

ASTRO-H

Instrument Calibration report HXI Energy Gain ASTH-HXI-CALDB-GAIN

Version 0.1

15 November 2015

ISAS/GSFC

Prepared by: Shogo Kobayashi (The University of Tokyo)

Table of Contents

1	Int	roduction	4
		Purpose	
		Energy gain calibration curve	
		Scientific Impact	
		lease CALDB 20160310	
	2.1	Data Description	4
		Data Analysis	
		Results	
	2.4	Final remarks	6

CHANGE RECORD PAGE (1 of 1)

DOCUMENT TITLE : HXI Energy Gain							
ISSUE DATE PAGES AFFECTED DESCRIPTION							
Version 0.1 November 2015		All	First Release				

.

Introduction

1.1 Purpose

This document describes how the energy gain calibration curves are produced from the ground and the in-orbit data. The CALDB file structure is define in the ASTH-SCT-04 and available from the CALDB web page at http:// hitomi.gsfc.nasa.gov.

1.2 Energy gain calibration curve

Arrived X-ray signals with certain pulse heights are first converted to 0-1023 integer (ADC) values by 10-bit ADC circuit onboard ASIC. This ADC values become the primitive X-ray energy information that we can obtain on the satellite. Since we discuss physics in energy space, these ADC values must be converted to energy via software on ground. This ADC-to-energy conversion is done in "hxisgdpha" software by using the gain calibration curve table, which is included in CALDB. This table consists of 128 strips×2 sides×5 layers=1280 Spline functions in total, each giving the relation between ADC and corresponding energy for the individual strips in HXI camera. The ADC-energy relations are obtained by fitting the X-ray spectra from the on-board ²⁴¹Am source, or from the designated calibration targets, which both give line feature with known energy in their spectra. This gain calibration curve should be updated every time when the gain of HXI-camera varied due to following example situations.

- 1. Changing the sample-hold timing in ADC circuit.
- 2. Changing the triggering threshold level (affect gain, especially in lower energy).
- 3. Changing the shaping time in ADC slow shaper ("ifss" in terms of ASIC parameter).
- 4. Changing the operating bias voltage.

1.3 Scientific Impact

This gain calibration curves will directly affect the science. The CALDB should be immediately updated if necessary. Otherwise, it may form some fake instrumental structures in HXI spectrum.

Release CALDB 20160310

Filename	Valid date	Release	CALDB Vrs	Comments
		date		
ah_hxi1_gain_20140101v001.fits	2014-01-01	20160310	001	
ah_hxi2_gain_20140101v001.fits	2014-01-01	20160310	001	

2.1 Data Description

The data used to construct the current release are taken during the on-ground calibration experiment in a low-temperature chamber using the flight models of the HXI sensors. The test was conducted in October and December 2014 for HXI2 and HXI1, respectively. X-ray and gamma-ray lines from several radio isotopes were used to calibrate absolute energy scale. Signals from the on-board ²⁴¹Am source which is planned to be used for in-orbit energy

.

calibration, was not used since the counting rate is significantly lower than those from irradiated radio isotopes. Table 1 summarizes utilized emission lines and data file names.

DD 11 4 DD 11 .	C .1 1*		1	1. 1	C		CALDD
Table 1. The list	of the radio)-ISOfODE-IT	radiation	data iised	for genera	ifing the nr	esent (.ALDB.

	Lines (keV)	HXI1 file name	HXI2 file name
²⁴¹ Am	13.9, 59.5	141213_020034~074059,	141023_060219~ 102601
		141214_192655	
¹³³ Ba	30.8, 80.0	141213_080406~ 113603	141024_215956~ 141025_000045
⁵⁷ Co	14.4, 122, 136	141214_064531~ 105814	141025_155012
⁵⁵ Fe	5.9	141213_164142~	141025_011118~ 092038
		141214_002130	
Noise	0.0	141212_224607	141023_153356

2.2 Data Analysis

The data were analyzed with ROOT ver 6.02.05. Signals from all readout strips, except for the two edges of each side (the first and the last readout strips), which are registered as "bad channels", were utilized in the analysis. X-ray and gamma-ray lines seen in pulse-height histograms of each readout channel were fitted using a Gaussian function to determine line-center in ADC values. To avoid fitting to the non-Gaussian (Gaussian + low-energy tail) part of the lines in CdTe DSD, only the high-energy half, of which shape can be approximated by a Gaussian, was used in the fitting.

