
1

OGIP Calibration Memo CAL/SW/95-002

OGIP CALDB Access Subroutines

(a brief overview for programmers)

Ian M. George,
Lorraine Breedon,

and
Michael F. Corcoran

Mail Code 662
NASA/GSFC,

Greenbelt, MD20771

Version: 2006 Aug 21
(Previous Versions: 1996 Jan 02)

SUMMARY

This document provides an introduction of the FORTRAN subroutines, sup-
plied as part of the FTOOLS package, which can be called by tasks in order to
access their local copy of the HEASARC’s Calibration Database (Caldb). Also
included is a brief review of the HEASARC Caldb, the preliminaries a user
needs to have completed prior to using any task which calls the Caldb-access
subroutines, along with programming suggestions/examples.
Intended Audience: Programmers wishing to make use of the their local Caldb.

file:/docs/bios/imgeorge.html
http://eud.gsfc.nasa.gov/Michael.Corcoran/
http://heasarc.gsfc.nasa.gov/docs/software/ftools/ftools_menu.html
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_intro.html
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_intro.html

OGIP Calibration Memo CAL/SW/95-002 (Caldb Access subroutines) 2

Forward

This document is intended to provide a general introduction to HEASARC’s calibration database
system access software. Every attempt has been made to present the information in a clear, and
(moderately) concise manner, and copious use of cross-referencing is made, although reference
to other Calibration Memos etc is occasionally required.

At the current time, this document is updated as necessary, and not guaranteed complete.

All questions, comments and suggestions should be directed to:
caldbhelp@olegacy.gsfc.nasa.gov
or Caldb personnel as listed on the Caldb Personnel Page.

The latest version of this document in Portable Document Format can be obtained at
http://heasarc.gsfc.nasa.gov/FTP/caldb/docs/memos/cal sw 95 002/cal sw 95 002.pdf

http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/
mailto:caldbhelp@olegacy.gsfc.nasa.gov
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_team.html
http://heasarc.gsfc.nasa.gov/FTP/caldb/docs/memos/cal_sw_95_002/cal_sw_95_002.pdf

OGIP Calibration Memo CAL/SW/95-002 (Caldb Access subroutines) 3

LOG OF SIGNIFICANT CHANGES

Release Sections Changed Brief Notes
Date

1994 Sep 12 Original Version
1995 Jan 11 All Made compatible with LaTeX2HTML software
1995 Oct 18 All Updated & made specific to subroutines only
1996 Jan 02 4.1 Updated to include caldb_info subroutine
2006 Aug 21 all minor typo corrections & updates, including change

from gtcal.f to gtcalf.f (MFC)

OGIP Calibration Memo CAL/SW/95-002 (Caldb Access subroutines) 4

Contents

1 INTRODUCTION 6

2 IMPORTANT PRELIMINARIES 6

3 RECOMMENDED PROGRAMMING PRACTICES 7

3.1 Is the Caldb-access software absolutely necessary ? 7

3.2 Allow user input options . 7

3.3 Report failures back to the user in some detail 8

3.4 Include the details of any calibration used in the output file 8

4 THE CALDB ACCESS SUBROUTINES 8

4.1 caldb info.f . 8

4.2 gtcalf.f . 9

5 FREQUENTLY ASKED QUESTIONS 12

5.1 What’s the best introduction the Caldb ? . 12

5.1.1 For the Programmer . 12

5.1.2 For General Users . 13

5.1.3 For Local Caldb Managers . 13

5.2 What’s the difference between the “HEASARC Caldb” & a “local Caldb”? . . . 13

5.3 What should I put in my “help file”? . 13

5.4 Can I use the ftools/refdata area? . 14

5.5 What if a local Caldb does not appear to be set-up? 14

5.6 What do I do once I’ve found the Calibration filename? 14

OGIP Calibration Memo CAL/SW/95-002 (Caldb Access subroutines) 5

5.7 What if a calibration file is not found? . 14

5.8 What if many calibration files are found (unexpectedly)? 15

5.9 Where do I deliver new calibration files to ? . 15

6 EXAMPLES 16

6.1 Using caldb info & gtcalf . 16

OGIP Calibration Memo CAL/SW/95-002 (Caldb Access subroutines) 6

1 INTRODUCTION

One of the main goals of the HEASARC’s Calibration Database (Caldb) system is to provide
analysis software access to relevant calibration datasets, without having to have the names and
locations of those datasets hard-wired into the analysis software. “Access” means the capability
to identify a calibration data file based on specified instrumental properties or parameters. These
parameters or properties may include (but are not limited to) mission and instrument name,
detectors and filters in use, observation date and time, and other parameters like temperatures,
high voltages, magnetic rigidities, orbital parameters, time since passage through the South
Atlantic Anomaly, etc. This allows updates to the calibration datasets to be made immediately
accessible without the need for changes to be made to the analysis software.

