An X-Ray Spectral Fitting Package

User's Guide for version 12.9.0

Keith Arnaud, Ben Dorman, and Craig Gordon
HEASARC
Astrophysics Science Division
NASA/GSFC
Greenbelt, MD 20771

Jul 2015

Updates to the manualccooeeeiiieiiiiie e e IX
XSPEC s 11
1.1 NeW N VIZ2.9.0 . 11
1.2 How to find out more informationccccoeeiiiiiiiiiiiiiii s 13
I T o 1157 (01 Y/ SRR 13
1.4 ACKNOWIEAQEMENTS ...t eeeaeees 14
1.5 REEIreNCES oo 14
Spectral Fitting and XSPEC..........uiiiii e 2
2% R 1 1 4 o T 1¥ Lo} 4 o] o H PSP P P PP PP PPPPPPPPP 2
2.2 The Basics of Spectral Fittingcoouvviiiiiniiii e, 2
2.3 The XSPEC implementationouuuiiiiiei e 3
2.4 A more abstract and generalized approachccccoooooiiiiiiiiiiennnn. 6
2.5 XSPEC Data ANAlYSIS ..ooeuuiiiiiie e e e e 7
2.5 1 OGIP DAl ...iceiieiiiiiie e 7
2.5.2 INTEGRAL/SPI DA@ccciieeiiiiiie i a e e e e eeaees 7
2.6 REFEIENCES ...oiiiiiiiiiiiiiiieiee ettt ettt ettt e e e s s e s esseeseeneeees 9
XSPEC Overview and Helpful HINtS ..., 11
K F0 A)V 0| £) G PP PPRPPIN 11
3.2 How to return to the XSPEC> promptcooovviiiiiiiiiiii e 11
3.3 GettiNg HelP v 11
34 COMMANGAS oottt e e e e e e eeaan s 11
3.5 ISSUING COMMANGScciiiiiiiiiie e e e e e e s 12
3.6 Control CoOmMMAaNAS.....ccouiiiiiiie e 12
3.6.1 Query, chatter and shutting XSPEC up (somewhat)...........ccccceeenee.. 12
3.6.2 Scripts and the Save command ... 13
3.6.3 MiISCEIAN@OUS ...cooeeiieeeeeeeeee 13
3.7 Data COMMANTUS ..uuuuiiiiiiiiiiiiiiiiiiiieeteeteeeeeeeeseseeeeesesssseesseesssssssesseseseeees 13
3.7.1 Reading data and modifying calibration and auxiliary files............... 13
3.7.2 Controlling channels being fitted............ccoooo i, 14
3.7.3 SIMUIALIONS ..o 14
.74 DAta gIOUPS eeeue et e et e ettt e ettt e e et e e e e e e et e e e e e e e eaaans 14
3.8 Model COMMANASuuiiiiiiiiiiiiiiiiiiiiiiiiieteeee e eee e eeeeeeeeeeeeeeees 15
3.8.1 Models with multiple responses and background models................ 15

3.9 Fitting ComMMANASooiiiiiiiiiie e 16

3.9.1 What to do when you have Poisson data.........cccccceeiiiiiiiiiiiiiiinnneenee. 16
3.9.2 Binning and Grouping datacceeeeeiiiiiiieie 17
3.10 PIlotting COMMANAS ...ccevviiiiiiee e e e e e e s 17
3.11 Setting CoOMMANAS ...cooiiiiiiiiiie e 18
3.12 Breaking With Ctrl-C.........ouiiii e 18
3.13 CusStomMiziNg XSPEC ... 19
3.13.1 Customizing SYStEM-WIAEuvuiiiiieiiiiecee e 22
Walks through XSPEC ... 24
4.1 INEFOTUCTION e 24
4.1.1 Brief Discussion of XSPEC Fil€S.........uiiiiiiiiiiiiiie e 24
4.2 Fitting Models to Data: An Old Example from EXOSAT 24
4.3 Simultan@ous FitliNguuooiiiii i 44
4.4 Multiple Models: a Background Modeling Example.........cc.ccc........ 48
4.5 Using XSPEC to Simulate Data: an Example for Chandra............. 50
4.6 Producing Plots: Modifying the Defaults........ccccccoeiiiiiiiiiiiiiiicienn. 54
A7 INTEGRAL/SPL. ..ot 57
4.7.1 A Walk Through EXample ... 57
4.7.2 INTEGRAL Specific Command Line SCriptS.....ccccccceeviieeiiieiiiiiiiieeeee, 63
XSPEC COMMANTUS ..ttt ettt e e et e e e e e e e e eeaennnes 66
51 Summary of COmMmMandS......cccceeeiiiiiiiiiiiiee e 67
5.2 DescCription Of SYNTaXuuuiiiiiiiiiiiiiiiie e 72
5.3 Control COMMANTS.......uuuuiiiiiiiiiiiiiiiiiiiiiiiieiiiisieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 72
5.3.1 autosave: set frequency of saving commandsccoeeeeeeeeeeeeeeenn. 72
5.3.2 chatter: set verboseness level ... 73
5.3.3 exit, quit: eXit Program........ccouuiiiiii i e 73
5.3.4 help: display manual or help for a specific command/theoretical
MOodel COMPONENT ... 73
5.3.5 100: 10g the SesSSion OULPUL.......uiiiii i 74
5.3.6 parallel: enable parallel processing for particular tasks in XSPEC..75
5.3.7 query: set a default answer for prompts in SCriptS.......ccccevvviiinnee.n. 76
5.3.8 save: save the current session commands........ccccccevvieeeriieiiiiinnneeenn. 76
5.3.9 script: write commands to a script file ... 77
5.3.10 show: output current program State.........ccoeeevieiiiiiiiiniieeiiie e 77
5.3.11 syscall: execute ashell command.........ccccooiviiiiiii i 79
5.3.12 tclout: create tcl variables from current state............cceeeeeeeeeeeeeeeeen. 80
5.3.13 tcloutr: tclout with return value...........ooooeeiii i, 85
5.3.14 time: print @XeCUtioN tIMe.......uuiiii i 85
5.3.15 undo: undo the previous command...........cooeeeeeeiieieiieieeeeeeeeeeeeeee 85
5.3.16 version: print the version String........cccovvee 85

54 Data COMMANAS ..oeeieie e 86

5.4.1 arf: change the efficiency file for a given response.........ccccccceeeeeee... 86
5.4.2 backgrnd: change the background file for a given spectrum........... 87
5.4.3 corfile: change the correction file for a given spectrum 87
5.4.4 cornorm: change the normalization of the correction file................. 88
5.4.5 data: read data, background, and responses.........ccccooeeeiieiiiiiieneeenn. 89
5.4.6 diagrsp: set a ‘perfect’ response for a spectrum...........ccceevvvvveeneennn. 93
5.4.7 fakeit: simulate observations of theoretical models......................... 93
5.4.8 ignore:ignore detector channels.......ccccccooiii i 98
5.4.9 notice: notice data channels ..., 99
5.4.10 response: change the detector response for a spectrum............... 100
55 Fit COMMANGS ..ouuiiiiiiiiiiie e e e eaeeees 102
5.5.1 bayes: set up for Bayesian inferencecc.ccccevvvvviiiiiiieciiceeenn, 102
5.5.2 chain: run a Monte Carlo Markov Chain.ccccciiiiiiiiiiniiiiinn. 102
5.5.3 error, uncertain: determine confidence intervals of afit................. 107
554 it fit data...coooeeeeeeeeee 108
5.5.5 freeze: set parameters as fixedccccvvviieii i, 109
5.5.6 ftest: calculate the F-statistic from two chi-square values 110
5.5.7 goodness: perform a goodness of fit Monte-Carlo simulation 110
5.5.8 margin: MCMC probability distribution.ccccvviiiiiiiiiii, 111
5.5.9 renorm: renormalize model to minimize statistic with current
PAFAMETEIS ... ettt e s 111
5.5.10 steppar: generate the statistic “surface” for 1 or more parameters
112
5.5.11 thaw: allow fixed parameters to Vary.......ccccoooeeeiiieiiiiiieiieeeeeeeeeiiinnn. 113
5.5.12 weight: change weighting used in computing statistic.................. 114
56 Model COMMANASuuuiiiiiiiiiiiiiiiiiiiieiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 114
5.6.1 addcomp: add componenttoamodel...........coooiiiiiii 115
5.6.2 addline: add spectral linesto amodel............ccoovviiiiiiiiiiiii. 117
5.6.3 delcomp: delete a model componentcccooeeevvviiiiiiiiiiie e, 117
5.6.4 dummyrsp: create and assign dummy reSPONSeccceeeeeeveeeevnnnnnn. 117
5.6.5 editmod: edit a model componentcccccceeiiiiiiiiiiiii 120
5.6.6 energies: specify new energy binning for model fluxes 120
5.6.7 eqwidth: determine equivalent width.............oooooiiiii . 122
5.6.8 flux: calculate fIUXES ..o 124
5.6.9 gain: modify aresponsefile gain........ccooooieiiii 125
5.6.10 identify: identify spectral liNeS.........ooooriiiiiiii e 128
5.6.11 initpackage: initialize a package of local modelsccceeeennnenn. 129
5.6.12 Imod, localmodel: load a package of local models..............cceeeennnn. 130
5.6.13 lumin: calculate IlumMinoSItiesc..oevvieeiiiiii e 130
5.6.14 mdefine: Define a simple model using an arithmetic expression...131
5.6.15 model: define atheoretical model........cccccceeeiiiiiiiiiiiiii e, 134
5.6.16 modid: write out possible IDs for lines in the model. 139
5.6.17 newpar: change parameter values..........ccccceevieiiiiiiiiiiiin e, 139
5.6.18 systematic: add a model-dependent systematic term to the variance
143
5.6.19 untie: unlink previously linked parameters...........cccceeeeeeeeieeeeeeeeenn. 143
5.7 Plot COMMANTAS ..o e e eaeeees 143
5.7.1 cpd: set current plotting deviCecouvvieiiiieiiiicie e, 143

5.7.2 hardcopy: Print PlOt ..o 145
5.7.3 iplot: make a plot, and leave XSPEC in interactive plotting mode..145
5.7.4 plot: MaKe @ Plot.....ue e 145
5.7.5 setplot: modify plotting parameterscccoovveeiiiiiiiin e 149
5.8 Setting ComMmMaNdScoooiiiiiiiiie e 156
5.8.1 abund: set the Solar abundancescccoeeeiiiii, 156
5.8.2 cosmo: set the COSMOIOgY ...coooeeiiiiiiee 157
5.8.3 method: change the fitting method...........cccooooiiii . 158
5.8.4 statistic: change the objective function (statistic) for the fit 159
5.8.5 xsect: set the photoionization cross-sections.........ccccoooeeevveeeiinnnnnn. 160
5.8.6 xset: set variables for XSPEC models.cccoooviiiiiiiiiiiiiiii, 161
NS T o BT o] g 1 o] USSP 164
5.9.1 Irt: likelihood ratio test between two modelscccccooiiiiiiiiiiiinnnn. 164
5.9.2 multifake: perform multiple fakeit iterations and save to file.......... 164
5.9.3 rescalecov: rescale the covariance matrixX........ccooeeeeveeeieieeeeeeeeeeeenn, 165

5.9.4 simftest: estimate the F-test probability for adding a component..165
5.9.5 writefits: write information about the current fit and errors to a FITS

B 166
XSPEC V12 MOUEIS ..ottt e e e e e 167
6.1 Alphabetical Summary of Modelscoevvviiiiiiiiiiiiiiiiiiiiiiiieeee, 167
6.2 Additive Model Components (SOUICES)coeeevvreeeiiiiniineeeeeeeeeenennns 171
6.2.1 agauss, zagauss: gaussian line profile in wavelength space........ 172
6.2.2 apec, vapec, vvapec: APEC emission spectrum.............ccccevvvvvnnnnn. 172
6.2.3 atable: tabulated additive model.........cccccceiiiiiiii 174
6.2.4 bapec, bvapec, bvvapec: velocity broadened APEC thermal plasma
MOAEI 175
6.2.5 bbody, zbbody: blackbody ..., 177
6.2.6 bbodyrad: blackbody spectrum, area normalizedccoeuuneen. 177
6.2.7 bexrav: reflected e-folded broken power law, neutral medium....... 178
6.2.8 bexriv: reflected e-folded broken power law, ionized medium 179
6.2.9 bknpower: broken power law ... 179
6.2.10 bkn2pow: broken power law, 2 break energies.........ccccoooeeiieeiiinnnnnn. 180
6.2.11 bmc: Comptonization by relativistic mattercccoeeeeeeeeeeeeeneeen. 181
6.2.12 bremss, vbremss, zbremss: thermal bremsstrahlung..................... 181

6.2.13 cémekl, c6vmekl, c6pmekl, c6pvmkl: differential emission measure
using Chebyshev representations with multi-temperature mekal ..182
6.2.14 cemekl, cevmkl: plasma emission, multi-temperature using mekal

183

6.2.15 cflow: COOlING FlOW ...ooeeeeeeeee 184
6.2.16 compbb: Comptonization, black body............ccovvviiiiiiiiii, 185
6.2.17 compLS: Comptonization, Lamb & Sanford........c....ccccoeeeiiiiiininnnnnn. 185
6.2.18 compmag: Thermal and bulk Comptonization for cylindrical

accretion onto the polar cap of a magnetized neutron star 186
6.2.19 compPS: Comptonization, Poutanen & Svensonccccevvveeenn. 186
6.2.20 compST: Comptonization, Sunyaev & Titarchukccccovvneen. 189

6.2.21 comptb: Thermal and bulk Comptonization of a seed blackbody-like
oY o1 =Tod {1] o o IO PTRPPI 191

6.2.22
6.2.23

6.2.24
6.2.25
6.2.26
6.2.27
6.2.28
6.2.29
6.2.30
6.2.31
6.2.32
6.2.33
6.2.34

6.2.35
6.2.36
6.2.37

6.2.38

6.2.39
6.2.40

6.2.41
6.2.42
6.2.43

6.2.44
6.2.45

6.2.46
6.2.47

6.2.48
6.2.49
6.2.50
6.2.51

6.2.52
6.2.53

6.2.54
6.2.55

6.2.56
6.2.57
6.2.58

6.2.59
6.2.60

Vi

compTT: Comptonization, Titarchukcccccooiiiiiiiiiii e 191
cplinear: a non-physical piecewise-linear model for low count
background SPECLIaA.uuuiiiii e 192
cutoffpl: power law, high energy exponential cutoff 193
disk: accretion disk, black body ..., 194
diskbb: accretion disk, multi-black body components 194
Diskir: Irradiated inner and outer disk.........cccccoiiiiiiiiiiiiiiie e 194
diskline: accretion disk line emission, relativistiC........ccccovvvevvennnn. 195
diskm: accretion disk with gas pressure ViSCOSIty........ccccccvvvvvrrnne. 196
disko: accretion disk, inner, radiation pressure viscosity 196
diskpbb: accretion disk, power-law dependence for T(r)............... 196
diskpn: accretion disk, black hole, black body.........ccccccvvvvrviinnnnne. 197
eplogpar: log-parabolic blazar model with vFv normalization 197
Eqgpair, eqtherm, compth: Paolo Coppi's hybrid (thermal/non-
thermal) hot plasma emission modelS............cccovvvviiiiiii v, 197
equil, vequil: collisional plasma, ionization equilibrium 199
expdec: exponential deCay.........cceeeiiieiiiiiiiiii e 200
ezdiskbb: multiple blackbody disk model with zero-torque inner
DOUNAANY ... e 200
gadem, vgadem: plasma emission, multi-temperature with gaussian
distribution of emissSion Measure.cccevvveeii e 201
gauss, zgauss: gaussian line profile ..o 202
gnei, vgnei, vvgnei: collisional plasma, non-equilibrium, temperature
L23Y 20T 11110 ISP 202
grad: accretion disk, Schwarzschild black hole 204
grbm: gamma-ray burst continuumccccceeeeiiiiiiiiiii e, 205
kerrbb: multi-temperature blackbody model for thin accretion disk
around aKerr black hole ..., 205
kerrd: optically thick accretion disk around a Kerr black hole....... 206
kerrdisk: accretion disk line emission with BH spin as free
PAFAIMETENt 207
laor: accretion disk, black hole emission line..............cccc. 207
laor2: accretion disk with broken-power law emissivity profile, black
hole emMiSSION lINE ... 207
logpar: log-parabolic blazar modelcc 208
lorentz: lorentz line profil€..........iiiiiii e, 208
meka, vmeka: emission, hot diffuse gas (Mewe-Gronenschild)208

mekal, vmekal: emission, hot diffuse gas (Mewe-Kaastra-Liedahl)
210

mkcflow, vmcflow: cooling flow, mekal.................ciiiiiin, 211

nei, vnei: collisional plasma, non-equilibrium, constant temperature
212

nlapec: continuum-only APEC emission spectrum 214
npshock, vnpshock: shocked plasma, plane parallel, separate ion,
€leCtroN tEMPEIrAtUIES.oiiiiiiiieeeieeeeeeeee e 215
Nnsa: neutron star atMoOSPNEre........cceeiiiiiiiiii e 217
nsagrav: NS Hatmosphere model for different gcccccoeeeeeeiiininn 218
nsatmos: NS Hydrogen Atmosphere model with electron
conduction and self-irradiationcueevviiiiiiiiiiiiiiiiiiiei, 219
nsmax: Neutron Star Magnetic Atmosphereccccviieiiineeneeen, 219

nsmaxg: neutron star with a magnetic atmosphere........................ 222

6.2.61
6.2.62
6.2.63
6.2.64

6.2.65
6.2.66

6.2.67
6.2.68
6.2.69
6.2.70
6.2.71
6.2.72

6.2.73
6.2.74
6.2.75
6.2.76

Vii

nsx: neutron star with a non-magnetic atmosphere....................... 223
nteea: non-thermal pair plasmaccccooeeeviiiiiiiii e, 224
Nthcomp: Thermally comptonized continuum..............cccccceeeeeneeee, 225
Optxagnf, optxagn: Colour temperature corrected disc and
energetically coupled Comptonisation model for AGN................... 227
pegpwrlw: power law, pegged normalization............ccccceeeevieerennnnnn. 229
pexmon: neutral Compton reflection with self-consistent Fe and Ni

