skip to content
 
Compton Gamma-Ray Observatory Science Support Center

NASA'S SUCCESSFUL COMPTON GAMMA-RAY
TELESCOPE MISSION COMES TO AN END

Dolores Beasley
Headquarters, Washington, DC
(Phone: 202/358-1753)

Nancy Neal
Goddard Space Flight Center, Greenbelt, MD
(Phone: 301/286-0039)

RELEASE: 00-44

March 24, 2000

NASA's extremely productive and long-lived Compton Gamma-Ray Observatory mission -- which exceeded its mission by four years and completely changed ideas on the most important unsolved puzzles in astrophysics -- has come to end with the failure of one of the satellite's three gyroscopes.

NASA plans to safely direct the satellite back into Earth's atmosphere no earlier than June 1 with the remaining two gyroscopes, which are used to steer the craft. As an extra precaution, Compton engineers are also developing a method to control the satellite without any gyroscopes, for use as backup during the reentry maneuvers in case an anomaly is encountered with the gyroscopes. Compton's four instruments are still in working order.

"Compton has been a workhorse for nine years, far exceeding our expectations for a two- to five-year mission," said Dr. Alan Bunner, director of NASA's Structure and Evolution of the Universe science theme, NASA Headquarters, Washington, DC. "New discoveries made by Compton changed our view of the Universe in fundamental ways."

Compton's lasting legacy will be its impact on gamma ray astronomy. The telescope detected more than 400 gamma ray sources, 10 times more than were previously known. Compton recorded more than 2,500 gamma ray bursts; before Compton, only about 300 had been detected.

"NASA must have a controlled reentry to direct Compton towards an uninhabited area in the Pacific ocean, " said Dr. Ed Weiler, Associate Administrator for the Office of Space Science, NASA Headquarters. "NASA decided before Compton was launched that, due to its size, it would be returned to Earth by controlled reentry when the mission was over. This was always NASA's plan. "

The propulsion system on Compton lacks sufficient fuel to boost the spacecraft to a higher, longer-lived orbit. Left alone, Compton will eventually fall from orbit due to a minute drag from the Earth's tenuous atmosphere at Compton's orbital height. Unlike most other satellites, Compton is too large to burn up entirely in the atmosphere during reentry. An uncontrolled reentry would expose some area under its orbital path (28.5 degrees north and south latitude) to the risk of falling debris.

The decision to reenter Compton before a second gyroscope fails, even though the satellite is functioning normally, was made at NASA Headquarters on March 23, 2000, after extensive study to consider all options. Research showed it was significantly safer to perform a controlled reentry than any other method of dealing with the satellite. "We actively pursued the option that provided the lowest risk to human lives," said Weiler.

Debris from the reentry will be scattered over an area estimated to be 16 miles wide and 962 miles long. The center of the reentry area is on the equator approximately 2,500 miles southeast of Hawaii (about 120 degrees west longitude). A large portion of the satellite will vaporize as it transits the atmosphere, and most of the pieces that survive will be tiny, about the size of a pea or a grain of sand. However, Compton contains structures made of titanium, which are expected to fall as larger pieces.

"Enough will survive to present a small but still unacceptable risk to populated areas if Compton were allowed to reenter in an uncontrolled manner," said Preston Burch, Deputy Program Manager for Space Science Operations at NASA's Goddard Space Flight Center, Greenbelt, MD. "NASA will work closely with aviation and maritime authorities to ensure the impact area is free from traffic during reentry."

Compton flight controllers, stationed at Goddard, will fire Compton's propulsion system thrusters in the direction opposite to its orbital motion, which will slow the spacecraft down and cause its orbital height to decrease so that it reenters the atmosphere. There will be four separate firings of the propulsion system thrusters, each about a day apart. After each firing, Compton's new orbit will be determined precisely, and the performance of the thrusters will be evaluated. The thruster performance varies according to the pressure of the propellant, so the thrusters will not perform the same way because each firing consumes propellant, which decreases its pressure.

NASA and international space agencies plan several upcoming missions to continue where Compton left off. The Compton Gamma Ray Observatory was the second of NASA's Great Observatories and the gamma-ray equivalent to the Hubble Space Telescope and the Chandra X-ray Observatory. Compton was launched aboard the Space Shuttle Atlantis in April 1991, and, at 17 tons, was the largest astrophysical payload ever flown at that time.


If you have a question about CGRO, please contact us via the Feedback form.

This page was last modified on Wednesday, 17-Mar-2010 10:37:49 EDT.

NASA Astrophysics

  • Questions/Comments/Feedback
  • Find helper applications like Adobe Acrobat
  • Learn about black holes, astronomy & more!
  • A service of the Astrophysics Science Division at NASA/ GSFC

    NASA Science Official: Neil Gehrels
    Responsible NASA Official: Phil Newman
    Web Curator: J.D. Myers
    Privacy Policy and Important Notices.