To achieve these goals, the HEASARC has designed and developed the Calibration Database.
This is essentially a simple relational database whereby critical information concerning each and
every calibration dataset within the database for a given instrument is stored in a Calibration
Index File (CIF), which is a FITS-formatted binary table. The format of the CIFs are
described in detail in OGIP memo CAL/GEN/92-008. The Caldb access software described
in this document basically interogates the relevant CIF, searching for the entry (ie dataset)
required by the application task which matches the observational parameters.

A detailed knowledge of the CIF format is not required here. In essence a CIF consists of a
FITS BINTABLE in which each row refers to a different calibration dataset, with necessary
information stored in each of the many BINTABLE columns. For the purposes of this brief
introduction, the CIF table columns are those containing the name and location of each cali-
bration dataset, the instrument to which it refers, a code describing what kind of calibration
information is actually stored within the dataset, and a time/date stamp indicating when the
dataset should first be used. These will be explained in more detail below. The information
contained within the CIF allows the Caldb access software to determine which dataset(s) are
required for a given analysis task, and to return the name & location of the dataset(s) to the
task. It is then the responsibility of the application to open, read and use the dataset in an
appropriate manner.

This document describes the various Caldb access subroutines available from the HEASARC
CALTOOLS software suite, and gives examples on their use.

2 IMPORTANT PRELIMINARIES

There are two basic requirements for a user/programmer to be able to use their local Caldb
(and the access subroutines described in Section 4):

• that they can see the disk, file system etc containing the data files

• that they define a number of environment variables (or logicals) which allow the Caldb soft-

http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/
http://heasarc.gsfc.nasa.gov/
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_intro.html
http://heasarc.gsfc.nasa.gov/docs/heasarc/fits.html
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1995A%26AS..113..159C&db_key=AST&high=3db47576cf06210
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_008/cal_gen_92_008.html
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_intro.html
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_intro.html
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_intro.html
http://heasarc.gsfc.nasa.gov/lheasoft/ftools/caldb/caltools.html

OGIP Calibration Memo CAL/SW/95-002 (Caldb Access subroutines) 7

ware to find the Calibration Index Files (CIFs; see CAL/GEN/92-008 for further details)
and hence the calibration datasets themselves. The set-up of these environment variables
(or logicals) can be done by “sourcing” a single file supplied by the HEASARC Caldb and
is described in detail in the Caldb Users’ Guide (CAL/GEN/94-002). For c-shell users
this file is called the caldbinit.csh file. The most important environment variables (or
logicals) which must be defined are:

– CALDB – the path to the top-level directory of the local Caldb

– CALDBCONFIG – the name of the so-called Caldb configuration file, which contains the
all the vital information regarding the location of the local CIFs, plus other locally-
important files.

3 RECOMMENDED PROGRAMMING PRACTICES

There are a number of issues which should be born in mind when decided whether/how to
include access to a local Caldb within a standalone task.

3.1 Is the Caldb-access software absolutely necessary ?

Obviously the Caldb-access software assumes that the site where the users of your task are
running it have (or could have) an up-to-date Caldb set-up, and have access to it. This means
that there are some overheads associated with setting up & maintaining a local Caldb. Thus in
cases where your task will always require the same highly task-specific file (which will not
change with time), then Caldb-access may not be 100% necessary.

However, experience with many missions has highlighted that nearly all calibration files DO
change at some point, and thus use of the Caldb structure and access software often saves
significant time in the long run.

3.2 Allow user input options

Making an analysis task totally reliant on having a local Caldb set-up and available to users
may be as bad as having filenames & locations hard-wired into the code. It is nearly always
trivial to structure analysis software so that any local Caldb can be used, or so that the user can
manually provide the location & name of the calibration file to be used. This approach allows
users to construct their own calibration datasets to be used in place of “standard” files, which
is especially important during analysis tool development and testing.

