGNs from the Sloan Digital Sky Survey

The Sloan Digital Sky Survey (SDSS) is a deep photometric and spectroscopic optical

survey, where a large number of sources were spectroscopically identified as AGNs. For more

than 1200 Sloan AGNs, Anderson et al. (2003) found X-ray counterparts in the ROSAT All

Sky Survey. We used a sample of 964 of these AGNs to test the performance of the ClassX

classifiers. The results of the classification of that sample are shown in the lower panel

of Figure 12. The classifier performance is very good in terms of differentiating the Sloan

AGNs from galactic X-ray sources (stars, white dwarfs, XRBs) and clusters of galaxies.

The WGACAT-XOR classifier easily differentiates these AGNs from galaxies; the RASS-

XOR classifier is less successful in such a differentiation, possibly because it is trained with

substantially brighter objects.

4.3. Classification Accuracy as a Function of Brightness.

One clear distinction between the classified and unclassified sources is that the classified

sources are generally brighter. One may expect that classification accuracy for fainter sources

would be different. As one can see in Figure 13, classification accuracy does indeed vary with

X-ray brightness. Interestingly enough, the degree and even the sense of that variation is

not the same for different classes. In the case of AGNs, the accuracy drops from 80% at the

bright end to below 70% at the faint end of the distribution. In contrast the classification

accuracy of clusters of galaxies tends to increase rather than decrease toward faint sources.

For stars, accuracy variation is rather small, with a slight tendency to accuracy degradation

at the faint end. The accuracy variation is obviously important to know for interpretation of

classification results, especially when a classifier is used in a parameter domain substantially

different from that of the training data.

4.4. Limits and Issues

While our validation of the classifiers is not entirely secure, especially with regard to the

cross-correlation errors and the effects of selection on the training set, several distinct lines of

evidence suggest that these classifiers give reasonable classifications for their sources. While

no single classifier is optimal for classifying all kinds of data, a classifier network that filters

data through a series of classifiers can give reasonable results for a heterogeneous dataset. A

scientist with more specialized requirements, such as completeness without regard to purity

for galaxies, or perhaps a pure sample of early type stars, may wish to choose a classifier
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Fig. 12.— Class distribution for a sample of X-ray F stars (upper panel) and two samples of

AGNs (middle and lower panels). The samples were classified by the classifiers RASS-XOR

(light shading) and WGACAT-XOR (dark shading). Classification shown in light gray in

the lower panel is discussed in text. The sample of F stars is from the paper by Suchkov

et al. (2003). The sample in the middle panel is due to P. Padovani. It comprises mostly

the sources from Landt et al. (2001) and Perlman et al. (1998), which were drawn from the

previously unclassified WGACAT sources and identified as AGNs. The sample in the lower

panel comprises AGNs from the Sloan Digital Sky Survey that were found to have X-ray

counterparts in the ROSAT All Sky Survey catalogs (Anderson et al. 2003).
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Fig. 13.— Fraction of the WGACAT training set sources correctly classified by the classi-

fier WGACAT-XOR, displayed as a function of X-ray brightness (defined as −2.5 log(count

rate)). The actual number of sources of a given class in each brightness bin is also shown.
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that optimizes that property.

The classifiers have been built from heterogeneous data sources, which are likely to have

some fraction of incorrect identifications. Pruned decision tree classifiers seem to be robust

in the face of such contamination, so that one can even use the classifiers to attempt to

purify the input data set.

5. Summary of Results

Classification results from ClassX for the entire WGACAT and RASS datasets are

available at the ClassX web site at http://heasarc.gsfc.nasa.gov/classx. They are illustrated

in Tables 5 and 6, which show the first few rows of two selected tables.

In addition to these static classifications, more than two dozen ClassX classifiers, read-

ily accessible for the community for immediate use, are currently deployed at the ClassX

web site. The web site contains a description of the input data format, which is the list of

source coordinates, and the input/output options. All the classifiers are supplied with the

information indicating the classifier class categories, parameters (attributes) to be used in

classification and returned in the output, databases (catalogs) to be searched for the source

information, and other relevant information. In the output, each classified source is supplied

with classification probabilities for all classes, and is assigned a class name, which corre-

sponds to the class with the highest classification probability. The output also contains the

parameter values retrieved for the source and used in classification.