L =SSR 229
pexrav: reflected powerlaw, neutral mediumcccccceeevieeeernennnns 230
pexriv: reflected powerlaw, ionized medium...........cccccceeeeiieevinnnnnnn, 230
plcabs: powerlaw observed through dense, cold matter............... 231
POSM: POSItroNium CONTINUUMcooiiiiiiiiiiiiie e 232
powerlaw, zpowerlw: power law photon spectrum...............c...coeee 233
pshock, vpshock: plane-parallel shocked plasma, constant

(=] 0T o X =] = LU 233
raymond, vraymond: emission, hot diffuse gas, Raymond-Smith 235
redge: emission, recombination edgecccceeeeeiiiiiii, 236
refsch: reflected power law from ionized accretion disk 236
rnei, vrnei, vvrnei: non-equilibrium recombining collisional plasma

237

6.2.77 sedov, vsedov: sedov model, separate ion/electron temperature..238
6.2.78 sirf: self-irradiated funnelcco 240
6.2.79 smaug: optically-thin, spherically-symmetric thermal plasma....... 241
6.2.80 srcut: synchrotron spectrum, cutoff power law..............ccoovvvvinnnnnnn. 243
6.2.81 sresc: synchrotron spectrum, cut off by particle escape................ 243
6.2.82 step: step function convolved with gaussiancccooeevvvvvvivnnnnnnn. 244
6.3 Multiplicative Model COMPONENtScuciiieeeeiieiiiiiceee e eeeeeeaaeens 244
6.3.1 absori:ionized abSorber..........cooiii i 244
6.3.2 acisabs: Chandra ACIS g.€. deCay......cccccceeeiiieeeiieeiiiiie e 244
6.3.3 cabs: Optically-thin Compton scattering.........cccceevvviiniieeeeeeeiiinnnnn. 245
6.3.4 constant: energy-independent factorccoooevviiiiiiiiinii e 245
6.3.5 cyclabs: absorption line, cyclotroncccceeovvieiiiiiiiiiee e, 245
6.3.6 dust: dUSE SCALEIING.....ccciiiiiiiiii e 246
6.3.7 edge, zedge: absorption €dge........cooiveiiiiiiiii e 246
6.3.8 etable: exponential tabular model............cooooeiiiiii 246
6.3.9 expabs: exponential roll-off at oW Eccooooiiiiiiiiii 247
6.3.10 expfac: exponential modification...........c.uueiiiiiiiiiiiiiii e, 247
6.3.11 gabs: gaussian absorption line.........ooeiiiii 247
6.3.12 heilin: Voigt absorption profiles for He I seriesccceeeeeeieeeeeenn. 247
6.3.13 highecut, zhighect: high-energy cutoff.............cciiiii . 248
6.3.14 hrefl: reflection model.......ccoooeeiiiiiiiii 248
6.3.15 lyman: Voigt absorption profiles for H |1 or He Il Lyman series....... 249
6.3.16 mtable: multiplicative tabular modelccooviiiiiiiiii, 249
6.3.17 notch: absorption ling, NOICh ..o, 250
6.3.18 pcfabs, zpcfabs: partial covering fraction absorption................... 250
6.3.19 phabs, vphabs, zphabs, zvphabs: photoelectric absorption 251
6.3.20 plabs: power [aw abSOrptioNcoooiiiiiiiiiii e 251
6.3.21 pwab: power-law distribution of neutral absorbers......................... 251
6.3.22 recorn: change correction norm for a spectrum.............ccccevvvvvvnnnnn. 252

6.3.23

redden: interstellar eXtiNCION ..o..iie i 252

6.3.24 smedge: smeared €dgeooooiiiiiiiii e 252
6.3.25 spexpcut: super-exponential cutoff absorption..............ccceeevvinnnnnn. 253
6.3.26 spline: spline modificationccoovviiiiiiii e, 253
6.3.27 SSSice: Einstein SSS ice absorption.......cccovvvvviieiiiiiiiieee 253
6.3.28 swind1: absorption by partially ionized material with large velocity
LS 1T | 253
6.3.29 tbabs, ztbabs, tbgrain, tbvarabs: ISM grain absorption 254
6.3.30 uvred: interstellar extinction, Seaton LaWovevvevieiieiieiiiieieiens 255
6.3.31 varabs, zvarabs: photoelectric absorption...........ccoeeeeiiiii. 255
6.3.32 wabs, zwabs: photoelectric absorption, Wisconsin cross-sections
256
6.3.33 wndabs, zwndabs: photo-electric absorption, warm absorber....... 256
6.3.34 xion: reflected spectrum of photo-ionized accretion disk/ring....... 257
6.3.35 zbabs: EUV ISM attenuationccoooeeeiiiiiieieeeeee 258
6.3.36 zdust: extinction by dust grains.........cccccceeeiiiiiiiiiii e, 259
6.3.37 zigm: UV/Optical attenuation by the intergalactic medium............. 259
6.3.38 zredden: redshifted version of reddencccoeeeeeeiii 259
6.3.39 zsmdust: extinction by dust grains in starburst galaxies 260
6.3.40 zvfeabs: photoelectric absorption with free Fe edge energy.......... 260
6.3.41 zxipcf: partial covering absorption by partially ionized material261
6.4 Convolution Model COmMpPOoNEeNntS.........uuvuiiiiiiiiiiiiiiice e 261
6.4.1 cflux: calculate fluX ... 261
6.4.2 cpflux: calculate photon fluX.........cccovvviiiiii e, 263
6.4.3 gsmooth: gaussian SMOOTNINGcccooeeeiiiieeee e 263
6.4.4 ireflect: reflection from ionized material............coooeeeeeiiiii, 263
6.4.5 kdblur: convolve with the laor model shape.......ccccccceeeiiiiiiiiiininnnnnn. 265
6.4.6 kdblur2: convolve with the laor2 model shape..........ccooooeiiiiinnnnnn. 265
6.4.7 kerrconv: accretion disk line shape with BH spin as free parameter
... 266
6.4.8 Ismooth: lorentzian SMOOthiNgGccooviiiiiiiiiii e 266
6.4.9 partcov: partial COVEriNgoooeuuuiii e 266
6.4.10 rdblur: convolve with the diskline model shape.............ccooeeieiee. 267
6.4.11 reflect: reflection from neutral material.............ccceevvvieiiiiieiiieiiiinnnnn. 267
6.4.12 simpl: comptonization of a seed spectrumccccccveeeiieeeeiiiininnnnnn. 268
6.4.13 Zashift: Redshift an additive model..........cccooooeiiiiiiiiiiii, 268
6.4.14 Zmshift: Redshift a multiplicative model.............coooviiiiiiiii, 269
6.5 Pile-Up Model COMPONENTScoooiiiiiiiiiiiiiiiee e 269
6.5.1 pileup: CCD pile-up model for Chandra...........cccocevvvieiiieeeiiiiiiiinnnnn. 269
6.6 Mixing Model COMPONENTSuiiiiiiiiiieice e 270
6.6.1 ascac: ASCA surface brightness model..............coooiiiii 270
6.6.2 projct: project 3-D ellipsoidal shells onto 2-D elliptical annuli 271
6.6.3 suzpsf: suzaku surface brightness modelcccccoeiiiiiiinnn. 272
6.6.4 xmmpsf: xmm surface brightness model...........ccccoooiiiiii . 273
Y o =] o [o3 =SSP 275
Appendix A The User Interfacecooiiiiiiiiiiiiiici e 275

Appendix B StatistiCS in XSPECccoiiiiiiiiieeeieee e 293

Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix |

Adding models to XSPEC..........ccoiiiiiiiiiiiiiiiiiee e 314
Overview Of PLT ..o, 6.6-329
Associated Programsccceeeeeeieeeeiiiiiiee e 334
Using The XSPEC Models Library In Other Programs.....336
Adding a Custom Chain Proposal Algorithm 341
Changes between vlil and v12.........ccccooooiiiiieiiiieeiiiiiennnn. 349
Older Release NOtESccooevuiiiiiiie e 354

Updates to the manual
Jul 2015 (v12.9.0 release)

‘ascac’, ‘projct’, and ‘smaug’ models updated for new ‘key:value’
format of XFLT keywords.

Expanded linking options in ‘newpar’.
New model: nlapec.

New “pstat’ section in Statistics Appendix.
Added ‘nonew’ option to ‘error’ command.

‘eqw’ option added to ‘plot” command, and updated ‘delchi’
description.

For new mix model capability, updated ‘Syntax Rules’ in ‘model’
command, and models section of Overview.

Fix made to zpowerlaw equation.
Corrected error to par3 description of ‘egpair’ model.

Typo fixes: c6pmekl and c6vmekl were incorrectly written as c6pmki
and c6vmkl respectively.

Corrected units (‘km’ to ‘kpc’) for nsmaxg and nsx models.

Corrections made to ‘abund’ table values: Cl, Cr, and Co in ‘angr’ and
‘feld’, Siin “grsa’.

Fixed several errors in the common description for the *equil’, ’(g)nef’,
‘(n)pshock’, and ‘sedov’ group of models.

Replaced obsolete mention of HO, Q0 cosmology parameters from
‘cflow’ and *‘mkcflow’ model descriptions.

Jul 2014 (v12.8.2 release)

New models: agauss, nsmaxg, nsx, rnei

gnei, nei, npshock, pshock, sedov: Updated to AtomDB 3.0, and have
new ‘vv’ option.

Aug 2013 (v12.8.1 release)

New models: cpflux, heilin, lyman, zbabs.

New ‘pstat’ option for statistics, and new ‘#’ option for ‘whittle’
statistic.

‘setplot delete’ now has additional ‘all” and range options.
‘fakeit’ has new ‘nowrite’ option.
‘parallel’ has new ‘steppar’ option.

Xi

Updates to ‘tclout’” command’s ‘chain’, ‘stat’, and ‘statmethod’
options.

The ‘improve’ command has been removed. It is no longer supported
by the new Minuit library that is contained within v12.8.1.

New ATOMDB_VERSION Xspec.init setting mentioned in ‘apec’ and
‘bapec’ model docs.

New ‘DGNFLT’ and ‘DGFILT’ routines added to Appendix F.
Updates and revisions to “Irt’ and ‘simftest’ Tcl script commands.
Updated the default values for the ‘cosmo’ command.

Correction to gamma equation in Istat description of Appendix B.
Correction to par2, par9, and par10 description in ‘optxagn’ model.
In “‘chain” command, Goodman-Weare is now the default.

Dec 2012 (v12.8.0 release)

Major rewrite and expansion of the ‘Walkthrough’ section, including
examples with features that are new for v12.8.0.

New ‘parallel” command.
New models compmag and comptb.

New ‘test’ option for the ‘statistic’ command, and new choices for
statistics.

Enhanced the ‘Poisson data’ subsection of the ‘Overview’.
New <critical beta> option for *‘method’ and “fit’ commands.
New options for the “‘chain’ command: ‘type’ and ‘walkers’.
Added several sections in Appendix B for new statistics.
Added “plot goodness’ and ‘thin’ option to “plot chain’.
Note on grouped spectra added to fakeit.

Note on uniform binning added to gsmooth model.

Updated description for simpl convolution model.

New tclout options: ‘tclout ignore’ and ‘tclout goodness sims’. Also
added units to “tclout lumin’ description.

Added to “ftest’ a warning against using on a multiplicative component.

Added clarification on trace element abundances when using ‘apec’ and
‘vapec’ models.

12

1. XSPEC

XSPEC is a command-driven, interactive, X-ray spectral-fitting program,
designed to be completely detector-independent so that it can be used for any
spectrometer. XSPEC has been used to analyze data from HEAO-1 A2, Einstein
Observatory, EXOSAT, Ginga, ROSAT, BBXRT, ASCA, CGRO, IUE, RXTE, Chandra,
XMM-Newton, Integral/SPI, Swift and Suzaku. There now over 1000 papers listed on
ADS which cite the Arnaud 1996 XSPEC reference.

This manual describes XSPEC v12, which is available on Linux (gcc 3.2.2 and
later), MacOSX/Darwin (gcc 3.3 and later) , Solaris (2.6-9; WS6.0 and later). New users
are advised to read Chapter 2, which introduces spectral fitting and the XSPEC
approach, Chapter 3, which gives an overview of the program commands, and Chapter
4, which contains walkthroughs of XSPEC sessions. They should then experiment with
XSPEC and, if necessary, look up individual commands in Chapter 5, or descriptions of
the spectral models in use, in Chapter 6.

The User Interface for XSPEC, which employs a tcl scripting shell and the
XSPEC parser are described in Appendix A. Users possessing X-ray spectra with small
numbers of counts per bin are referred to Appendix B, which describes the C-statistic
option. Users interested in adding their own models can read how to do so in Appendix
C. Appendix D describes the PLT plotting package which XSPEC currently uses for
graphical output. Some of the tools (FTOOLS, fortran programs, scripts) that can operate
on XSPEC files are listed in Appendix E. The XSPEC model library can be linked into
other programs following the instructions in Appendix F. Appendix G describes how to
use your own proposal distribution for Markov Chain Monte Carlo. Finally, Appendix H
includes some notes on the changes between XSPEC v11 and v12.