FTOOLS tasks usually allow a user to specify a character-string parameter for each calibration
file which is to be input. This input may be a “special string” (usually CALDB) which signifies

http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_008/cal_gen_92_008.html
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_intro.html
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_94_002/cal_gen_94_002.html
file:/docs/software/ftools/ftools_menu.html

OGIP Calibration Memo CAL/SW/95-002 (Caldb Access subroutines) 8

that files given in the Caldb are to be used; alternatively a user can simply provide the full path
to the desired calibration file as the input, bypassing the Caldb.

3.3 Report failures back to the user in some detail

One of the biggest complaints the Caldb gets is that when the Caldb-access software fails, the
task from which it is called fails to deliver coherent and/or useful error messages.

The error-reporting of the Caldb-access software is being improved, but the messages will always
be less coherent/detailed compared to those which could be constructed by the main task. This
is particularly the case when any of the Caldb-access routines are run in ”silent-mode” (see
below). Assuming the error is considered fatal by your task, then at the very least, the task
should report which type of calibration file the software was attempting to find, and (perhaps)
suggest a course action to the user.

3.4 Include the details of any calibration used in the output file

All tasks which obtain & use a calibration dataset via the Caldb-access software should also
include the name of the file (and the extension within that file if necessary) somewhere/somehow
in the output file. This will provide crucial history information to users should the calibration
change at some time in the future. Clearly including this information is also a good programming
practice even when the Caldb-access software is not used. In the case of FITS output files, the
most obvious way of doing this is via COMMENT or HISTORY cards.

4 THE CALDB ACCESS SUBROUTINES

4.1 caldb info.f

The FORTRAN subroutine caldb_info.f is intended to enable tasks to check and (if desired)
report back on whether a local Calibration Database (Caldb) appears to be correctly set-up
and accessible to a user. The subroutine is distributed with the FTOOLS software package,
and source code can be found in the ftools library as callib/src/gen/caldb_info.f. The
caldb_info subroutine can be linked through the libcaltools.a library. Programmers may
therefore wish to call caldb_info.f prior to calling other Caldb access routines within a given
task. The level of checking and detail of the reporting depend upon the passed parameters mode
and chatter as described below.

If a problem with the user’s Caldb set-up/access is detected, then an error message will be
written to STDERR, and the passed parameter ierr will be returned with a non-zero value.

file:/docs/software/ftools/ftools_menu.html

OGIP Calibration Memo CAL/SW/95-002 (Caldb Access subroutines) 9

The calling sequence is as follows:

call caldb_info(chatter,mode,mission,instrument,ierr)

where

character*(*) mission,instrument
character*(*) mode
integer chatter, ierr

where the arguments are as follows:

• chatter (input)
Flag to indicate how chatty (to STDOUT) the subroutine is during execution. A value
of chatter=9 is nominal, with lower/higher values producing quieter/verbose output (to
STDOUT) respectively. A value of chatter=0 gives totally silent running (to STDOUT), with
the exception of error messages. For all values of chatter, a message will be written to
STDERR, and ierr returned with a non-zero value, if any errors are encountered.

• mode (input)
This parameter controls to what level the putative Caldb set-up is tested.

– For infomode=BASIC, the task simply checks that the two environment variables (or
logicals under VMS) required for the Caldb are defined.

– For infomode=INST, in addition to performing the checks for infomode=BASIC, the
subroutine checks it can find entries for the mission/instrument combination (defined
via the passed parameters mission and instrument: below) in the Caldb Configura-
tion file (as defined by the CALDBCONFIG environment variable/logical – see Section 2).
At high chatter, the location of the relevant files and directories are reported upon.

– infomode=FULL is reserved for future use.

• mission (input)
The name of the mission or telescope for which the Caldb Configuration file is to be
searched. The value of this passed parameter is only important when infomode=INST.

• instrument (input)
The name of the instrument for which the Caldb Configuration file is to be searched. The
value of this passed parameter is only important when infomode=INST.