6. Conclusions

Classification of X-ray (or optical, infrared, etc.) sources into various categories of

astronomical object types can rarely, if at all, be 100% accurate. The presence of uncertainty

inherent to classifications based on statistical methods immediately splits the very goal of

classification into a set of different goals, which are often incompatible. As a result, any

statement about classifier effectiveness would generally make sense only if the classification

goal or task, with respect to which the effectiveness is considered, is indicated. For example,

one may want either to isolate as complete as possible objects of a given class in a given

sample, even at the expense of a larger fraction of misclassified sources, or to deal only with

objects of a class identified with the highest possible degree of reliability, even at the expense

of rejecting many class objects that the classifier is unable to identify as such at the desired

level of reliability. These different goals can be addressed in ClassX with different classifiers.
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One classifier can be effective in identifying to a high degree of completeness the members

of a class, but classification reliability for identified class members may not be high enough.

Still another classifier can be effective in delivering highly reliable class members but may

miss many actual members of the same class.

Supervised classification techniques are a very powerful way of extending information

about well-understood objects in a sample to the entire sample. For X-ray sources, it is

possible to do classifications using just a few X-ray parameters as object attributes. Multi-

wavelength data can substantially improve the quality of the classifications, although adding

data without regard to its quality or uniqueness does not necessarily help.

The ClassX classifications are useful for studying classes of objects, but the classifica-

tion of any individual object should be taken as advisory rather than definitive. Human

understanding and judgment is crucial in assessment and interpretations of the results. This

is especially true given the statistical nature of ClassX.

In ClassX, a substantial number of input (training) sources are required for each class

to effectively classify a sample. This number depends on the degree to which attributes of

the class differ from those of other classes. In the case of white dwarfs, the RASS-XOR

classifier trained with less than a hundred of these objects proved nevertheless to be quite

effective both in detecting the majority of actual white dwarfs in the (training) sample of

many thousand objects and ensuring high reliability of white dwarf candidates.

We anticipate that modifications to the classifier algorithm that note when objects do

not map well into existing classes will be needed to improve its detection capabilities for

previously unknown object types (Laidler & White 2003). Currently the latter functionality

can be emulated through appropriate analyses of classification probabilities provided by

ClassX.

Simple cross-identification procedures work well for the entire RASS and WGA samples.

However, for X-ray sources more than a factor of 10 fainter (e.g., Chandra and XMM sources),

we anticipate substantial incompleteness in the large optical surveys. The Sloan Survey

should do better here.

Optical information is critical to distinguishing Galactic from extragalactic sources. It

is less crucial for classifying clusters of galaxies and white dwarfs. The effect of infrared

information in ClassX is generally similar to that from the optical in distinguishing broad

classes. This information becomes increasingly useful in finer grained classification. A net-

work of ClassX classifiers, each using a different set of object parameters (attributes) and

even a different set of classes can provide a highly complete and reliable overall classification.
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In general, the more detailed and accurate information is available to a classifier the

more precise the classification results are.

The phase space of possible classifiers is very large. A substantial fraction of this effort

was to learn a reasonable minimum of information to use.

Handling diverse sources of information is a major challenge. Adoption of standard

protocols and formats such as those now being developed in the Virtual Observatory is

crucial in creating a fast and easy-to-use system.

We wish to thank L. Angelini, M. E. Donahue, S. A. Drake, P. Fernique, F. Genova, W.

D. Pence, M. Postman, M., and M. Wenger for numerous discussions of the project.
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Table 1. ‘Basic’ Classes and the Number of Class Objects in the WGACAT and RASS

BSC Samples

WGACAT RASS

Class Origin of X-ray emission

all uniquea

Star . . . . . . . . . . . . . . . . . 6027 4678 4694 Corona or shocked stellar wind.

WD (white dwarfs) . . 152 98 78 Hot atmosphere.