1.1 Newinv12.9.0
New features:

e Mix model components are no longer heavily restricted in their usage. Previously
mix components could only be placed at the start of a model expression, to
operate on the results of the rest of the expression. Now they can be inserted
throughout the expression in the same manner as convolution components.

e Models with mix components can also be assigned to source numbers other than 1.
A corollary of this is that a mix model is no longer required to operate on all
currently loaded spectra.

e To allow more than one mix model at a time the syntax for XFLT#### keywords
has been generalized. These keywords are now strings of form "key: value" with
xspec maintaining an internal database of key, value pairs which mixing model
code can access. Backward compatibility with the old version of XFLT####
containing only a value is maintained.

e Expanded the types of expressions allowed in parameter linking. It can now
handle the same mathematical functionality supported in mdefine equations.
Related to this, parameters can also be specified as 'p#' and 'modelName:p#' in

13

link expressions, as well as the old '#' and 'modelName:#'. The link expressions
are now displayed using the 'p# format.

e The output of the 'plot margin' command is now independent of the grid size.
There is a new 'plot integprob’ command which also must be run after the
'margin' command and which plots the integrated probability within the
contours shown. The data and back commands now handle files with multiple
SPECTRUM extensions. There are a number of ways of specifying a particular
extension: filename{N} will use the Nth SPECTRUM extension;
filename{SPECTRUMZ2} will look for an extension called SPECTRUMZ2;
filename{back} will use the first SPECTRUM extension with the HDUCLAS2
keyword set to 'BKG'"; filename{name=value} will look for a SPECTRUM
extension with keyword name set to value (in this case there must be no spaces
within the {}). If the BACKFILE keyword in a source filename is set to the
filename itself then XSPEC will get the background from the extension with
HDUCLAS?2 set to 'BKG' (this, finally, makes Chandra level 3 files work
seemlessly in XSPEC).

e The 'error' command now has a 'nonew" option. This determines whether to repeat
the calculation when a new minimum is found. Previously it was relying on the
'query’ setting to make this decision.

e Added grey-scale image as background to to contour plots. ‘dem’ plots now
display a histogram. The new ‘eqw' plot option shows the distribution of
equivalent width values after running the eqwidth command with the err option.

e New model 'nlapec’. There is also an APECNOLINES xset option which will
turn off lines for all apec models.

e The models using AtomDB files now require the line files to be sorted in
increasing order of energy within each element and ion. This allows a speed-up
in the model calculation.

¢ Replaced the rescalecov script with the ‘chain rescale’ command.

e The 'plot delc' command now works for cstat, plotting (obs-mod)/error, however it
is important to remember that this is not plotting contributions to the statistic.

Enhancements previously released as patches to 12.8.2:
¢ A new -udmget64 option has been added to initpackage. This is intended for Mac
platform users with local Fortran models which still make use of the udmget
memory allocation function.
e 'tclout steppar' can now retrieve values of the variable parameters as well has the
fixed parameters which are being stepped through.

¢ All bug fixes to v12.8.2 released as patches are included in v12.9.0. In addition
the following problems have been corrected:

e For the case where counting statistics are not applied, 'fakeit’ now outputs the
spectrum in a RATE column rather than COUNTS. This is to remove bias
caused by truncation errors. It also now outputs a STAT_ERR column and sets
the POISSERR flag to false.

14

e Special characters have been removed from all model parameter names and
(generally) replaced with underscores. This is to make their name strings more
easilty accessible in PyXspec.

e When calculating 'tclout peakrsid' with Cstat, it should not make use of correction
files.

¢ Redundant model fold calculations have been removed during certain update
contexts.

e Fix to vequil model array assignment error.

¢ The default filenames for fakeit output should always be in the current run
directory, even when the response file is in a different directory.

o A file-write race condition has been eliminated for the case of running 'Imod' in
parallel XSPEC sessions.

e The vvnei model had the tau and meankT parameters flipped.

e The AtomDB input files were being reopened unnecessarily often.

1.2 How to find out more information

XSPEC is distributed and maintained under the aegis of the GSFC High Energy
Astrophysics Science Archival Research Center (HEASARC). It can be downloaded as
part of HEAsoft

http://heasarc.gsfc.nasa.gov/docs/software/lheasoft/download.htmi

XSPEC is available either as binaries or source. We recommend downloading the source
and compiling locally to avoid potential system library conflicts and allow installation of
any patches we release. If you have any problems compiling or running XSPEC please e-
mail us at

xspecl2@athena.gsfc.nasa.gov

The XSPEC Web page comprises links to the anonymous ftp site, a Web version of the
manual, and several useful documents, including a list of known bugs. The Web address
is

http://xspec.gsfc.nasa.gov/

with the list of issues and available patches at
http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/bugs.html

and additional models which can be added at
http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/newmodels.html

Further useful information can be found on the XSPEC Wiki at
https://astrophysics.gsfc.nasa.gov/XSPECwiki/XSPECPage

and the xspector blog at
http://xspector.blogspot.com/

15

1.3 History

The first version of XSPEC was written in 1983 at the Institute of Astronomy,
Cambridge, under VAX/VMS by Rick Shafer. It was written to perform spectral analysis
of data from the ESA EXOSAT X-ray observatory, which was launched that year.
XSPEC is a descendant of a series of spectral-fitting programs written at NASA/Goddard
Space Flight Center for the OSO-8, HEAO-1 and EO missions. The initial design was the
fruit of many discussions between Rick Shafer and Andy Szymkowiak. Rick Shafer
subsequently joined the EXOSAT group, where he enhanced the VAX/VMS version in
collaboration with Frank Haberl. Meanwhile, Keith Arnaud ported XSPEC to a
Sun/UNIX operating system. The two implementations of XSPEC diverged for several
years until a determined and coordinated effort was made to recover a single version. The
results of that effort was XSPECV6, described in the first edition of this manual.
Subsequent editions have covered later versions of the program. In recent years XSPEC
has become the de facto standard for X-ray spectroscopic analysis for the ROSAT
mission and the de jure standard for the BBXRT, ASCA, and RXTE missions. It is now
in extensive use for all current X-ray and gamma-ray missions. An extensive re-
engineering effort was started in the fall of 1998 to improve long-term maintainability,
allow significant new features to be added, and support the analysis of spectra from
coded-mask instruments.

1.4 Acknowledgements

This project would not have been possible without ignoring the advice of far more
people than can be mentioned here. We would like to thank all our colleagues for their
suggestions, bug reports, and (especially) source code. The GSFC X-ray astronomy group
are particularly thanked for their patience exhibited while functioning as the beta test site
for new releases. The initial development of XSPEC was funded by a Royal Society grant
to Prof. Andy Fabian and subsequent development was partially funded by the European
Space Agency's EXOSAT project and is now funded by the HEASARC at NASA/GSFC.

1.5 References

Arnaud, K.A., 1996, Astronomical Data Analysis Software and Systems V, eds. G. Jacoby
and J. Barnes,p17, ASP Conf. Series volume 101.

Dorman, B., and Arnaud, K. A. 2001, Astronomical Data Analysis Software and Systems X
eds. F.R. Harnden, Jr., F.A. Primini, and H. E. Payne, vol. 238, p. 415

Dorman, B., Arnaud, K. A., and Gordon, C. A. XSPEC12: Object-Oriented X-Ray Data
Analysis, AAS HEAD meeting No. 35, #22.10

2. Spectral Fitting and XSPEC

2.1 Introduction

This chapter comprises a brief description of the basics of spectral fitting, their
application in XSPEC, and some helpful hints on how to approach particular problems.
We then provide more details on the way XSPEC provides flexibility in its approach to
the minimization problem. We also describe the data formats accepted.

2.2 The Basics of Spectral Fitting

Although we use a spectrometer to measure the spectrum of a source, what the
spectrometer obtains is not the actual spectrum, but rather photon counts (C) within
specific instrument channels, (1). This observed spectrum is related to the actual
spectrum of the source (f(E)) by:

C(|)=j0°° f(E)R(I, E)JE

Where R(1,E) is the instrumental response and is proportional to the probability that an
incoming photon of energy E will be detected in channel 1. Ideally, then, we would like to
determine the actual spectrum of a source, f(E), by inverting this equation, thus deriving
f(E) for a given set of C(I). Regrettably, this is not possible in general, as such inversions
tend to be non-unique and unstable to small changes in C(l). (For examples of attempts
to circumvent these problems see Blissett & Cruise 1979; Kahn & Blissett 1980; Loredo
& Epstein 1989).

The usual alternative is to choose a model spectrum, f(E), that can be described in terms
of a few parameters (i.e., f(E,p1,p2,...)), and match, or “fit” it to the data obtained by the
spectrometer. For each f(E), a predicted count spectrum (Cy(l)) is calculated and
compared to the observed data (C(I)). Then a “fit statistic™ is computed from the
comparison and used to judge whether the model spectrum “fits” the data obtained by the
spectrometer.

The model parameters then are varied to find the parameter values that give the most
desirable fit statistic. These values are referred to as the best-fit parameters. The model
spectrum, f,(E), made up of the best-fit parameters is considered to be the best-fit model.

The most common fit statistic in use for determining the “best-fit” model is 2°, defined
as follows:

27 =2,(C()-C, (1) (o(1))’
where o(1) is the (generally unknown) error for channel | (e.g., if C(I) are counts then o(l)
is usually estimated by m; see e.g. Wheaton et.al. 1995 for other possibilities).
Once a “best-fit” model is obtained, one must ask two questions:

1. How confident can one be that the observed C(I) can have been produced by the
best-fit model f,(E)? The answer to this question is known as the “goodness-of-fit”

of the model. The % statistic provides a well-known-goodness-of-fit criterion for
a given number of degrees of freedom (v, which is calculated as the number of
channels minus the number of model parameters) and for a given confidence level.

If x° exceeds a critical value (tabulated in many statistics texts) one can conclude
that f,(E) is not an adequate model for C(I). As a general rule, one wants the

“reduced 2" (¥’ /v) to be approximately equal to one (x° ~ V). A reduced

that is much greater than one indicates a poor fit, while a reduced 2° that is much
less than one indicates that the errors on the data have been over-estimated. Even if
the best-fit model (f,(E)) does pass the “goodness-of-fit” test, one still cannot say
that f,(E) is the only acceptable model. For example, if the data used in the fit are
not particularly good, one may be able to find many different models for which
adequate fits can be found. In such a case, the choice of the correct model to fit is a
matter of scientific judgment.

2. For a given best-fit parameter (p1), what is the range of values within which one
can be confident the true value of the parameter lies? The answer to this question is
the “confidence interval” for the parameter.

The confidence interval for a given parameter is computed by varying the parameter
value until the z° increases by a particular amount above the minimum, or “best-
fit” value. The amount that the %z is allowed to increase (also referred to as the
critical Azz) depends on the confidence level one requires, and on the number of

parameters whose confidence space is being calculated. The critical Ay’ for
common cases are given in the following table (from Avni, 1976):

Confidence Parameters
1 2 3
0.68 1.00 2.30 3.50
0.90 271 461 6.25
0.99 6.63 9.21 11.30

2.3 The XSPEC implementation

To summarize the preceding section, the main components of spectral fitting are
as follows:

e A set of one or more observed spectra D(1) with background
measurements B(l) where available

e The corresponding instrumental responses R(' ' E)

e A set of model spectra M (E)

e These components are used in the following manner:

e Choose a parameterized model which is thought to represent the actual
spectrum of the source.

e Choose values for the model parameters.

e Based on the parameter values given, predict the count spectrum that
would be detected by the spectrometer in a given channel for such a
model.

e Compare the predicted spectrum to the spectrum actually obtained by the
instrument.

e Manipulate the values of the parameters of the model until the best fit
between the theoretical model and the observed data is found.

Then calculate the “goodness” of the fit to determine how well the model explains
the observed data, and calculate the confidence intervals for the model's parameters.

This section describes how XSPEC performs these tasks.
C(I): The Observed Spectrum

To obtain each observed spectrum, C (I) , XSPEC uses two files: the data

(spectrum) file, containing D(l), and the background file, containing B(l). The data file
tells XSPEC how many total photon counts were detected by the instrument in a given
channel. XSPEC then uses the background file to derive the set of background-
subtracted spectra C(I) in units of counts per second. The background-subtracted count
rate is given by, for each spectrum:

D(1) boyy B(1)
t, Dby @g ot

aD(I) D B(I)'B

c(l)=

B(1)

where D(1) and B(l) are the counts in the data and background files; t, and t,

are the exposure times in the data and background files; by, and by, , a,, and ag, are

the background and area scaling values from the spectrum and background respectively,
which together refer the background flux to the same area as the observation as
necessary. When this is done, XSPEC has an observed spectrum to which the model
spectrum can be fit.

R(I,E): The Instrumental Response

Before XSPEC can take a set of parameter values and predict the spectrum that
would be detected by a given instrument, XSPEC must know the specific characteristics
of the instrument. This information is known as the detector response. Recall that for
each spectrum the response R(I,E) is proportional to the probability that an incoming
photon of energy E will be detected in channel I. As such, the response is a continuous
function of E. This continuous function is converted to a discrete function by the creator
of a response matrix who defines the energy ranges E, such that:

[R(1LE)E

RD(I"])= E

J _EJ—l

XSPEC reads both the energy ranges, E, , and the response matrix R, (I,J) from

a response file in a compressed format that only stores non-zero elements. XSPEC also
includes an option to use an auxiliary response file, which contains an array A, (J)that is

multiplied into R, (1,J) as follows:
Ry(1,J) > Ry(1,J)e A, (J)

This array is designed to represent the efficiency of the detector with the response
file representing a normalized Redistribution Matrix Function, or RMF. Conventionally,
the response is in units of cm?.

M(E): The Model Spectrum

The model spectrum, M (E), is calculated within XSPEC using the energy ranges
defined by the response file :

M_(J)= Ej M (E)dE

EJ—l

and is in units of photons cms™. XSPEC allows the construction of composite
models consisting of additive components representing X-ray sources (e.g., power-laws,
blackbodys, and so forth), multiplicative components, which modify additive components
by an energy-dependent factor (e.g., photoelectric absorption, edges, ...). Convolution and
mixing models can then perform sophisticated operations on the result. Models are
defined in algebraic notation.

For example, the following expression:
phabs (power + phabs (bbody))

defines an absorbed blackbody, phabs(bbody), added to a power-law, power. The
result then is modified by another absorption component, phabs. For a list of available
models, see Chapter 6.

Fits and Confidence Intervals

Once data have been read in and a model defined, XSPEC uses a fitting algorithm
to find the best-fit values of the model parameter. The default is a modified Levenberg-
Marquardt algorithm (based on CURFIT from Bevington, 1969). The algorithm used is
local rather than global, so be aware that it is possible for the fitting process to get stuck
in a local minimum and not find the global best-fit. The process also goes much faster
(and is more likely to find the true minimum) if the initial model parameters are set to
sensible values.

The Levenberg-Marquardt algorithm relies on XSPEC calculating the 2™
derivatives of the fit statistic with respect to the model (Parameters. By default these are
calculated analytically, with the assumption that the 2" derivatives of the model itself

may be ignored. This can be changed by setting the
USE_NUMERICAL_DIFFERENTIATION flag to “true” in the Xspec.init initialization
file, in which case XSPEC will perform numerical calculations of the derivatives (which
are slower).

At the end of a fit, XSPEC will write out the best-fit parameter values, along with
estimated confidence intervals. These confidence intervals are one sigma and are
calculated from the second derivatives of the fit statistic with respect to the model
parameters at the best-fit. These confidence intervals are not reliable and should be used
for indicative purposes only.

XSPEC has a separate command (error or uncertain) to derive confidence
intervals for one interesting parameter, which it does by fixing the parameter of interest at
a particular value and fitting for all the other parameters. New values of the parameter of
interest are chosen until the appropriate delta-statistic value is obtained. XSPEC uses a
bracketing algorithm followed by an iterative cubic interpolation to find the parameter
value at each end of the confidence interval.

To compute confidence regions for several parameters at a time, XSPEC can run a
grid on these parameters. XSPEC also will display a contour plot of the confidence
regions of any two parameters.

2.4 A more abstract and generalized approach

The sections above provide a simple characterization of the problem. XSPEC
actually operates at a more abstract level and considers the following:

Given a set of spectra C(1), each supplied as a function of detector channels, a set
of theoretical models {M(E);} each expressed in terms of a vector of energies together
with a set of functions {R(l,E);} that map channels to energies, minimize an objective
function S of C, {R(l,E);}, {M(E);} using a fitting algorithm, i.e.

S=S(C,), MfoRY)

In the default case, this reduces to the specific expression for x fitting of a
single source

S=ZZ=Z(Ci_Ri°Mi)2

where i runs over all of the channels in all of the spectra being fitted, and using
the Levenberg-Marquadt algorithm to perform the fitting.