4.2 gtcalf.f

The current subroutine to use for retrieving information regarding CALDB datasets is the FOR-
TRAN subroutine gtcalf.f. This subroutine was previously called gtcal.f. This subroutine

OGIP Calibration Memo CAL/SW/95-002 (Caldb Access subroutines) 10

is distributed with the FTOOLS] software package, and source code can be found in the ftools
source distribution in the directory ftools/callib/src/gen. The gtcalf subroutine can be
linked through the libftools.a library.

The gtcalf subroutine returns the location of calibration datasets located in the Calibration
Database by referring to the appropriate Calibration Index File (CIF; see CAL/GEN/92-008
for further details). Selection of the appropriate calibration data is based on the values of the
arguments mission, instrument, sub-instr, filter, codenam, date, time and expr. These
arguments respectively describe the mission or telescope, instrument, sub-detector (if any), filter
(if any), type of dataset, date, time, and calibration boundaries for which the returned datasets
should be valid (see also below). In addition to the arguments explicitly listed here, this routine
also uses the values of the environment variables (logicals) CALDB, and CALDBCONFIG (as defined
in Section 2). See the Caldb Users’ Guide (CAL/GEN/94-002) for info on how these system
variables should be set.

The maximum number of datasets matching the criteria returned is speficied by the maxret
argument. Any datasets which meet the selection criteria are returned through the filenam
and extno arrays. Each element of the filenam array contains the complete system dependent
path (including the filename) to the file where the calibration data resides. The corresponding
element of the extno array contains the FITS extension number of the calibration data within
the file.

The calling sequence is as follows:

call gtcalf(chatter,tele_str,instr_str,detnam_str,
& filt_str, codenam_str, strtdate, strtime, stpdate, stptime,
& expr_str,maxret,filenam,extno,online,
& nret,nfound, status)

where

character*(*) tele_str, instr_str, detnam_str, filt_str
character*(*) codenam_str, expr_str
character*(*) strtdate, strtime, stpdate, stptime
integer maxret
character*(*) filenam(maxret), online(maxret)
integer extno(maxret), nret, nfound, status
integer chatter

where the arguments are as follows:

• tele_str (input)
The name of the mission or telescope for which the returned datasets should be valid.
Corresponds to the TELESCOP keyword value found in the requested calibration file(s).

file:/docs/software/ftools/ftools_menu.html
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_008/cal_gen_92_008.html
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_94_002/cal_gen_94_002.html

OGIP Calibration Memo CAL/SW/95-002 (Caldb Access subroutines) 11

• instr_str (input)
The name of the instrument for which the returned datasets should be valid. Corresponds
to the INSTRUME keyword value found in the requested calibration file(s).

• detnam_str (input)
The name of the detector for which the returned datasets should be valid. Corresponds to
the DETNAM keyword value found in the requested calibration file(s). If a hyphen (-) is
passed, no selection will be made on detector names.

• filt_str (input)
The name of the filter for which the returned datasets should be valid. Corresponds to the
FILTER keyword value found in the requested calibration file(s). If a hyphen (-) is passed,
no selection will be made on filter values.

• codenam_str (input)
The OGIP codename for the requested dataset. Corresponds to the CCNMxxxx keyword
value found in the requested calibration file(s).

• strtdate (input)
The date when the datasets should be valid. This value should be in dd/mm/yy format. If
the string now is passed, the current system date is substituted.

• strtime (input)
The time of the day when the dataset should be valid. This value should be in hh:mm:ss.s
format. If the string now is passed, the current system time is substituted.

• stpdate (input)
The end-date when the datasets should be valid. This value should be in dd/mm/yy
format. If ’now’ is passed, the current system date is substituted.

• stptime (input)
The time of the day (stpdate) when the dataset should be valid. This value should be in
hh:mm:ss.s format. If ’now’ is passed, the current system time is substituted.

• expr_str (input)
A boolean expression used to select on calibration boundary parameters. Calibration
boundary parameters are part of the CBDnxxxx keyword values found in the requested
calibration file(s). (e.g. In the string ENERGY(2-12)keV, ENERGY is the boundary param-
eter.) Currently, the expression syntax only contains the arithmetic operator .eq. and
the logical operator .and.. To request a dataset which is valid for an off-axis angle of 10
arcmins and an energy of 5.0 keV, one would pass an expr value of:

theta.eq.10.and.energy.eq.5

If no expr_str selection is required, a hyphen (-) should be passed.
NOTE: The expr_str parser cannot distinguish between certain valid and invalid expres-
sions. For example, expressions such as:

cor.eq.7.and.and.energy.eq.5

OGIP Calibration Memo CAL/SW/95-002 (Caldb Access subroutines) 12

will be incorrectly interpreted as cor=7 and and.energy=5. A lex and yacc parser is
planned for this routine which will work much better.