XRB (X-ray binaries)b 494 271 192 Accretion disk of a neutron star or black hole.

AGNc. . . . . . . . . . . . . . . . 4589 3031 726 Central accretion disk, XRBs, galactic wind

Galaxy .. . . . . . . . . . . . . 1614 1305 1015 XRBs, hot corona, galactic wind.

Cluster (of galaxies) . 1717 1508 210 Hot intracluster gas.

Unclassified . . . . . . . . . 73986 65872 –

Total . . . . . . . . . . . . . . . . 88579 76763 6915

aIn the case of multipe entries for a source, only the entry closest to the center of the PSPC field is

included.

bIncluding cataclysmic variables.

cIncluding quasars, radio galaxies, and BL Lac galaxies.

Table 2. Class Attributes (Object Parameters) used by the Four ‘Basic’ ClassX Classifiers

Classifiera

Attribute name Attribute Source

XOR X

Galactic longitude, lII . . . Input y y

Galactic latitude, bII . . . . Input y y

X-ray brightnessb. . . . . . . . . X-ray data y y

Hardness ratio 1, HR1c. . . X-ray data y y

Hardness ratio 2, HR2c. . . X-ray data y y

X-ray extent (source size)d X-ray data y y

Blue magnitude, Be. . . . . . Optical data y n

Red magnitude, Re. . . . . . . Optical data y n

Radio counterpart flagf. . . Radio data y n

aX for WGACAT-X and RASS-X classifiers, XOR for

WGACAT-XOR and RASS-XOR classifiers. Parameter required

by a classifier is indicated by ‘y’, otherwise ‘n’.

bDefined as −2.5 log(count rate).

cFrom RASS or computed from WGACAT.

dFrom RASS or ROSPSPC (for WGACAT) if available, else

0.
eFrom the USNO B1 catalog.

f1 if counterpart found in NVSS or SUMSS, else 0.
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Table 3. Number of X-ray sources and number and average brightness of candidate

counterparts selected in the nominal and control samples.

Sample Number B1
a R1

b B2
c R2

d

N N N N

sources candidates sources with candidates

BSC nominal . 18,811 155,744 18,672 14.8 14.4 15.5 14.7

11,726 15,378 16,074 16,459

BSC offset . . . 18,811 95,980 16,627 19.3 18.2 19.5 18.6

6,930 12,128 13,455 14401

FSC nominal . 105,924 736,879 101,559 18.2 17.3 18.6 17.7

51,573 77,229 84,463 89,014

FSC offset . . . . 105,924 592,531 95,507 19.2 18.1 19.5 18.5

43,027 70,427 77,799 83,369

WGA nominal 88,579 591,719 82,799 18.2 17.3 18.6 17.7

43,112 60,622 67,581 70,186

WGA offset . . 88,579 488,685 76,133 19.4 18.2 19.5 18.6

33,677 54,608 59,394 64,089

aThe average first epoch B magnitude/the number of counterparts for which a first epoch B magnitude was

defined (see Monet et al. 2003).

bSame as above but for the first epoch R magnitude.

cSame as above but for the second epoch B magnitude.

dSame as above but for the second epoch R magnitude.
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Table 4. Cross-validation for the classifiers from RASS BSC and WGACAT

Input class ClassX class

Name Number STAR WD XRB GALAXY AGN CLUSTER

RASS-X classifier

STAR 4694 . . . . 4505 17 1 138 31 2

WD 78 . . . . . . 8 65 0 2 2 1

XRB 192 . . . . . 119 10 52 6 3 2

GALAXY 1015 . . . . 651 6 4 261 59 34

AGN 726 . . . . . 528 2 0 111 84 1

CLUSTER 210 . . . . . 56 0 2 40 0 112

. . . . . . . .

Total 6915 . . . . 5867 100 59 558 179 152

RASS-XOR classifier

STAR 4675 . . . . 4629 0 1 45 0 0

WD 75 . . . . . . 3 63 2 4 3 0

XRB 173 . . . . . 5 9 61 62 29 7

GALAXY 945 . . . . . 94 3 4 654 170 20

AGN 707 . . . . . 5 1 6 128 561 6

CLUSTER 188 . . . . . 3 0 4 52 25 104

. . . . . . . .