This differs from the previous formulation in that the operations that control the
fitting process make fewer assumptions about how the data are formatted, what function
is being minimized, and which algorithm is being employed. At the calculation level,
XSPEC requires spectra, backgrounds, responses and models, but places fewer
constraints as to how they are represented on disk and how they are combined to compute

the objective function (statistic). This has immediate implications for the extension of
XSPEC analysis to future missions.

New data formats can be implemented independently of the existing code, so that
they may be loaded during program execution. The ‘data format’ includes the
specification not only of the files on disk but how they combine with models.

Multiple sources may be extracted from a spectrum. For example, it generalizes
the fitting problem to minimizing, in the case of the x° statistic,

12=2(Ci_szu°Mj)z

and j runs over one or more models. This allows the analysis of coded aperture data
where multiple sources may be spatially resolved.

Responses, which abstractly represent a mapping from the theoretical energy
space of the model to the detector channel space, may be represented in new ways. For
example, the INTEGRAL/SPI responses are implemented as a linear superposition of 3
(fixed) components.

Instead of explicitly combining responses and models through convolution
XSPEC places no prior constraint on how this combination is implemented. For example,
analysis of data collected by future large detectors might take advantage of the form of
the instrumental response by decomposing the response into components of different
frequency.

Other differences of approach are in the selection of the statistic of the techniques
used for deriving the solution. Statistics and fitting methods may be added to XSPEC at
execution time rather than at installation time, so that the analysis package as a whole
may more easily keep apace of new techniques.

2.5 XSPEC Data Analysis

XSPEC is designed to support multiple input data formats. Support for the earlier SF and
Einstein FITS formats are removed. Support for ASCII data is planned, which will allow
XSPEC to analyze spectra from other wavelength regions (optical, radio) transparently to
the user.

2.5.1 OGIP Data

The OGIP data format both for single spectrum files (Type I) and multiple spectrum files
(Type 1) is fully supported. These files can be created and manipulated with programs
described in Appendix E and the provided links. The programs are described more fully
in George et al. 1992. (the directories below refer to the HEAsoft distribution).

e Spectral Data: callib/src/gen/rdpha2.f, wtpha3.f

e Responses: callib/src/gen rdebd4.f, rdrmf5.f, wtebd4.f, wtrmf5.f. The “rmf”
programs read and write the RMF extension, while the “ebd” programs write an
extension called EBOUNDS that contains nominal energies for the detector
channels.

e Auxiliary Responses: callib/src/gen rdarfl.f, and wtarfl.f

2.5.2 INTEGRAL/SPI Data

XSPEC also includes an add-in module to read and simulate INTEGRAL/SPI data, which
can be loaded by the user on demand. The INTEGRAL/SPI datasets are similar to OGIP
Type II, but contain an additional FITS extension that stores information on the multiple
files used to construct the responses.

The INTEGRAL Spectrometer (SPI) is a coded-mask telescope, with a 19-
element Germanium detector array. The Spectral resolution is ~500, and the angular
resolution is ~3°. Unlike focusing instruments however, the detected photons are not
directionally tagged, and a statistical analysis procedure, using for example cross-
correlation techniques, must be employed to reconstruct an image. The description of the
XSPEC analysis approach® which follows assumes that an image reconstruction has
already been performed; see the SPIROS utility within the INTEGRAL offline software
analysis package (OSA), OR, the positions on the sky of all sources to be analyzed are
already known (which is often the case). Those unfamiliar with INTEGRAL data
analysis should refer to the OSA documentation. Thus, the INTEGRAL/SPI analysis
chain must be run up to the event binning level [if the field of view (FoV) source content
is known, e.g. from published catalogs, or from IBIS image analysis], or the image
reconstruction level. SPIHIST should be run selecting the "PHA" output option, and
selecting detectors 0-18. This will produce an OGIP standard type-11 PHA spectral file,
which contains multiple, detector count spectra. In addition, the SPIARF procedure
should be run once for each source to be analyzed, plus one additional time to produce a
special response for analysis of the instrumental background. If this is done correctly, and
in the proper sequence, SPIARF will create a table in the PHA-I1 spectral file, which will
associate each spectrum with the appropriate set of response matrices. The response
matrices are then automatically loaded into XSPEC upon execution of the data command
in a manner very transparent to the user. You will also need to run SPIRMF (unless you
have opted to use the default energy bins of the template SPI RMFs). Finally, you will
need to run the FTOOL SPIBKG_INIT. Each of these utilities - SPIHIST, SPIARF,
SPIRMF and SPIBKG_INIT - are documented elsewhere, either in the INTEGRAL or
(for SPIBKG_INIT the HEAsoft) software documentation.

There are several complications regarding the spectral de-convolution of coded-
aperture data. One already mentioned is the source confusion issue; there may be multiple
sources in the FoV, which are lead to different degrees of shadowing on different
detectors. Thus, a separate instrumental response must be applied to a spectral model for
each possible source, for each detector. This is further compounded by the fact that
INTEGRAL's typical mode of observation is “dithering.” A single observation may
consist of ~10's of individual exposures at raster points separated by ~2°. This further

! This is one of several possible analysis paths. The most commonly used method involves the SPIROS utility

in spectral extraction mode, which leads to a effective-area corrected, background subtracted "pseudo-count”
spectra. A (single) customized XSPEC RMF is then applied to approximate the photon-to-count
redistribution for model fitting.

enumerates the number of individual response matrices required for the analysis. If there
are multiple sources in the FoV, then additional spectral models can be applied to an
additional set of response matrices, enumerated as before over detector and dither
pointing. This capability - to model more than one source at a time in a given Chi-Square
(or alternative) minimization procedure - did not exist in previous versions of XSPEC.
For an observation with the INTEGRAL/SPI instrument, where the apparent detector
efficiency is sensitive to the position of the source on the sky relative to the axis of the

instrument, the Zzstatistic is:

Dd,p(l)—zj“;R(j’p(l,E)oMj(E;xS)—Bd’p(l X))

G(I)d,p

where:

P.d run over instrument pointings and detectors;
| runs over individual detector channels

] enumerates the sources detected in the field at different position (0.4)
E indexes the energies in the source model
Xs parameters of the source model, which is combined with the response

Xp parameters of the background model, expressed as a function of detector channel

Examination of this equation reveals one more complication; the term B
represents the background, which, unlike for chopping, scanning or imaging
experiments, must be solved for simultaneously with the desired source content. The
proportion of background-to-source counts for a bright source such as the Crab is ~1%.
Furthermore, the background varies as a function of detector, and time (dither-points),
making simple subtraction implausible. Thus, a model of the background is applied to a
special response matrix, and included in the de-convolution algorithm.

2.6 References

Arnaud, K.A., George, I.M., Tennant, A.F., 1992. Legacy, 2, 65.
Avni, Y., 1976. ApJ, 210, 642.

Bevington, P.R., 2002, 3" Edition. Data Reduction and Error Analysis for the

Physical Sciences, McGraw-Hill.
Blissett, R.J., Cruise, A.M., 1979. MNRAS, 186, 45.

George, I.M., Arnaud, K.A., Pence, W., Ruamsuwan, L., 1992. Legacy, 2, 51.

Kahn, S.M., Blissett, R.J., 1980. ApJ, 238, 417.

Loredo, T.J., Epstein, R.1., 1989. ApJ, 336, 896.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., 1992.
Numerical Recipes (2nd edition), p687ff, CUP.

Wheaton, W.A. et.al., 1995. ApJ, 438, 322.

10

11

3. XSPEC Overview and Helpful Hints

3.1 Syntax
XSPEC is a command-driven, interactive program. You will see a prompt

XSPEC12>
whenever input is required. Command recall and inline editing are available using
the arrow keys. XSPEC uses Tcl as its user interface, providing looping, conditionals, file

1/0 and so on. For further details of the Tcl syntax, consult the “Description of Syntax”
section, the User Interface appendix, and links therein.

3.2 How to return to the XSPEC> prompt

The string /* acts as an emergency escape back to the XSPEC prompt. This string
in answer to any question should bounce XSPEC out of whatever it is doing and back to
the command prompt.

3.3 Getting Help

Quick help: If you are uncertain about command syntax, typing a command
followed by a “?” will print a one-line summary. The help command:

XSPEC12> help

without arguments will bring up the full XSPEC manual in a PDF document
reader (e.g. Adobe™ Acrobat Reader), or will open a browser to the XSPEC manual
home page either locally or on the HEASARC site. See “Customizing XSPEC” later in

this section to see how to select between these options, and how to assign a PDF reader
and web browser to XSPEC. Typing

XSPEC12> help <command>

will display the manual section corresponding to <command>. Help for individual
model components can be displayed by

XSPEC12> help model <modelName>
if all else fails you can e-mail your questions to the XSPEC team at
xspecl2@athena.gsfc.nasa.gov

3.4 Commands

XSPEC commands can be divided into 6 categories: Control, Data, Model,
Fitting, Plotting and Setting, as follows:

Control commands include items such as controlling logging, obtaining help,
executing scripts, and other miscellaneous items to do with the program control rather
than manipulating data or theoretical models.

Data commands load spectral data and calibration data such as backgrounds and
responses, and specify channel ranges to be fit.

12

Model commands define and manipulate theoretical models and their parameters,
and compute additional information such as fluxes or line identifications.

Fit commands initiate the fitting routines, control the parameter set, perform
statistical tests and compute confidence levels.

Plot commands generate about 50 different kinds of 2-dimensional plots

Setting commands change a variety of XSPEC internals which control details of
models, statistics, and fitting methods.

These command types are summarized below. For full details see Chapter 5.

3.5 Issuing Commands

In an interactive session, the command interpreter accepts the shortest
unambiguous abbreviation for any command. Since the interpreter is built on the Tcl
language, some possible XSPEC command abbreviations might coincide with both
XSPEC and Tcl commands. In this case, the interpreter will print the multiple
possibilities and stop. Command abbreviations may be specified in a start-up script
(SHOME/ .xspec/xspec.rc) — see Appendix A for details.

Inside a script, command abbreviations are not recognized. This behavior can be
overridden but we do not recommended it: however, specific abbreviations can be
defined in the custom startup script.

Operating-system commands can be given from within XSPEC simply by typing
the command, as at the shell prompt: however, if wild cards are needed (e.g. Is *.pha) the
operating system command must be preceded by syscall. Note that an XSPEC
abbreviation which corresponds to a system command will run the latter.

3.6 Control Commands
Control commands include those for:
controlling parallel operations: parallel

writing program information: log, (save session to an ASCII file) script (record a
set of commands), save (save commands needed to restore the current program state),
autosave (automatically run the save command at specified intervals);

controlling program output: chatter (control the amount of program output),
query (give an automatic response to prompts), tclout and tcloutr (create Tcl variables
for manipulation in scripts)

displaying status information: show, time, and version
ending the session: exit (or quit)

displaying online help help and “?”. Help can be given either in summary, in
specific manual pages, a manual section, or the entire manual.

13

3.6.1 Query, chatter and shutting XSPEC up (somewhat)

The fit command will run a certain number of iterations and then query the user
whether he or she wants to continue. While useful under most circumstances, the constant
questioning can be a pain if one leaves XSPEC running and expects to find it finished
when one gets back, or if one habitually runs scripts. One way around this problem is to
reset the number of iterations before the question is asked by giving a single argument.
For example,

XSPEC12> fit 100

will run 100 iterations before asking a question.

A more drastic solution is to use the query command.

XSPEC12> query yes

This will suppress all questions and assume that their answer is yes, while
XSPEC12> query no

will suppress all questions but assume that their answer is no.

The amount of output that XSPEC writes is set by the chatter command, which
takes two arguments applying to the terminal and to the log file.

3.6.2 Scripts and the Save command
XSPEC commands can be written into a file and then executed by entering
XSPEC12> @fi1lename
Alternatively, from the shell prompt
% xspec - Ffilename &

for batch execution (remember to end the script in file ¥1 lename . xcm with exit
if you want the program to terminate after completion!). Note that the default suffix for
XSpec scripts is . xcm

The save command writes the current XSPEC status to a command file, which
later can be run to reset XSPEC to the same configuration. XSPEC has a mechanism to
save the current status automatically. This is controlled through the autosave command.

This command is very useful when reading a large number of data sets and/or
fitting complicated models. If autosaving is operating (the default) then the equivalent of

XSPEC12> save all xautosav.xcm

is run after each command, so if a disaster occurs it is possible to recover.

3.6.3 Miscellaneous

Information on the current XSPEC status can be printed out using the show
command. The time command writes out system-timing information, and the version
command writes out the version number and the build time and date. Finally, XSPEC can
be terminated with the exit or quit commands.

14

3.7 Data Commands

XSPEC is designed to allow complicated, multi-instrument analysis, so most
commands can take arguments specifying more than one data set. Arguments in XSPEC
are separated by either blanks or commas. A single argument can define a range. The
ranges are delimited by a dash (-). A colon (:) is used to separate ranges (e.g., the phrase
1-2:11-24 refers to channels 11-24 in files 1 and 2).

3.7.1 Reading data and modifying calibration and auxiliary files

XSPEC reads in spectra from spectral files using the data command. Several
datasets may be specified in one command. Several datasets may be stored in a single file
and accessed separately. A particular dataset in use may be replaced by another or
dropped entirely. The input data file contains pointers to background, redistribution and
auxiliary response files, but these pointers may be overridden by the backgrnd,
response, and arf commands. All these commands have the same syntax as data. An
auxiliary background file, called the correction file (an absolute subtraction with zero
variance), also can be included using the corfile command. Its use is described in the
section on fitting. The current response can be replaced by a diagonal version using
diagrsp. A dummy response for testing purposes can be defined using dummyrsp.

3.7.2 Controlling channels being fitted

PHA channels may be left out of fitting using the ignore command and included
again using the notice command. These commands have a syntax allowing the same
channels to be specified for more than one input file. The ignored and noticed ranges can
be specified either as channels or as energies. If the command setplot wave has been
entered, real ranges are interpreted as wavelengths.

3.7.3 Simulations

The fakeit command is used to generate simulated data. The current response
matrix and model (a model must be defined prior to using the fakeit command) are used
to create fake data. The user is prompted for various options. To make fake data when
only a response matrix is available, give the command

XSPEC12> fakeit none.

XSPEC will prompt the user for the response and ancillary filenames from which
to build the simulated data. It is important to note that a model must be defined prior to
issuing this command.

3.7.4 Data groups

The most common use of XSPEC is to fit one or more data sets with responses to
a particular model. However, it is often useful to be able to fit simultaneously several
data sets with a model whose parameters can be different for each data set. A simple
example would be a number of data sets that we expect to have the same model spectrum
shape but different normalizations. XSPEC caters to this need through the use of data

15

groups. When files are read in they can be labeled as belonging to a particular data group.
When a model is defined a set of model parameters is allocated for each data group.
These parameters can all vary freely or they can be linked together across data groups as
required.

To set up data groups, the data command should be given as in the following
example :

XSPEC12> data 1:1 filel 1:2 file2 2:3 file3

which sets up two data groups. The first data group comprises data sets from filel
and file2, and the second data group takes the data set from file3. Now when a model is
defined, XSPEC will give two sets of model parameters, one for the first datagroup and
one for the second.

3.8 Model Commands

XSPEC allows users to fit data with models constructed from individual
components. These components may be either additive, multiplicative, mixing, or
convolution. Multiplicative components simply multiply the model by an energy-
dependent factor. Convolutions apply a transformation to the model component they
operated on whereby the output can be affected by a range of input energies, such as in
smoothing operations. Mixing components are two dimensional and designed to
transform fluxes between different spatial regions (such as in projection). Multiplicative,
convolution, and mixing components (beginning with v12.9.0) can act on individual
components, on groups of components, or on the entire model. Prior to v12.9.0, mixing
transformations could apply only to the whole model.

The model command defines the model to be used and prompts for the starting
values of its parameters. The user also can set the allowed ranges of the parameter.
Parameters can be linked to an algebraic function of the other parameters, and unlinked
using the untie command. The value of an individual parameter can be changed with the
command newpar (and the current setting queried with newpar 0). Parameters can be
fixed at their current value with the freeze command and allowed to vary freely with the
thaw command. Individual components can be added or subtracted from the model using
addcomp, delcomp, and editmod. The plasma emission and photoelectric absorption
models require an assumption about relative elemental abundances.