• maxret (input)
An integer defining the number of elements in the filenam and extno arguments and the
number of datasets to return.

• filenam (returned)
A character array containing the complete system dependent path(s) the to the file(s) in
which the requested calibration data is stored. Dimensioned using the maxret argument.

• extno (returned)
An integer array containing the FITS extension numbers of requested datasets. Each
extension number is valid for the filename found in the corresonding element of the filenam
array. Dimensioned using the maxret argument.

• online (returned)
A character array which specifys the on-line/off-line status of the corresponding file in
the filenam argument. Each element contains either ONLINE or a string describing the
off-line status of the file. If the string ONLINE is not encountered for a particular filenam
element, then this file has been moved to an off-line media (e.g. magnetic tape) and the
main program will not be able to access the data. This routine will monitor the online
argument and set a return status of 110 when returning if an off-line file is detected.

• nret (returned)
The number of entries returned to the filenam, extno and online arguments.

• nfound (returned)
The nfound argument reports the total number of datasets found during the search which
match the selection criteria. May be larger than maxret.

• status (returned)
The status argument returns an integer specifying the success of this routine. A non-zero
status flag means that this routine was unable to return any datasets to the main program,
while a zero flag means that everything executed normally.

5 FREQUENTLY ASKED QUESTIONS

5.1 What’s the best introduction the Caldb ?

5.1.1 For the Programmer

The Caldb & its access software was designed with the goal of application programmers not
having to know too much about the inner-workings of the database itself. Indeed, assuming the
calibration file(s) the programmer’s application needs to locate is already available in a local

OGIP Calibration Memo CAL/SW/95-002 (Caldb Access subroutines) 13

Caldb, then this document is intended to contain everything the programmer needs to know in
order to find the file (though certainly not how to read & use the file – see SectionSec:now-what).

Besides the general documents listed in Section 5.1.2, programmers wishing to know about the
more technical aspects of the Caldb can check-out:

• CAL/GEN/92-008: Calibration Index Files

• CAL/GEN/92-011: Mandatory Keywords for Calibration Index Files

• CAL/SW/93-018: How to Install Callib & Caltools Software

• OGIP/92-012: The OGIP FORTRAN Programming Standard

5.1.2 For General Users

• CAL/GEN/94-002: HEASARC Caldb Users’ Guide

• CAL/GEN/93-006: The Organization of the HEASARC Caldb

• CAL/GEN/91-001: The HEASARC Calibration Database (brief overview)

5.1.3 For Local Caldb Managers

• CAL/GEN/94-004: How to Install a HEASARC Caldb

• CAL/GEN/93-022: How to Install a Calibration File

• CAL/GEN/92-015: Maintanence Guide for a Caldb at a Remote Site

5.2 What’s the difference between the “HEASARC Caldb” & a “local Caldb”?

There are essentially two main components to keep in mind: 1) the Caldb database system
(ie the software) written and distributed by the HEASARC, and 2) the calibration data files
themselves (ie the database) on-line at the HEASARC. Collectively, these are often referred
to as the “HEASARC Caldb”. When some/all the calibration data files have been copied to
a remote site, and the Caldb database software installed (CIFs made etc), then this is often
referred to as a “local Caldb”.

5.3 What should I put in my “help file”?

The help file should include at minimum:

http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_008/cal_gen_92_008.html
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_011/cal_gen_92_011.html
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_sw_93_018/cal_sw_93_018.html
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/ogip_92_012/ogip_92_012.html
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_94_002/cal_gen_94_002.html
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_93_006/cal_gen_93_006.html
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_91_001/cal_gen_91_001.html
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_94_004/cal_gen_94_004.html
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_015/cal_gen_92_015.html

OGIP Calibration Memo CAL/SW/95-002 (Caldb Access subroutines) 14

• A brief description of the purpose of the task

• a brief description of the algorithm used

• a list of the input parameters and a brief description

• a list and description of the outputs

• known error conditions

• samples of use.