Total 6763 . . . . 4739 76 78 945 788 137

WGACAT-X classifier

STAR 4626 . . . . 3739 4 10 747 35 91

WD 67 . . . . . . 38 11 1 14 0 3

XRB 265 . . . . . 121 1 61 72 2 8

GALAXY 1281 . . . . 370 0 1 557 166 187

AGN 3012 . . . . 579 0 8 2189 60 176

CLUSTER 1496 . . . . 356 0 3 699 101 337

. . . . . . . .

Total 10747. . . 5203 16 84 4278 364 802

WGACAT-XOR classifier

STAR 4028 . . . . 3617 1 7 279 51 73

WD 59 . . . . . . 25 4 3 25 0 2

XRB 239 . . . . . 87 0 76 66 2 8

GALAXY 962 . . . . . 267 0 2 307 276 110

AGN 2648 . . . . 144 0 6 2195 95 208

CLUSTER 1311 . . . . 170 0 6 599 67 469

. . . . . . . .

Total 9247 . . . . 4310 5 100 3471 491 870
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Table 5. Classification of RASSBSC by the RASS-X classifiera

RASSBSC Class Class

Source Name Index P(Star) P(WD) P(XRB) P(Galaxy) P(AGN) P(Cluster) Name

1RXS J000007.0+081653 3 0.290 0.007 0.038 0.445 0.176 0.044 Galaxy

1RXS J000011.9+052318 0 0.666 0.003 0.023 0.142 0.126 0.040 Star

1RXS J000012.6+014621 0 0.702 0.002 0.022 0.125 0.117 0.031 Star

1RXS J000013.5+575628 0 0.871 0.001 0.017 0.060 0.047 0.003 Star

1RXS J000038.4+794037 0 0.888 0.001 0.015 0.049 0.044 0.003 Star

1RXS J000042.5+621034 0 0.888 0.001 0.015 0.049 0.044 0.003 Star

1RXS J000055.5+172346 0 0.819 0.001 0.018 0.076 0.072 0.014 Star

1RXS J000115.6+705535 0 0.871 0.001 0.017 0.060 0.047 0.003 Star

1RXS J000119.8+501659 0 0.696 0.005 0.067 0.111 0.098 0.023 Star

1RXS J000123.3+272241 0 0.888 0.001 0.015 0.049 0.044 0.003 Star

aTable 5 is given in its entirety at the ClassX web site, http://heasarc.gsfc.nasa.gov. A portion shown here is for guidance

regarding its format and content.

Table 6. Classification of WGACAT by the WGACAT-XOR classifiera

WGACAT Class ROSPSPC

Source Name P(Star) P(WD) P(XRB) P(Galaxy) P(AGN) P(Cluster) Name counterpart?

1WGA J1055.2+5638 0.483 0.039 0.061 0.057 0.254 0.106 Star n

1WGA J1049.6+5641 0.483 0.039 0.061 0.057 0.254 0.106 Star n

1WGA J1053.8+5709 0.270 0.039 0.039 0.219 0.348 0.085 AGN y

1WGA J1053.2+5718 0.265 0.035 0.035 0.209 0.405 0.050 AGN y

1WGA J1052.9+5725 0.415 0.022 0.026 0.160 0.332 0.045 Star y

1WGA J1051.3+5725 0.483 0.039 0.061 0.057 0.254 0.106 Star y

1WGA J1751.8-3450 0.233 0.026 0.028 0.375 0.291 0.047 Galaxy y

1WGA J1415.2+1119 0.233 0.026 0.028 0.375 0.291 0.047 Galaxy y

1WGA J1415.2+1119 0.352 0.037 0.141 0.046 0.311 0.115 Star n

1WGA J1415.0+1119 0.238 0.031 0.032 0.290 0.347 0.062 AGN y

aTable 6 is given in its entirety at the ClassX web site, http://heasarc.gsfc.nasa.gov. A portion shown here is for guidance

regarding its format and content.