The flux command calculates the flux from the current model in the given energy
range. This energy range must be within that defined by the current response matrix. If a
larger energy range is required, then the energies command can be given to compute the
model over the desired range. The lumin command calculates the luminosity for the
source redshift given. The eqwidth command determines the equivalent width of a model
component, usually a line. The user of either of these last two commands should read the
help descriptions carefully. The Tcl script addline can be used to automatically add lines
to a model. These can be identified using identify and modid.

New model components which can be described by a simple algebraic formula
can be set up using mdefine and used in the same way as the standard models except they
will run slower being interpreted rather than compiled.

16

3.8.1 Models with multiple responses and background models

Multiple models and responses can be assigned to a single spectrum. This generalizes
and replaces the /b’ technique of specifying background models in v11. In the FITS file
format, a single response file can be associated with a spectrum either through a header
keyword or a table column entry. XSPEC always assigns this response to a spectrum’s
source number 1. The model command by default also creates new models for source
number 1. The response command in tandem with model can be used to create additional
sources. For example to add a background model to loaded spectrum 1, first load a 2™
response:

XSPEC12> response 2:1 resp2.rsp

then define a background model to apply to source 2:
XSPEC12> model 2:my_ background_model name wa(po)

This model will now apply to spectrum 1 and any other spectrum that has a
response loaded for source 2. To apply a different background model to spectrum 2, load
a response for source 3 rather than 2:

XSPEC12> response 3:2 another_response.rsp

XSPEC12> model 3:another_background_model ga

An arf can also be assigned to a particular source number and spectrum:
XSPEC12> arf 2:1 arf_file.pha

Source numbers do not need to be entered in consecutive order for a given spectrum, and
gaps in numbering are allowed. Please see the individual model and response entries in
the “XSPEC Commands” section for more information and examples.

3.9 Fitting Commands

The basic fit command is called fit. This command performs a minimization using
the currently selected algorithm (default: Levenberg-Marquardt). fit takes arguments that
are passed to the fitting method: by default, these are the number of iterations to execute
before asking the user whether to continue, and the numerical convergence criterion.

A systematic model uncertainty can be included using the systematic command.
The error or uncertain command calculates error bounds for one interesting parameter
for the specified parameters and confidence levels. To produce multi-dimensional errors
the steppar command is used to generate a fit-statistic grid. Two-dimensional grids may
be expressed as contour plots (using plot contour). The model normalization can be set
using the renorm command. The normalization of the correction file background can be
set with cornorm. ftest and the Tcl script simftest can be used to calculate F-test
probabilities.

Markov Chain Monte Carlo runs can be performed using the chain command
with a useful Tcl script rescalecov to rescale the proposal distribution covariance if the
Metropolis-Hastings algorithm is selected. The results can be analyzed using the margin
command.

17

3.9.1 What to do when you have Poisson data

The x° statistic assumes that all the spectral channels are Gaussian distributed
and that the estimate for the variance is uncorrelated with the observed counts. If the data
are Poisson then these are bad assumptions especially if there are small numbers of
counts in a channel. An alternative fit statistic, the C-statistic, should be used in this case.

. 2
The C-statistic can also provide confidence intervals in exactly the same way as ¥ .
To use, give the command
XSPEC12> statistic cstat

and then use the fit and error commands as usual. An alternative (and

deprecated) approach is to continue using the x * statistic but change the weighting to
provide a better estimate of the variance in the small number limit. This can be done
using the weight gehrels or weight churazov commands. The latter is to be preferred.

The goodness-of-fit statistic can be set using the command statistic test. There are
a number of options available. They can be interpreted using the goodness command,
which utilizes Monte Carlo methods.

3.9.2 Binning and Grouping data

Often one does not want to use the full resolution of a spectrum, either because the
channels over-sample the spectral resolution or because the S/N is low. XSPEC and the
associated programs provide a number of ways of handling this. Firstly, the XSPEC
command setplot rebin can be used to add channels together in the plot. It is important to
realize that this effects only the plot and not the data being fitted.

Two FTOOLS are available to bin and group data for fitting purposes. RBNPHA
bins up the data in a non-reversible manner and should only be used to ensure that the
number of bins in the spectrum is the same as that in the response. GRPPHA is the tool of
choice for grouping the data to get adequate S/N or number of counts in each channel.
GRPPHA does not actually add together channels, but instead sets a flag which is read by
XSPEC and causes XSPEC to sum the appropriate channels. If a data file is read with
some grouping then XSPEC will apply the same operation to any background or response
files used.

3.10 Plotting Commands

XSPEC plotting is currently performed using the PLT interface. There are two
basic commands: plot and iplot. The plot command makes a plot and returns the user to
the XSPEC prompt, while the iplot command leaves the user in the interactive plotting
interface, thus allowing the user to edit the plot. A variety of different quantities may be
plotted, including the data and the current model; the integrated counts; the fit residuals;
the ratio of data to model; the contributions to the fit statistic; the theoretical model; the
unfolded (incident) spectrum; the detector efficiency; the results of the goodness
command; and the fit-statistic contours. All data plots can have an x-axis of channels,
energy, or wavelength, which are specified with setplot channel, setplot energy, setplot
wavelength respectively. A number of different units are available for energy or

18

wavelength. The plotting device to be used is set using setplot device or cpd. Separate
spectra may be added together and channels binned up (for plotting purposes only) using
setplot group (and ungrouped with setplot ungroup) and setplot rebin. There is an
option to plot individual additive model components on data plots, this option is enabled
by setplot add and disabled by setplot noadd. The effective area can be divided out of
data plots using setplot area (which option can be turned off using setplot noarea). Line
IDs can be plotted using setplot id and turned off by setplot noid. A stack of PLT
commands can be created and manipulated with setplot command, setplot delete, and
setplot list. This command stack then is applied to every plot.

PLT is built on top of the PGPLOT package, which comes with a standard set of
device drivers. Any machine running X-windows should support /xs and /xw, while
xterm windows should support /xt. PGPLOT supports monochrome and color postscript
and both landscape and portrait orientation with the drivers /ps, /cps, /vps, and /vcps.

The easiest way to make a hardcopy of an XSPEC plot is to use
XSPEC12> iplot

command and then at the PLT prompt to enter

PLT> hard /ps

This will make a file called pgplot.ps which can be printed. Alternatively, the
sequence

XSPEC12> cpd <filename>/ps

XSPEC12> .. plot commands ..

XSPEC12> cpd none

will place the plots in a PostScript file <filename>.

3.11 Setting Commands

The fit and goodness-of-fit test statistics are set using the statistic command.
Other fit-minimization algorithms are available, and can be selected using the method
command. The various fit methods require first and in some cases second derivatives of
the statistic with respect to the parameters. By default XSPEC calculates these
analytically, using an approximation for the second derivatives. This may be changed by
setting the USE_NUMERICAL_DIFFERENTIATION flag in the user’s startup

Xspec.init file. The weighting algorithm used to calculate x° can be altered by the
weight command.

Other setting commands modify:

cosmological parameters used to calculate luminosity (cosmo)
solar abundances for 18 elements (abund)

photoionization cross-sections (xsect)

The xset command can be used as an interface for abund, cosmo, method,
statistic, and xsect. Additionally, xset may set string expressions that are used by
models, for example the path to, and version number of APEC atomic line calculations,

19

or the coordinate system for surface brightness calculations used in the xmmpsf mixing
model.

3.12 Breaking With Ctrl-C

Ctrl-C can be used to break out of the data, chain, error, fit, and steppar
commands. If a Ctrl-C is entered elsewhere, it will have no effect.

When a break is entered during the fitting commands (error, fit, and steppar),
the fit will proceed until the end of the current fit iteration (ie. current lambda value when
using Levenberg-Marquardt) before breaking. This is to ensure the program remains in a
stable well-defined state. Therefore on slower machines, a user may notice a slight delay
before the program actually breaks. Ctrl-C breaking is currently only implemented for
the Levenberg-Marquardt fitting method.

Breaking is implemented for the data command primarily for users who load a
large number of Type-II spectra with one data command. So if you enter

XSPEC12> data my_data{1-1000}

and decide it is taking too long to load, you can break out at any time. However,
if you do choose to break, all spectra loaded from that particular data set will be lost. For
example, if the command below is entered and a Ctrl-C is sent while the spectra from
my_data2 are loading, the 50 spectra from my_datal will be retained while none will be
from my_data2:

XSPEC12> data my_datal{l1-50} mydata2{1-50}

3.13 Customizing XSPEC

The XSPEC environment can be customized using two separate files, both of
which are searched for in the directory

$HOME/.xspec

The first file, Xspec. init contains a number of settings that control items in
XSPEC. An abridged version of this file is reproduced below.

HHHH I
#
options and commands for displaying helpfiles
#

USE_ONLINE_HELP: true
Recognized local help formats: html pdf
This is iIgnored when using online help
LOCAL_HELP_FORMAT: html

Recommended command for Adobe Acrobat version 7 and later:
PDF_COMMAND: acroread -openlnNewWindow -tempFileTitle

Recommended command for Adobe Acrobat prior to version 7:
PDF_COMMAND: acroread -useFrontEndProgram -tempFileTitle

20

Recommended command for Mac PDF viewing
PDF_COMMAND: open

Recommended command for Cygwin PDF viewing
PDF_COMMAND: xpdf -q

Recommended command for Mac html
HTML_COMMAND : open

HTML_COMMAND: firefox
B
setting for GUI mode. The code requires that the GUI setting

starts with a "t" (case-insensitive) otherwise GUl mode is false
and the command line mode is used.

HHHFHHE

GUI: false

#

user-definable setting for the dummy response. Arguments required
begin-range end-range, number of bins, logarithmic/linear. Defaults
are {0.1,100,200,lo0g} respectively. Setting for bin type must be
“"linear™

if linear bins are to be created.

#

DUMMY: 0.1 50. 1000 1log

#

Chatter Level: Console chatter level then log chatter level.
Currently (4/2001)

logging has not been reimplemented.

#

CHAT: 10 10

#
photo absorption cross section table setting.
possible values are vern, bcmc, obmc.

XSECT: bcmc

#

solar abundance table indicator. Hard coded solar abundance vector.
Choices are

“feld" Feldman, U., 1992. Physica Scripta, 46, 202.

“"angr® is from Anders, E. & Grevesse, N., 1989. Geochimica and
Cosmochimica Acta 53, 197.

"aneb®™ is from Anders, E. & Ebihara, 1982. Geochimica and
Cosmochimica Acta 46, 2363.

#

ABUND: angr

#

Fitting method (leven | anneal ...)
#

METHOD: leven

#
statistic to be minimized (chi | cstat)
#

STATISTIC: chi

#

weighting technique (standard | gehrels | churazov | model)

#

WEIGHT: standard

IT true, Fitting algorithm will calculate parameter derivatives

numerically. |If false, a faster analytic expression will be used,
if applicable to the current fitting statistic.

HHHHH

USE_NUMERICAL_DIFFERENTIATION: false

#
cosmology parameters (HO, gO, lambdaO)
#

COsSMO: 70. .0 .73

#

#

Default graphics package (PLT is currently the only option).
#

GRAPH: plt

#

Default plotting device (e.g. for PGPLOT)
#

PLOTDEVICE: /null

#

Y-axis plotting units when in setplot wave mode (angstrom, hz)
#

WAVE_PLOT_UNITS: angstrom
#

User scripting directory
#

21

22

USER_SCRIPT_DIRECTORY: $HOME/.xspec

#
Default setting for parameters™ fit delta values.
Valid options are:

fixed
proportional <fraction of parameter value>

H o HH*

1T set to "fixed", the default values come from the settings in the
model .dat model definition file.
#

FIT_DELTAS: proportional .01

A copy of this file is placed in the $HOME/ . xspec directory on XSPEC12’s first
start-up or when it is not found. After this users can modify settings such as default
cosmology or the energy range for dummy response for their own requirements.

This is also the place where users can select if they want to view PDF help files
from the XSPEC distribution or HTML either locally or from the HEASARC site.
Setting USE_ONLINE_HELP to true uses the remote HTML files while false will use
either PDF or HTML local files depending on the value of LOCAL_HELP_FORMAT.

The PDF_COMMAND and HTML_COMMAND entries determine which
applications are run for the two viewing cases. The HTML_COMMAND value should
typically just be the name of a web browser, or “open” for Mac OS X users. The default
settings for the PDF_COMMAND entry are what work best for launching Adobe Acrobat
Reader 7.0.x on Linux/Unix systems. For those launching earlier versions, the “-
openInNewWindow” flag should be replaced with “-useFrontEndProgram”. For Mac
users, again we recommend the entire entry simply be replaced with “open”.

The second file that is searched for is the xspec.rc file. This contains users’ own
customizations, for example Tcl or XSPEC command abbreviations, packages to be
loaded on startup, or Tcl scripts containing procedures that are to be executed as
commands. Please consult Appendix A and references/links therein for details of Tcl
commands and scripting.

3.13.1 Customizing system-wide

When an XSPEC build is intended for many users across a system, it is also
possible for the installer (or whoever has write access to the distribution and installation
areas) to globally customize XSPEC. This is done through the file global_customize.tcl,
located in the .../Xspec/src/scripts directory. (This was done in the xspec.tcl file prior to
v12.2.1) Any of the customizations mentioned above for the individual’s own xspec.rc
file can also be placed in the global_customize.tcl file. After making the additions, run
“hmake install” out of the .../Xspec/src/scripts directory in order to copy the modified
global_customize.tcl file to the installation area. This additional code will be executed for
all users upon startup, BEFORE any of their own customizations in their xspec.rc files.

23

4. Walks through XSPEC

4.1 Introduction

This chapter demonstrates the use of XSPEC. The brief discussion of data and response
files is followed by fully worked examples using real data that include all the screen input and
output with a variety of plots. The topics covered are as follows: defining models, fitting data,
determining errors, fitting more than one set of data simultaneously, simulating data, and
producing plots.

4.1.1 Brief Discussion of XSPEC Files

At least two files are necessary for use with XSPEC: a data file and a response file. In
some cases, a file containing background may also be used, and, in rare cases, a correction file is
needed to adjust the background during fitting. If the response is split between an rmf and an arf
then an ancillary response file is also required. However, most of the time the user need only
specify the data file, as the names and locations of the correct response and background files
should be written in the header of the data file by whatever program created the files.

4.2 Fitting Models to Data: An Old Example from EXOSAT

Our first example uses very old data which is much simpler than more modern
observations and so can be used to better illustrate the basics of XSPEC analysis. The 6s X-ray
pulsar 1E1048.1-5937 was observed by EXOSAT in June 1985 for 20 ks. In this example, we'll
conduct a general investigation of the spectrum from the Medium Energy (ME) instrument, i.e.
follow the same sort of steps as the original investigators (Seward, Charles & Smale, 1986). The
ME spectrum and corresponding response matrix were obtained from the HEASARC On-line
service. Once installed, XSPEC is invoked by typing

Y%xspec
as in this example:
%oXxspec

XSPEC version: 12.8.0
Build Date/Time: Thu Nov 29 12:40:42 2012

XSPEC12>data s54405.pha
1 spectrum 1in use

Spectral Data File: s54405.pha Spectrum 1
Net count rate (cts/s) for Spectrum:1 3.783e+00 +/- 1.367e-01
Assigned to Data Group 1 and Plot Group 1

Noticed Channels: 1-125

Telescope: EXOSAT Instrument: ME Channel Type: PHA

Exposure Time: 2.358e+04 sec

Using fit statistic: chi

Using test statistic: chi

24

Using Response (RMF) File s54405.rsp for Source 1

The data command tells the program to read the data as well as the response file that is
named in the header of the data file. In general, XSPEC commands can be truncated, provided
they remain unambiguous. Since the default extension of a data file is .pha, and the
abbreviation of data to the first two letters is unambiguous, the above command can be
abbreviated to da s544005, if desired. To obtain help on the data command, or on any other
command, type help command followed by the name of the command.