5.4 Can I use the ftools/refdata area?

The ”refdata” area is a directory of calibration files distributed with the FTOOLS] software
package. Use of the refdata area is deprecated, since maintenance and versioning of the data
files in this directory is difficult. However, strenuous

5.5 What if a local Caldb does not appear to be set-up?

If a local Caldb does not appear to be set-up at your site, but you anticipate writing tasks which
will/can make use of a local Caldb, then we suggest you investigate setting one up. The process
is described in CAL/GEN/94-004 and really isn’t that difficult. It should also be noted that
as a “local Caldb manager”, one can choose which mission/instrument combinations you wish
to include in your local Caldb, and even which subset of data files. A local Caldb does not
have to contain all the calibration files available at the HEASARC. Indeed your local
Caldb could even only contain the files ncessary for your task(s).

5.6 What do I do once I’ve found the Calibration filename?

Use of calibration data is highly application-specific. However, it should be noted that Caldb files
conform to strict FITS format guidelines. In most of these cases, there are standard FORTRAN
readers & writers distributed via the FTOOLS package (usually in the libcaltools.a library).
Thus, it’s recommended that you look for such a standard reader and determine whether it is
exactly what you were after, or can be used as a template.

5.7 What if a calibration file is not found?

Assuming the calibration file is vital to your task, then clearly the task should gracefully come
to a halt (with plenty of explanation to the user explaining what type of file wasn’t found – see
Section 3.3). There basically three explanations:

file:/docs/software/ftools/ftools_menu.html
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_94_004/cal_gen_94_004.html
file:/docs/software/ftools/ftools_menu.html

OGIP Calibration Memo CAL/SW/95-002 (Caldb Access subroutines) 15

• the various inputs to the access software were passed correctly, in which case

– either the users local Caldb is out-of-date, in which case the user will have to re-
quest that their local Caldb manager copy the latest calibration datasets from the
HEASARC (or wereever) to their local Caldb and up-date the relevant CIF(s)

– or there really is no valid calibration available, in which case the user has a real
problem, and should contact the relevant GOF etc

• the user and/or preceeding code passed incorrect inputs to the access software. One of the
most common mistakes are requests for calibration datasets valid prior to the start of the
mission.

• there is a bug in the access software (clearly impossible)

In all cases, it should be obvious that a coherent explanation to the user will save everybody
time.

It should be remembered that in some cases, a failure to find a certain type of calibration
file might not be a fatal error. Intelligent tasks might even anticipate such a situation, and
do something appropriate (like construct the required calibration dataset for itself). There is
nothing wrong in writing tasks like this. However, in such cases, it is probably desirable to run
the access software in ”silent mode” so that users aren’t confused by apparent error messages.

5.8 What if many calibration files are found (unexpectedly)?

It is certainly valid to write tasks whereby multiple calibration datasets are returned, leaving
the task to decide if/how each dataset is to be used. This is achieved by deliberately passing
”sloppy” inputs to the access software. Clearly, if the access software unexpectedly claims more
than one calibration file satisfies the input criteria, then in most cases the task should gracefully
come to a halt. Again, a coherent explanation as to why it is stopping should be supplied to
the user.

5.9 Where do I deliver new calibration files to ?

Send e-mail to:
caldbhelp@olegacy.gsfc.nasa.gov
or to Caldb personne listed on the Caldb Personnel Page. with as many details as possible
regarding the dataset (what it’s for; where it came from; etc.) during development of the
task. They will then discuss the format with you, perhaps suggest additional keywords and/or
updates to existing keyword values. Finally they will instruct you how to formally deliver the
file.

mailto:caldbhelp@olegacy.gsfc.nasa.gov
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_team.html

OGIP Calibration Memo CAL/SW/95-002 (Caldb Access subroutines) 16

6 EXAMPLES

6.1 Using caldb info & gtcalf

Example 1

In the following hunk of FORTRAN, it is assumed that the user has entered a character string
(calfexp) for the calibration file to be used.

• In cases where this string has the special value CALDB (upper or lower case), then:

– the caldb_info subroutine is first used silently to check that a local CALDB is set-up
& available for the user for the required mission/instrument (gtcal will fail in any
case is this is not true).