Since low energy photons are strongly absorbed by the 1st and the 2nd layers, 5.9 keV (⁵⁵Fe) and 13.9 keV lines (²⁴¹Am) are not effectively detected by the lower detector layers. In contrast, higher-energy photons, e.g. 122 keV from ⁵⁷Co, penetrate DSSDs, and counting statistics of the line in DSSD can be poor. In such cases, it is necessary to stack spectra within an ASIC (32 readout strips) to obtain sufficient statistics to fit the lines. In addition, since the n-side of Si layer has lower energy resolution than that in p-side, neighboring lines can be blended and difficult to be used in analysis. For these reasons, a combination of lines that are used to construct energy gain curve differ among layers as summarized in Table 2.

Table 2. X-ray and gamma-ray lines used to construct energy gain curves of individual detector layers. Check marks represent utilized lines, while hyphens are those not used. In each cell, two entries correspond to the p/Pt side (left) and the n/Al side (right) status. In order to improve statistics, data from 32 ch (1 ASIC) were analyzed cumulatively where designated as "Sum".

where designated as Suin .								
Line Energy	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5			
5.9 keV	1/1	-/-	-/-	-/-	-/-			
13.9 keV	✓/-	✓/-	✓/-	Sum/-	-/-			
17.8 keV	✓/-	✓/-	✓/-	✓/-	Sum/Sum			
20.8 keV	✓/-	✓/-	✓/-	✓/-	-/-			
26.3 keV	✓/-	✓/-	✓/-	-/-	-/-			
30.8 keV	1/1	1/1	1/1	1/1	1/1			
35.0 keV	✓/-	✓/-	✓/-	✓/-	1/1			
59.5 keV	1/1	1/1	1/1	1/1	1/1			
81.0 keV	✓/Sum	✓/Sum	✓/Sum	✓/Sum	1/1			

.

122 keV	Sum/Sum	Sum/Sum	Sum/Sum	Sum/Sum	1/1
136 keV	-/-	-/-	-/-	-/-	-/Sum

Based on the line fitting, an ADC-versus-energy relation is determined for each line. Data points are smoothly connected using a third-order spline function. To cover wider ADC channel range, the spline function is linearly extrapolated down to \sim -50 keV and up to \sim 140 keV using the derivatives defined in the edge knots of the spline function.

2.3 Results

Figure 1 shows examples of resulting gain calibration curves of HXI1. Due to non-linear properties of the ADC circuit and triggering technique employed in the electronics, the ADC-energy relation tends to be convex in the p/Pt sides, and concave in the n/Al sides. Deviations from a linear relation (bottom panel in the figure) is \sim 10 % over the relevant range.

Figure 2 is the energy-converted spectrum of 241 Am. Although the energy gain curve is constructed using discreet energy points, spline interpolation provides acceptable results; for example 26 keV line energies in the 4^{th} and the CdTe layer are nicely reconstructed within \sim 2%.

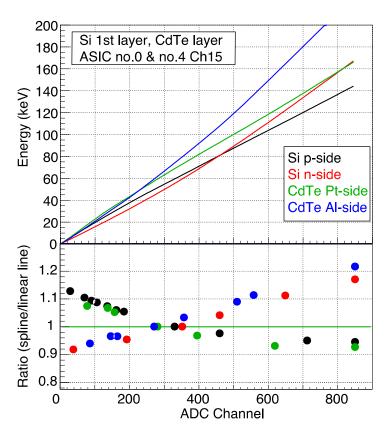


Figure 1. Examples of obtained Spline functions. Representative channels out of p/Pt-side and n/Al-side are drawn in black/green and red/blue solid lines (top panel), respectively. The bottom panel shows the ratio between a linear line (0-60 keV) and the Splines.

Figure 2. Energy-converted spectrum of ²⁴¹Am obtained with HXI1. Each is summation of whole p/Pt side strips in respective layers.

2.4 Final remarks

Not applicable.