One of the first things most users will want to do at this stage—even before fitting
models—is to look at their data. The plotting device should be set first, with the command cpd
(change plotting device). Here, we use the pgplot X-Window server, /xs.

XSPEC12> cpd /xs
There are more than 50 different things that can be plotted, all related in some way to the
data, the model, the fit and the instrument. To see them, type:

XSPEC12> plot ?
plot data/models/fits etc
Syntax: plot commands:

background chain chisq contour counts
data delchi dem emodel eemodel
efficiency eufspec eeufspec Ffoldmodel goodness
icounts insensitivity Icounts Idata margin
model ratio residuals sensitivity sum
ufspec

Multi-panel plots are created by entering multiple commands
e.g- "plot data chisqg"

The most fundamental is the data plotted against instrument channel (data); next most
fundamental, and more informative, is the data plotted against channel energy. To do this plot,
use the XSPEC command setplot energy. Figure A shows the result of the commands:

XSPEC12> setplot energy
XSPEC12> plot data

Note the label on the y-axis. The word “normalized” indicates that this plot has been
divided by the value of the EFFAREA keyword in the response file. Usually this is unity so can
be ignored. The label also has no cm™ so the plot is not corrected for the effective area of the
detector.

We are now ready to fit the data with a model. Models in XSPEC are specified using the
model command, followed by an algebraic expression of a combination of model components.
There are two basic kinds of model components: additive, which represent X-Ray sources of
different kinds. After being convolved with the instrument response, the components prescribe
the number of counts per energy bin (e.g., a bremsstrahlung continuum); and multiplicative
models components, which represent phenomena that modify the observed X-Radiation (e.g.
reddening or an absorption edge). They apply an energy-dependent multiplicative factor to the
source radiation before the result is convolved with the instrumental response.

6x10-

4x10-*

normalized counts s~ keV-?

2x10-

More generally, XSPEC allows three types of modifying components: convolutions and

data

L L

n

i

" 1 L

Energy (keV)

ﬂlm%j hﬁhﬁt bt oo

Figure A: The result of the command plot data when the data file in question
is the EXOSAT ME spectrum of the 6s X-ray pulsar 1E1048.1--5937
available from the HEASARC on-line service

25

mixing models in addition to the multiplicative type. Since there must be a source, there must be

least one additive component in a model, but there is no restriction on the number of modifying

components. To see what components are available, just type model :

XSPEC12>model
Additive Models:

apec
bkn2pow
c6mekl
cflow
compmag
diskbb
diskpn
ezdiskbb
kerrbb
lorentz
nsa
optxagn
plcabs
refsch
step
vmcFlow
vraymond
zpower lw

bapec
bknpower
c6pmekl
compLS
comptb
diskir
eplogpar
gadem
kerrd
meka
nsagrav
optxagnf
posm
sedov
vapec
vmeka
vsedov

bbody
bme
c6pvmkl
compPS
compth
diskline
eqgpair
gaussian
kerrdisk
mekal
nsatmos
pegpwrlw
power law
sirf
vbremss
vmekal
vvapec

Multiplicative Models:

SSS ice

TBabs

TBgrain

bbodyrad
bremss
c6vmekl
compST
cplinear
diskm
eqtherm
gnei
laor
mkcflow
nsmax
pexmon
pshock
smaug
vequil
vnei
zbbody

TBvarabs

bexrav
bvapec
cemekl
compTT
cutoffpl
disko
equil
grad
laor2
nei
nteea
pexrav
raymond
srcut
vgadem
vnpshock
zbremss

absori

bexriv
bvvapec
cevmkl
compbb
disk
diskpbb
expdec
grbm
logpar
npshock
nthComp
pexriv
redge
sresc
vgnei
vpshock
zgauss

acisabs

26

cabs constant cyclabs dust edge expabs
expfac gabs highecut hrefl notch pcfabs
phabs plabs pwab recorn redden smedge
spexpcut spline swindl uvred varabs vphabs
wabs wndabs xion zTBabs zdust zedge

zhighect zigm zpcfabs zphabs zredden zsmdust
zvarabs zvTeabs zvphabs zwabs zwndabs zxipcT

Convolution Models:

cflux gsmooth ireflect kdblur kdblur2 kerrconv
Ismooth partcov rdblur reflect rgsxsrc simpl
zashift zmshift

Mixing Models:
ascac projct suzpsft xmmpsT

Pile-up Models:
pileup

Mixing pile-up Models:

Additional models are available at :
legacy.gsfc.nasa.gov/docs/xanadu/xspec/newmodels._html

For information about a specific component, type help model followed by the name of
the component):

XSPEC12>help model apec

Given the quality of our data, as shown by the plot, we'll choose an absorbed power law,
specified as follows :

XSPEC12> model phabs(powerlaw)

Or, abbreviating unambiguously:

XSPEC12> mo pha(po)

The user is then prompted for the initial values of the parameters. Entering <return> or
/ in response to a prompt uses the default values. We could also have set all parameters to their
default values by entering /> at the first prompt. As well as the parameter values themselves,
users also may specify step sizes and ranges (<value>,<delta>, <min>, <bot>, <top>, and
<max values>), but here, we'll enter the defaults:

XSPEC12>mo pha(po)

Input parameter value, delta, min, bot, top, and max values for ...

27

1 0.001(0.01) 0 0 100000
1E+06
1:phabs:nH>/*

Model : phabs<1>*powerlaw<2> Source No.: 1 Active/On

Model Model Component Parameter Unit Value

par comp

1 1 phabs nH 10722 1.00000 +/- 0.0

2 2 power law Pholndex 1.00000 +/- 0.0

3 2 power law norm 1.00000 +/- 0.0
Fit statistic : Chi-Squared = 4.864244e+08 using 125 PHA bins.
Test statistic : Chi-Squared = 4.864244e+08 using 125 PHA bins.

Reduced chi-squared = 3.987085e+06 for 122 degrees of freedom

Null hypothesis probability = 0.000000e+00

Current data and model not fit yet.

The current statistic is »* and is huge for the initial, default values—mostly because the

power law normalization is two orders of magnitude too large. This is easily fixed using the
renorm command.

XSPEC12> renorm

Fit statistic : Chi-Squared = 852.19 using 125 PHA bins.
Test statistic : Chi-Squared = 852.19 using 125 PHA bins.
Reduced chi-squared = 6.9852 for 122 degrees of freedom

Null hypothesis probability = 7.320332e-110
Current data and model not fit yet.

We are not quite ready to fit the data (and obtain a better »°), because not all of the 125

PHA bins should be included in the fitting: some are below the lower discriminator of the
instrument and therefore do not contain valid data; some have imperfect background subtraction

at the margins of the pass band; and some may not contain enough counts for > to be strictly

meaningful. To find out which channels to discard (ignore in XSPEC terminology), consult
mission-specific documentation that will include information about discriminator settings,
background subtraction problems and other issues. For the mature missions in the HEASARC
archives, this information already has been encoded in the headers of the spectral files as a list of
“bad” channels. Simply issue the command:

XSPEC12> ignore bad

ignore: 40 channels ignored from source number 1
Fit statistic : Chi-Squared = 799.74 using 85 PHA bins.

Test statistic : Chi-Squared 799.74 using 85 PHA bins.
Reduced chi-squared = 9.7529 for 82 degrees of freedom
Null hypothesis probability = 3.545928e-118
Current data and model not fit yet.

XSPEC12> plot ldata chi

data and folded model

28
> 10 |
o
P
@

c
=
[
o
3 10¢
N
©
€
Q
c

10-6
% 100
- L
b4
T
hi 50 |
? L
S -
© L
S s
& 0
[77] -

2 5 10 20
Energy (keV)

Figure B: The result of the command plot Idata chi after the command ignore
bad on the EXOSAT ME spectrum 1E1048.1-5937

Giving two options for the plot command generates a plot with vertically stacked
windows. Up to six options can be given to the plot command at a time. Forty channels were
rejected because they were flagged as bad—~but do we need to ignore any more? Figure B shows
the result of plotting the data and the model (in the upper window) and the contributions to
(in the lower window). We see that above about 15 keV the S/N becomes small. We also see,
comparing Figure B with Figure A, which bad channels were ignored. Although visual
inspection is not the most rigorous method for deciding which channels to ignore (more on this
subject later), it's good enough for now, and will at least prevent us from getting grossly
misleading results from the fitting. To ignore energies above 15 keV:

XSPEC12> ignore 15.0-**
78 channels (48-125) ignored in spectrum # 1

Fit statistic : Chi-Squared = 721.57 using 45 PHA bins.

Test statistic : Chi-Squared 721.57 using 45 PHA bins.
Reduced chi-squared = 17.180 for 42 degrees of freedom
Null hypothesis probability = 1.250565e-124
Current data and model not fit yet.

If the ignore command is handed a real number it assumes energy in keV while if it is
handed an integer it will assume channel number. The “**” just means the highest energy.
Starting a range with “**” means the lowest energy. The inverse of ignore is notice, which has
the same syntax.

29

We are now ready to fit the data. Fitting is initiated by the command fit. As the fit
proceeds, the screen displays the status of the fit for each iteration until either the fit converges to

the minimum z?, or we are asked whether the fit is to go through another set of iterations to find
the minimum. The default number of iterations before prompting is ten.

XSPEC12>fit

Chi-Squared |beta]/N Lvi 1:nH 2:Pholndex 3:norm
721.533 1.01892e-10 -3 1.00000 1.00000 0.00242602
471.551 150.854 -4 0.152441 1.67440 0.00415548
367.421 60807.7 -3 0.308661 2.31822 0.00958061
53.6787 25662.3 -4 0.503525 2.14501 0.0121712
43.8123 4706.76 -5 0.549824 2.23901 0.0130837
43.802 118.915 -6 0.538696 2.23676 0.0130385
43.802 0.422329 -7 0.537843 2.23646 0.0130320

Variances and Principal Axes

1 2 3
4_7883E-08] -0.0025 -0.0151 0.9999
8.6821E-02] -0.9153 -0.4026 -0.0084
2.2915E-03] -0.4027 0.9153 0.0128

Covariance Matrix

1 2 3
7.312e-02 3.115e-02 6.564e-04
3.115e-02 1.599e-02 3.207e-04
6.564e-04 3.207e-04 6.561e-06

Model phabs<l>*powerlaw<2> Source No.: 1 Active/On

Model Model Component Parameter Unit Value
par comp
1 1 phabs nH 10n22 0.537843 +/- 0.270399
2 2 power law Pholndex 2.23646 +/- 0.126455
3 2 power law norm 1.30320E-02 +/- 2.56146E-03
Fit statistic : Chi-Squared = 43.80 using 45 PHA bins.
Test statistic : Chi-Squared = 43.80 using 45 PHA bins.
Reduced chi-squared = 1.043 for 42 degrees of freedom
Null hypothesis probability = 3.949507e-01

There is a fair amount of information here so we will unpack it a bit at a time. One line is
written out after each fit iteration. The columns labeled Chi-Squared and Parameters are obvious.
The other two provide additional information on fit convergence. At each step in the fit a
numerical derivative of the statistic with respect to the parameters is calculated. We call the
vector of these derivatives beta. At the best-fit the norm of beta should be zero so we write out
|beta| divided by the number of parameters as a check. The actual default convergence criterion is
when the fit statistic does not change significantly between iterations so it is possible for the fit
to end while |beta| is still significantly different from zero. The |betal/N column helps us spot this

30

case. The Lvl column also indicates how the fit is converging and should generally decrease.
Note that on the first iteration only the powerlaw norm is varied. While not necessary this simple
model, for more complicated models only varying the norms on the first iteration helps the fit
proper get started in a reasonable region of parameter space.

At the end of the fit XSPEC writes out the Variances and Principal Axes and Covariance
Matrix sections. These are both based on the second derivatives of the statistic with respect to the
parameters. Generally, the larger these second derivatives, the better determined the parameter
(think of the case of a parabola in 1-D). The Covariance Matrix is the inverse of the matrix of
second derivatives. The Variances and Principal Axes section is based on an eigenvector
decomposition of the matrix of second derivatives and indicates which parameters are correlated.
We can see in this case that the first eigenvector depends almost entirely on the powerlaw norm
while the other two are combinations of the nH and powerlaw Pholndex. This tells us that the
norm is independent but the other two parameters are correlated.

The next section shows the best-fit parameters and error estimates. The latter are just the
square roots of the diagonal elements of the covariance matrix so implicitly assume that the
parameter space is multidimensional Gaussian with all parameters independent. We already
know in this case that the parameters are not independent so these error estimates should only be
considered guidelines to help us determine the true errors later.

The final section shows the statistic values at the end of the fit. XSPEC defines a fit
statistic, used to determine the best-fit parameters and errors, and test statistic, used to decide
whether this model and parameters provide a good fit to the data. By default, both statistics are

7% When the test statistic is y> we can also calculate the reduced »° and the null hypothesis

probability. This latter is the probability of getting a value of y* as large or larger than observed
if the model is correct. If this probability is small then the model is not a good fit. The null
hypothesis probability can be calculated analytically for y* but not for some other test statistics

so XSPEC provides another way of determining the meaning of the statistic value. The goodness
command performs simulations of the data based on the current model and parameters and
compares the statistic values calculated with that for the real data. If the observed statistic is
larger than the values for the simulated data this implies that the real data do not come from the
model. To see how this works we will use the command for this case (where it is not necessary)

XSPEC12>goodness 1000
47.40% of realizations are < best Fit statistic 43.80 (nosim)
XSPEC12>plot goodness

Approximately half of the simulations give a statistic value less than that observed, consistent
with this being a good fit. Figure C shows a histogram of the »* values from the simulations
with the observed value shown by the vertical dotted line.

So the statistic implies the fit is good but it is still always a good idea to look at the data and
residuals to check for any systematic differences that may not be caught by the test. To see the fit
and the residuals, we produce figure D using the command

XSPEC12>plot data resid

Histogram from goodness command.

31

0.1

o Probability

o
3
T
e e e e e e e e e e e E—— o —— — ——]
1

Figure C: The result of the command plot goodness. The histogram shows the
fraction of simulations with a given value of the statistic and the dotted line
marks that for the observed data. There is no reason to reject the model.

Now that we think we have the correct model we need to determine how well the
parameters are determined. The screen output at the end of the fit shows the best-fitting
parameter values, as well as approximations to their errors. These errors should be regarded as
indications of the uncertainties in the parameters and should not be quoted in publications. The
true errors, i.e. the confidence ranges, are obtained using the error command. We want to run
error on all three parameters which is an intrinsically parallel operation so we can use XSPEC’s
support for multiple cores and run the error estimations in parallel:

XSPEC12>parallel error 3
XSPEC12>error 1 2 3
Parameter Confidence Range (2.706)
1 0.107599 1.00722 (-0.430244,0.469381)
2 2.03775 2.44916 (-0.198717,0.2127)
3 0.00954178 0.0181617 (-0.00349017,0.00512978)

Here, the numbers 1, 2, 3 refer to the parameter numbers in the Model par column of
the output at the end of the fit. For the first parameter, the column of absorbing hydrogen atoms,
the 90% confidence range is 3.3x10% < N,, < 9.3x10%cm " . This corresponds to an excursion

in y* of 2.706. The reason these “better” errors are not given automatically as part of the fit
output is that they entail further fitting. When the model is simple, this does not require much
CPU, but for complicated models the extra time can be considerable. The error for each
parameter is determined allowing the other two parameters to vary freely. If the parameters are

data and folded model

6x10~ |

4x10

2x10-#

normalized counts s-7 kel

|

108

5x10-5 [

—-5x10-% |

normalized counts s~ keV-'
o
T
|

uncorrelated this is all the information we need to know. However, we have an indication from

the covariance matrix at the

Figure D: The result of the command plot data resid with: the ME data file

Energy (keV)

from 1E1048.1—5937; “bad” and negative channels ignored; the best-fitting

absorbed power-law model; the residuals of the fit.

32

end of the fit that the column and photon index are correlated. To investigate this further we can
use the command steppar to run a grid over these two parameters:

XSPEC12>steppar 1 0.0 1.5 25 2 1.5 3.0 25

Chi-Squared

162.
171.
180.
190.
200.
316.
334.