– gtcalf is then used to find a specific type of calibration dataset (with a codename
COLLRESP) valid for a given observation date/observation time along with a number
of other constraints.

Only one valid calibration file is anticipated in this example, and the code errors out
whenever it gets the feeling it’s not sure what’s going on.

• In cases where the special string CALDB is NOT entered, then the code assumes calfexp
contains the path, name & (potentially) extension number of the calibration file to be
used.

C Check to see whether CALDB access software is to be used
if((calfexp(1:5).eq.’CALDB’).or.(calfexp.eq.’caldb’)) then

c Yes, the local CALDB is to be used, so check that it is available
infomode = ’INST’ ! check CALDB OK this mission/instrument
infochatter = 0 ! Run in silent mode
call caldb_info(infochatter,infomode,mission,instrument,ierr)
if(ierr.NE.0) then

message = ’CALDB not defined/available’
call wterrm(subname, version,message)
message = ’Task requires CALDB to be both defined ’//

& ’& available in order to run’
call wtinfo(chatter,1,1, message)
goto 999 ! Error out

endif
c Now call the caldb access software

chatter = 0 ! Run in silent mode
tele_str= ’XTE’
instr_str = ’PCA’ ! Mission Name

OGIP Calibration Memo CAL/SW/95-002 (Caldb Access subroutines) 17

detnam = ’-’ ! DETECTOR name
filter = ’-’ ! Not applicable for this instrument
codenam_str = ’COLLRESP’ ! Looking for a collimator response
expr_str = ’energy.eq.10’ ! Want dataset valid at 10 keV
maxret = 1 ! Only expect 1 dataset to be returned
call gtcalf(chatter,tele_str,instr_str,detnam_str,

& filt_str, codenam_str, strtdate, strtime, stpdate, stptime,
& expr_str,maxret,calfilename,extno,online,
& nret,nfound, status)

if(status.NE.0) then
message = ’Problem obtaining valid COLLRESP dataset ’//

& ’valid at 10 keV from the CALDB’
call wterrm(subname, version,message)
goto 999 ! Error out

elseif(nfound.gt.1) then
message = ’More than one valid COLLRESP dataset ’//

& ’valid at 10 keV found in the CALDB’
call wterrm(subname, version,message)
message = ’Unable to determine which to use -- aborting’
call wtinfo(chatter,1,1, message)
ierr = 1
goto 999 ! Error out

endif
c local CALDB is not to be used, rather the user has apparently entered
c the path/name of the calibration file themselves - so translate its
c name (taking off any extension specified by the user).

else
call fcpars(calfexp, calfilename(1),calextno(1),ierr)
if(ierr.NE.0) then

message = ’Problem parsing calfexp experession’
call wterrm(subname, version,message)
goto 999 ! Error out

endif
endif

c ... So, now
c calfilename(1) contains the name of the calibration file to be opened
c calextno(1) contains ext# of dataset (or -99 indicating search reqd)
c Open i/p file

status = 0
call cgetlun(iunit)
call ftopen(iunit,calfilename(1),0,block,ierr)
if(ierr.ne.0) then

message = ’Problem opening ’//calfilename(1)(:clenact(calfilename(1))
call wtferr(subname, version, ierr, message)
goto 999 ! Error out

endif

OGIP Calibration Memo CAL/SW/95-002 (Caldb Access subroutines) 18

c etc etc

	INTRODUCTION
	IMPORTANT PRELIMINARIES
	RECOMMENDED PROGRAMMING PRACTICES
	Is the Caldb-access software absolutely necessary ?
	Allow user input options
	Report failures back to the user in some detail
	Include the details of any calibration used in the output file

	THE CALDB ACCESS SUBROUTINES
	caldb_info.f
	gtcalf.f

	FREQUENTLY ASKED QUESTIONS
	What's the best introduction the Caldb ?
	For the Programmer
	For General Users
	For Local Caldb Managers

	What's the difference between the ``HEASARC Caldb'' & a ``local Caldb''?
	What should I put in my ``help file''?
	Can I use the ftools/refdata area?
	What if a local Caldb does not appear to be set-up?
	What do I do once I've found the Calibration filename?
	What if a calibration file is not found?
	What if many calibration files are found (unexpectedly)?
	Where do I deliver new calibration files to ?

	EXAMPLES
	Using caldb_info & gtcalf