65
59
87
a4
29

02

68

354.2

374.
395.

and make the contour plot shown in figure E using:

62
94

Delta

Chi-Squared

118.
127.
137.
146.
156.
272.
290.

84
79
06
64
49

22
88

310.4

330.
352.

XSPEC12>plot contour

82
14

AWNPFO

OFRrNWK

nH
1

[eNoNoNe)

[eNoNoNe)

0]

.06
.12
.18
.24

.24
.18
.12
.06

0]

Pholndex
2

PR R R R
RO RO RGNS

WWwWwww

Confidence contours: Chi-Squared

¥ L] M I N T ¥ I M I
min=4.380202e+01; Levels = 4.610202e+01 4.841202e+01 5.301202e+01

33

Parameter: Pholndex
ra
(4]

3]

1.5 L 1 n 1 " 1 L 1 L L L L n 1
0 0.2 0.4 086 0.8 1 1.2 1.4

Parameter: nH (10%)
What else can we do with the fit? One thing is to derive the flux of the model. The data
by themselves only give the instrument-dependent count rate. The model, on the other hand, is an
estimate of the true spectrum emitted. In XSPEC, the model is defined in physical units

Figure E: The result of the command plot contour. The contours shown are for
one, two and three sigma. The cross marks the best-fit position.

independent of the instrument. The command flux integrates the current model over the range
specified by the user:

XSPEC12> flux 2 10
Model Flux 0.003539 photons (2.232l1e-11 ergs/cm”2/s) range (2.0000 -
10.000 keV)

Here we have chosen the standard X-ray range of 2—10 keV and find that the energy
flux is 2.2x10™** erglcm?s. Note that flux will integrate only within the energy range of the
current response matrix. If the model flux outside this range is desired—in effect, an
extrapolation beyond the data---then the command energies should be used. This command
defines a set of energies on which the model will be calculated. The resulting model is then
remapped onto the response energies for convolution with the response matrix. For example, if
we want to know the flux of our model in the ROSAT PSPC band of 0.2—2 keV, we enter:

XSPEC12>energies extend low 0.2 100

Models will use response energies extended to:
Low: 0.2 in 100 log bins

Fit statistic : Chi-Squared = 43.80 using 45 PHA bins.

34

Test statistic : Chi-Squared = 43.80 using 45 PHA bins.
Reduced chi-squared = 1.043 for 42 degrees of freedom
Null hypothesis probability = 3.949504e-01

Current data and model not fit yet.

XSPEC12>flux 0.2 2.
Model Flux 0.004352 photons (8.847e-12 ergs/cm”™2/s) range (0.20000 -
2.0000 keV)

The energy flux, at 8.8x10™*% ergs/cm?/s is lower in this band but the photon flux is
higher. The model energies can be reset to the response energies using energies reset.

Calculating the flux is not usually enough, we want its uncertainty as well. The best way
to do this is to use the cflux model. Suppose further that what we really want is the flux without
the absorption then we include the new cflux model by:

XSPEC12>editmod pha*cflux(pow)

Input parameter value, delta, min, bot, top, and max values for ...

0.5 -0.1(0.005) 0 0] 1le+06
1le+06
2:cflux:Emin>0.2
10 -0.1(0.1) 0 0 1e+06
le+06
3:cflux:Emax>2.0
-12 0.01(0.12) -100 -100 100
100
4:cflux:1g10Flux>-10.3
Fit statistic : Chi-Squared = 3459.85 using 45 PHA bins.
Test statistic : Chi-Squared = 3459.85 using 45 PHA bins.
Reduced chi-squared = 84.3867 for 41 degrees of freedom
Null hypothesis probability = 0.000000e+00

Current data and model not fit yet.

Model phabs<1>*cflux<2>*powerlaw<3> Source No.: 1 Active/On

Model Model Component Parameter Unit Value
par comp

1 1 phabs nH 10722 0.537843 +/- 0.270399
2 2 cflux Emin keV 0.200000 frozen
3 2 cflux Emax keV 2.00000 frozen
4 2 cflux 1g10Flux cgs -10.3000 +/- 0.0
5 3 powerlaw Pholndex 2.23646 +/- 0.126455
6 3 powerlaw norm 1.30320E-02 +/- 2.56146E-03

The Emin and Emax parameters are set to the energy range over which we want the flux
to be calculated. We also have to fix the norm of the powerlaw because the normalization of the
model will now be determined by the Ig10Flux parameter. This is done using the freeze
command:

XSPEC12>freeze 6
We now run fit to get the best-fit value of Ig10Flux as -10.2787 then:

35

XSPEC12>error 4
Parameter Confidence Range (2.706)
4 -10.4574 -10.0796 (-0.178807,0.199057)

for a 90% confidence range on the 0.2—2 keV unabsorbed flux of 3.49x10™*" — 8.33x10"
Y ergsicm?/s.

The fit, as we've remarked, is good, and the parameters are constrained. But unless the
purpose of our investigation is merely to measure a photon index, it's a good idea to check
whether alternative models can fit the data just as well. We also should derive upper limits to
components such as iron emission lines and additional continua, which, although not evident in
the data nor required for a good fit, are nevertheless important to constrain. First, let's try an
absorbed black body:

XSPEC12>mo pha(bb)

Input parameter value, delta, min, bot, top, and max values for ...

1 0.001(0.01) 0 0 100000
1le+06
1:phabs:nH>/*

Model phabs<l>*bbody<2> Source No.: 1 Active/0On

Model Model Component Parameter Unit Value

par comp
1 1 phabs nH 10722 1.00000 +/- 0.0
2 2 bbody kT keV 3.00000 +/- 0.0
3 2 bbody norm 1.00000 +/- 0.0

Fit statistic : Chi-Squared = 3.377094e+09 using 45 PHA bins.

Test statistic : Chi-Squared = 3.377094e+09 using 45 PHA bins.
Reduced chi-squared = 8.040700e+07 for 42 degrees of freedom
Null hypothesis probability = 0.000000e+00
Current data and model not fit yet.

XSPEC12>fit

Parameters

Chi-Squared |beta]/N Lvli 1:nH 2:kT 3:norm

1602.34 3.49871e-11 -3 1.00000 3.00000 0.000767254

1535.61 63.3168 0 0.334306 3.01647 0.000673086

1523.48 112166 0 0.157481 2.96616 0.000613283

1491.74 170832 0 0.0668722 2.87681 0.000570110

1444 .73 204639 0 0.0228475 2.76753 0.000535213

1387.84 226852 0 0.00205203 2.64901 0.000504579

1325.6 243760 0 0.000843912 2.52648 0.000476503

1256.04 258202 0 0.000287666 2.40140 0.000450137

1179.2 271528 0 3.10806e-05 2.27482 0.000425541

1083.47 283137 0 7.9918le-06 2.13278 0.000401083

Number of trials exceeded: continue fitting? Y
123.773 25.397 -8 1.87147e-08 0.890295 0.000278599

Number of trials exceeded: continue fitting?
***Warning: Zero alpha-matrix diagonal element for parameter 1

36

Parameter 1 is pegged at 1.87147e-08 due to zero or negative pivot element,

likely
caused by the fit being insensitive to the parameter.
123.773 1.92501 -3 1.87147e-08 0.890205 0.000278596

Variances and Principal Axes
2 3

2_.8677E-04] -1.0000 -0.0000

2_.2370E-11] 0.0000 -1.0000

Covariance Matrix

1 2
2.868e-04 9.336e-09
9.336e-09 2.267e-11

Model phabs<1>*bbody<2> Source No.: 1 Active/On

Model Model Component Parameter Unit Value
par comp
1 1 phabs nH 10722 1.87147E-08 +/- -1.00000
2 2 bbody kT keV 0.890205 +/- 1.69343E-02
3 2 bbody norm 2_78596E-04 +/- 4.76176E-06
Fit statistic : Chi-Squared = 123.77 using 45 PHA bins.
Test statistic : Chi-Squared = 123.77 using 45 PHA bins.
Reduced chi-squared = 2.9470 for 42 degrees of freedom
Null hypothesis probability = 5.417115e-10

Note that after each set of 10 iterations you are asked whether you want to continue.
Replying no at these prompts is a good idea if the fit is not converging quickly. Conversely, to
avoid having to keep answering the question, i.e., to increase the number of iterations before the
prompting question appears, begin the fit with, say fit 100. This command will put the fit
through 100 iterations before pausing. To automatically answer yes to all such questions use the
command query yes.

Note that the fit has written out a warning about the first parameter and its estimated error
is written as -1. This indicates that the fit is unable to constrain the parameter and it should be
considered indeterminate. This usually indicates that the model is not appropriate. One thing to
check in this case is that the model component has any contribution within the energy range
being calculated. Plotting the data and residuals again we obtain Figure F.

The black body fit is obviously not a good one. Not only is y* large, but the best-fitting
Ny is indeterminate. Inspection of the residuals confirms this: the pronounced wave-like shape is
indicative of a bad choice of overall continuum.

Let's try thermal bremsstrahlung next:

XSPEC12>mo pha(br)
Input parameter value, delta, min, bot, top, and max values for ...

Bx10~

4x10

normalized counts s-1 keV-

normalized counts s keV-'

1le+06

2x10~ |

data and folded model

Energy (keV)

1 0.001(0.01) 0 0 100000

1:phabs:nH>/*

Figure F: As for Figure D, but the model is the best-fitting absorbed black body. Note the
wave-like shape of the residuals which indicates how poor the fit is, i.e. that the continuum
is obviously not a black body.

Model phabs<l>*bremss<2> Source No.: 1 Active/0On

Model Model Component Parameter Unit Value
par comp
1 1 phabs nH 10n22 1.00000 +/- 0.0
2 2 bremss kT keV 7.00000 +/- 0.0
3 2 b
remss norm 1.00000 +/- 0.0
Fit statistic : Chi-Squared = 4.534834e+07 using 45 PHA bins.
Test statistic : Chi-Squared = 4.534834e+07 using 45 PHA bins.
Reduced chi-squared = 1.079722e+06 for 42 degrees of freedom
Null hypothesis probability = 0.000000e+00
Current data and model not fit yet.
XSPEC12>fit
Parameters
Chi-Squared |beta]/N Lvi 1:nH 2:kT 3:norm

156.921

6.92228e-11 -3 1.00000 7.00000 0.00863005

37

106.765 24.2507 -4 0.264912 6.25747 0.00718902

40.0331 190.876 0 8.46112e-05 5.28741 0.00831314

Variances and Principal Axes

1 2 3
1.9514E-08] -0.0016 0.0007 1.0000
1.1574E-02] 0.9738 0.2272 0.0014
5.3111E-01] 0.2272 -0.9738 0.0011

Covariance Matrix

1 2 3
3.839e-02 -1.150e-01 1.427e-04
-1.150e-01 5.043e-01 -5.396e-04
1.427e-04 -5.396e-04 6.287e-07

Model phabs<l>*bremss<2> Source No.: 1 Active/On

Model Model Component Parameter Unit Value
par comp
1 1 phabs nH 10n22 8.46112E-05 +/- 0.195940
2 2 bremss kT keV 5.28741 +/- 0.710133
3 2 bremss norm 8.31314E-03 +/- 7.92890E-04
Fit statistic : Chi-Squared = 40.03 using 45 PHA bins.

Test statistic : Chi-Squared 40.03 using 45 PHA bins.
Reduced chi-squared = 0.9532 for 42 degrees of freedom
Null hypothesis probability 5.576222e-01

Bremsstrahlung is a better fit than the black body—and is as good as the power law—
although it shares the low Ny. With two good fits, the power law and the bremsstrahlung, it's
time to scrutinize their parameters in more detail.

First, we reset our fit to the powerlaw (output omitted):

XSPEC12>mo pha(po)

From the EXOSAT database on HEASARC, we know that the target in question,
1E1048.1--5937, has a Galactic latitude of 24', i.e., almost on the plane of the Galaxy. In fact,
the database also provides the value of the Galactic Ny based on 21-cm radio observations. At
4x10% cm’, it is higher than the 90 percent-confidence upper limit from the power-law fit.

38

Perhaps, then, the power-law fit is not so good after all. What we can do is fix (freeze in XSPEC

terminology) the value of Ny at the Galactic value and refit the power law. Although we won't
get a good fit, the shape of the residuals might give us a clue to what is missing. To freeze a
parameter in XSPEC, use the command freeze followed by the parameter number, like this:

data and folded model

—= . T
oo | = T N

T

é 2510~ +

,E 2x100 _I_

; 10+ [_+_ _+ +. -

g 0 1 IJ:L45F+ 1~}-+++|+IIIL 1 h*+L{r}

E + _|__|__|_I_|_I"' -|-1TTT++'J[|T T

E B S é —l— L L é " " " " 110 1

Energy (keV)

XSPEC12> freeze 1

The inverse of freeze is thaw:
XSPEC12> thaw 1

Figure G: As for Figure D & F, but the model is the best-fitting power law with
the absorption fixed at the Galactic value. Under the assumptions that the
absorption really is the same as the 21-cm value and that the continuum really
is a power law, this plot provides some indication of what other components
might be added to the model to improve the fit.

Alternatively, parameters can be frozen using the newpar command, which allows all the
quantities associated with a parameter to be changed. We can flip between frozen and thawed
states by entering O after the new parameter value. In our case, we want Ny frozen at 4x10%? cm?,
so we go back to the power law best fit and do the following :

XSPEC12>newpar 1
Current value, delta, min, bot, top, and max values
0.537843 0.001(0.00537843) 0 0 100000
le+06
1:phabs[1]:nH:1>4,0

Fit statistic : Chi-Squared = 823.34 using 45 PHA bins.

Test statistic : Chi-Squared 823.34 using 45 PHA bins.
Reduced chi-squared = 19.148 for 43 degrees of freedom
Null hypothesis probability = 6.151383e-145
Current data and model not fit yet.

The same result can be obtained by putting everything onto the command line, i.e.,
newpar 1 4, O, or by issuing the two commands, newpar 1 4 followed by freeze 1. Now, if
we fit and plot again, we get the following model (Fig. G).

XSPEC12>fit

40

Model phabs<l>*powerlaw<2> Source No.: 1 Active/On

Model Model Component Parameter Unit Value
par comp
1 1 phabs nH 10722 4.00000 frozen
2 2 powerlaw Pholndex 3.59784 +/- 6.76670E-02
3 2 powerlaw norm 0.116579 +/- 9.43208E-03
Fit statistic : Chi-Squared = 136.04 using 45 PHA bins.

The fit is not good. In Figure G we can see why: there appears to be a surplus of softer photons,
perhaps indicating a second continuum component. To investigate this possibility we can add a
component to our model. The editmod command lets us do this without having to respecify the
model from scratch. Here, we'll add a black body component.

XSPEC12>editmod pha(po+bb)

Input parameter value, delta, min, bot, top, and max values for ...

3 0.01(0.03) 0.0001 0.01 100
200
4:bbody:kT>2,0
1 0.01(0.01) 0] 0 le+24
le+24
5:bbody:norm>1e-5
Fit statistic : Chi-Squared = 132.76 using 45 PHA bins.
Test statistic : Chi-Squared = 132.76 using 45 PHA bins.
Reduced chi-squared = 3.1610 for 42 degrees of freedom
Null hypothesis probability = 2.387580e-11

Current data and model not fit yet.

Model phabs<l>(powerlaw<2> + bbody<3>) Source No.: 1 Active/On

Model Model Component Parameter Unit Value
par comp
1 1 phabs nH 10n22 4._.00000 frozen
2 2 power law Pholndex 3.59784 +/- 6.76670E-02
3 2 power law norm 0.116579 +/- 9.43208E-03
4 3 bbody kT keV 2.00000 frozen
5 3 bbody norm 1.00000E-05 +/- 0.0

Notice that in specifying the initial values of the black body, we have frozen KT at 2 keV
(the canonical temperature for nuclear burning on the surface of a neutron star in a low-mass X-
ray binary) and started the normalization at zero. Without these measures, the fit might “lose its
way”. Now, if we fit, we get (not showing all the iterations this time):

Model phabs<l>(powerlaw<2> + bbody<3>) Source No.: 1 Active/On
Model Model Component Parameter Unit Value
par comp

Current Theoretical Model

41
@
er .
%
2
b
: 2F E
o
7]
=
o
£
L
o
S b -
< i L | 1 . L i i i L P T . | 4
0.5 1 2] 10 20
Energy (keV)
1 1 phabs nH 10722 4.00000 frozen
2 2 power law Pholndex 4.89584 +/- 0.158997
3 2 powerlaw norm 0.365230 +/- 5.25376E-02
Figure H: The result of the command plot model in the case of the ME data file
from 1E1048.1—5937. Here, the model is the best-fitting combination of power
law, black body and fixed Galactic absorption. The three lines show the two
continuum components (absorbed to the same degree) and their sum.
4 3 bbody kT keV 2.00000 frozen
5 3 bbody norm 2_29697E-04 +/- 2.04095E-05
Fit statistic : Chi-Squared = 69.53 using 45 PHA bins.

The fit is better than the one with just a power law and the fixed Galactic column, but it is
still not good. Thawing the black body temperature and fitting does of course improve the fit but
the powerl law index becomes even steeper. Looking at this odd model with the command

XSPEC12> plot model

We see, in Figure H, that the black body and the power law have changed places, in that
the power law provides the soft photons required by the high absorption, while the black body
provides the harder photons. We could continue to search for a plausible, well-fitting model, but
the data, with their limited signal-to-noise and energy resolution, probably don't warrant it (the
original investigators published only the power law fit).

42

There is, however, one final, useful thing to do with the data: derive an upper limit to the
presence of a fluorescent iron emission line. First we delete the black body component using
delcomp then thaw Ny and refit to recover our original best fit. Now, we add a gaussian
emission line of fixed energy and width then fit to get:

Model phabs<l>(powerlaw<2> + gaussian<3>) Source No.: 1 Active/On

Model Model Component Parameter Unit Value
par comp
1 1 phabs nH 10n22 0.753989 +/- 0.320344
2 2 powerlaw Pholndex 2.38165 +/- 0.166973
3 2 powerlaw norm 1.59131E-02 +/- 3.94947E-03
4 3 gaussian LineE keV 6.40000 frozen
5 3 gaussian Sigma keV 0.100000 frozen
6 3 gaussian norm 7.47368E-05 +/- 4.74253E-05

The energy and width have to be frozen because, in the absence of an obvious line in the
data, the fit would be completely unable to converge on meaningful values. Besides, our aim is
to see how bright a line at 6.4 keV can be and still not ruin the fit. To do this, we fit first and then
use the error command to derive the maximum allowable iron line normalization. We then set
the normalization at this maximum value with newpar and, finally, derive the equivalent width
using the eqwidth command. That is:

XSPEC12>err 6
Parameter Confidence Range (2.706)
***Warning: Parameter pegged at hard limit: O

6 0 0.000151164 (-7.476e-05,7.64036e-05)
XSPEC12>new 6 0.000151164

Fit statistic : Chi-Squared = 46.03 using 45 PHA bins.

Test statistic : Chi-Squared = 46.03 using 45 PHA bins.
Reduced chi-squared = 1.123 for 41 degrees of freedom
Null hypothesis probability = 2.717072e-01

Current data and model not fit yet.
XSPEC12>eqwidth 3

Data group number: 1
Additive group equiv width for Component 3: 0.784168 keV

Things to note:

The true minimum value of the gaussian normalization is less than zero, but the error
command stopped searching for a Ay of 2.706 when the minimum value hit zero, the “hard”

lower limit of the parameter. Hard limits can be adjusted with the newpar command, and they
correspond to the quantities min and max associated with the parameter values.

The command eqwidth takes the component number as its argument.
The upper limit on the equivalent width of a 6.4 keV emission line is high (784 eV)!

43

4.3 Simultaneous Fitting

XSPEC has the very useful facility of allowing models to be fitted simultaneously to
more than one data file. It is even possible to group files together and to fit different models
simultaneously. Reasons for fitting in this manner include:

The same target is observed at several epochs but, although the source stays constant, the
response matrix has changed. When this happens, the data files cannot be added together; they
have to be fitted separately. Fitting the data files simultaneously yields tighter constraints.

The same target is observed with different instruments. All the instruments on Suzaku, for
example, observe in the same direction simultaneously. As far as XSPEC is concerned, this is
just like the previous case: two data files with two responses fitted simultaneously with the same
model.

Different targets are observed, but the user wants to fit the same model to each data file
with some parameters shared and some allowed to vary separately. For example, if we have a
series of spectra from a variable AGN, we might want to fit them simultaneously with a model
that has the same, common photon index but separately vary the normalization and absorption.

Other scenarios are possible---the important thing is to recognize the flexibility of
XSPEC in this regard.

As an example we will look at a case of fitting the same model to two different data files
but where not all the parameters are identical. Again, this is an older dataset that provides a
simpler illustration than more modern data. The massive X-ray binary Centaurus X-3 was
observed with the LAC on Ginga in 1989. Its flux level before eclipse was much lower than the
level after eclipse. Here, we'll use XSPEC to see whether spectra from these two phases can be
fitted with the same model, which differs only in the amount of absorption. This kind of fitting
relies on introducing an extra dimension, the group, to the indexing of the data files. The files in
each group share the same model but not necessarily the same parameter values, which may be
shared as common to all the groups or varied separately from group to group. Although each
group may contain more than one file, there is only one file in each of the two groups in this
example. Groups are specified with the data command, with the group number preceding the file
number, like this:

XSPEC12>data 1:1 losum 2:2 hisum
2 spectra 1in use

Spectral Data File: losum.pha Spectrum 1
Net count rate (cts/s) for Spectrum:1 1.401e+02 +/- 3.549e-01
Assigned to Data Group 1 and Plot Group 1

Noticed Channels: 1-48

Telescope: GINGA Instrument: LAC Channel Type: PHA

Exposure Time: 1 sec

Using fit statistic: chi

Using test statistic: chi

Using Response (RMF) File ginga_lac.rsp for Source 1

Spectral Data File: hisum.pha Spectrum 2
Net count rate (cts/s) for Spectrum:2 1.371e+03 +/- 3.123e+00
Assigned to Data Group 2 and Plot Group 2

44

Noticed Channels: 1-48

Telescope: GINGA Instrument: LAC Channel Type: PHA

Exposure Time: 1 sec

Using fit statistic: chi

Using test statistic: chi

Using Response (RMF) File ginga lac.rsp for Source 1

Here, the first group makes up the file losum. pha, which contains the spectrum of all
the low, pre-eclipse emission. The second group makes up the second file, hisum.pha, which
contains all the high, post-eclipse emission. Note that file number is “absolute” in the sense that
it is independent of group number. Thus, if there were three files in each of the two groups
(lol.pha, 102.pha, 103.pha, hil.pha, hi2.pha, and hi3.pha, say), rather than one, the
six files would be specifiedasda1:1 lol 1:2 102 1:3 103 2:4 hil 2:5 hi2 2:6
hi3. The ignore command works on file number, and does not take group number into account.
So, to ignore channels 1-3 and 37-48 of both files:

XSPEC12> ignore 1-2:1-3 37-48

The model we'll use at first to fit the two files is an absorbed power law with a high-
energy cut-off:

XSPEC12> mo phabs * highecut (po)

After defining the model, we will be prompted for two sets of parameter values, one for
the first group of data files (losum.pha), the other for the second group (hisum.pha). Here,
we'll enter the absorption column of the first group as 10 cm™ and enter the default values for
all the other parameters in the first group. Now, when it comes to the second group of
parameters, we enter a column of 10% cm™ and then enter defaults for the other parameters. The
rule being applied here is as follows: to tie parameters in the second group to their equivalents in
the first group, take the default when entering the second-group parameters; to allow parameters
in the second group to vary independently of their equivalents in the first group, enter different
values explicitly:

XSPEC12>mo phabs*highecut(po)

Input parameter value, delta, min, bot, top, and max values for ...

Current: 1 0.001 0 0 1E+05 1E+06
DataGroup 1:phabs:nH>100

Current: 10 0.01 0.0001 0.01 1E+06 1E+06
DataGroup 1:highecut:cutoffE>

Current: 15 0.01 0.0001 0.01 1E+06 1E+06
DataGroup 1:highecut:foldE>

Current: 1 0.01 -3 -2 9 10
DataGroup 1:powerlaw:Pholndex>

Current: 1 0.01 0 0 1E+24 1E+24
DataGroup 1:powerlaw:norm>

Current: 100 0.001 0 0 1E+05 1E+06
DataGroup 2:phabs:nH>1

Current: 10 0.01 0.0001 0.01 1E+06 1E+06

DataGroup 2:highecut:cutoffE>/*

Model phabs<l>*highecut<2>*powerlaw<3> Source No.: 1 Active/On
Model Model Component Parameter Unit Value
par comp

Data group: 1

45

1 1 phabs nH 10722 100.000 +/- 0.0
2 2 highecut cutoffE keV 10.0000 +/- 0.0
3 2 highecut foldE keV 15.0000 +/- 0.0
4 3 powerlaw Pholndex 1.00000 +/- 0.0
5 3 power law norm 1.00000 +/- 0.0
Data group: 2
6 1 phabs nH 10n22 1.00000 +/- 0.0
7 2 highecut cutoffE keV 10.0000 =2
8 2 highecut foldE keV 15.0000 =3
9 3 power law Pholndex 1.00000 =4
10 3 power law norm 1.00000 =5

Notice how the summary of the model, displayed immediately above, is different now
that we have two groups, as opposed to one (as in all the previous examples). We can see that of
the 10 model parameters, 6 are free (i.e., 4 of the second group parameters are tied to their
equivalents in the first group). Fitting this model results in a huge »° (not shown here), because
our assumption that only a change in absorption can account for the spectral variation before and
after eclipse is clearly wrong. Perhaps scattering also plays a role in reducing the flux before
eclipse. This could be modeled (simply at first) by allowing the normalization of the power law
to be smaller before eclipse than after eclipse. To decouple tied parameters, we change the
parameter value in the second group to a value—any value—different from that in the first group
(changing the value in the first group has the effect of changing both without decoupling). As
usual, the newpar command is used:

XSPEC12>newpar 10 1

Fit statistic : Chi-Squared = 2.062941e+06 using 66 PHA bins.
Test statistic : Chi-Squared = 2.062941e+06 using 66 PHA bins.
Reduced chi-squared = 34965.10 for 59 degrees of freedom
Null hypothesis probability = 0.000000e+00
Current data and model not fit yet.

XSPEC12>fit

Model phabs<l>*highecut<2>*powerlaw<3> Source No.: 1 Active/On

Model Model Component Parameter Unit Value
par comp
Data group: 1
1 1 phabs nH 10722 20.1531 +/- 0.181904
2 2 highecut cutoffE keV 14.6846 +/- 5.59251E-02
3 2 highecut foldE keV 7.41660 +/- 8.99545E-02
4 3 power law Pholndex 1.18690 +/- 6.33054E-03
5 3 power law norm 5.88294E-02 +/- 9.30380E-04
Data group: 2
6 1 phabs nH 10n22 1.27002 +/- 3.77708E-02
7 2 highecut cutoffE keV 14.6846 =2
8 2 highecut foldE keV 7.41660 =3
9 3 power law Pholndex 1.18690 =4
10 3 power law norm 0.312117 +/- 4.49061E-03

46

Fit statistic : Chi-Squared = 15423.79 using 66 PHA bins.
After fitting, this decoupling reduces »° by a factor of six to 15,478, but this is still too

high. Indeed, this simple attempt to account for the spectral variability in terms of “blanket” cold
absorption and scattering does not work. More sophisticated models, involving additional
components and partial absorption, should be tried.

4.4 Multiple Models: a Background Modeling Example

In the previous section we showed how to fit the same model to multiple datasets. We
now demonstrate how to fit multiple models, each with their own response, to the same dataset.
There are several reasons why this may be useful, for instance:

We are using data from a coded aperture mask. If there are multiple sources in the field
they will all contribute to the spectrum from each detector. However, each source may have a
different response due to its position.

We are observing an extended source using a telescope whose PSF is large enough that
the signal from different regions are mixed together. In this case we will want to analyze spectra
from all regions of the source simultaneously with each spectrum having a contribution from the
model in other regions.

We wish to model the background spectrum that includes a particle component. The
particle background will have a different response from the X-ray background because the
particles come from all directions, not just down the telescope.

We will demonstrate the third example here. Suppose we have a model for the
background spectrum that requires a different response to that for the source spectrum. Read in
the source and background spectra as separate files:

XSPEC12>data 1:1 source.pha 2:2 back.pha

The source and background files have their own response matrices:

XSPEC12>response 1 source.rsp 2 back.rsp

Set up the model for the source. Here we will take the simple case of an absorbed power-law:

XSPEC12>model phabs(pow)

Input parameter value, delta, min, bot, top, and max values for ...

1 0.001(0.01) 0 0 100000
1le+06
1:data group 1::phabs:nH>

1 0.01(0.01) -3 -2 9
10
2:data group 1::powerlaw:Pholndex>

1 0.01(0.01) 0] 0 le+24
le+24

3:data group 1::powerlaw:norm>

Input parameter value, delta, min, bot, top, and max values for ...

47

1 0.001(0.01) 0] 0 100000
1le+06
4:-data group 2::phabs:nH>

1 0.01(0.01) -3 -2 9
10
5:data group 2::powerlaw:Pholndex>

1 0.01(0.01) 0 0 le+24
le+24

6:data group 2::powerlaw:norm>0 O

Note that we have fixed the normalization of the source model for the background dataset at zero
so it doesn't contribute. Now we need to set up the background model for both datasets with its
Own response matrix.

XSPEC12>response 2:1 back.rsp 2:2 back.rsp

This tells XSPEC that both these datasets have a second model which must be multiplied by the
back.rsp response matrix. We now define the background model to be used. In this case take the
simple example of a single power-law

XSPEC12>model 2:myback pow

Input parameter value, delta, min, bot, top, and max values for ...

1 0.01(0.01) -3 -2 9
10
1:myback:data group 1::powerlaw:Pholndex>

1 0.01(0.01) 0 0 le+24
le+24

2:myback:data group 1::powerlaw:norm>

Input parameter value, delta, min, bot, top, and max values for ...

1 0.01(0.01) -3 -2 9
10
3:myback:data group 2::powerlaw:Pholndex>

1 0.01(0.01) 0] 0 le+24
le+24

4:-myback:data group 2::powerlaw:norm>

We have now set up XSPEC so that the source data is compared to a source model multiplied by
the source response plus a background model multiplied by the background response and the
background data is compared to the background model multiplied by the background response.
The background models fitted to the source and background data are constrained to be the same.

XSPEC12>show param
Parameters defined:

Model phabs<l>*powerlaw<2> Source No.: 1 Active/On

Model Model Component Parameter Unit Value
par comp
Data group: 1
1 1 phabs nH 10722 1.00000 +/- 0.0
2 2 powerlaw Pholndex 1.00000 +/- 0.0
3 2 power law norm 1.00000 +/- 0.0

Data group: 2

48

4 1 phabs nH 10722 1.00000 =1
5 2 power law Pholndex 1.00000 =2
6 2 powerlaw norm 1.00000 =3
Model myback:powerlaw<l> Source No.: 2 Active/0On
Model Model Component Parameter Unit Value
par comp
Data group: 1
1 1 power law Pholndex 1.00000 +/- 0.0
2 1 power law norm 1.00000 +/- 0.0
Data group: 2
3 1 powerlaw Pholndex 1.00000 = myback:1
4 1 power law norm 1.00000 = myback:2

It is often the case that the response information is split into an RMF and ARF, where the
RMF describes the instrument response and the ARF the telescope effective area. The particle
background can then be included by using the RMF but not the ARF:
XSPEC12>data 1:1 source.pha 2:2 back.pha
XSPEC12>response 1 source.rmf 2 source.rmf

XSPEC12>arf 1 source.arf
XSPEC12>response 2:1 source.rmf 2:2 source.rmf

4.5 Using XSPEC to Simulate Data: an Example for Chandra

In several cases, analyzing simulated data is a powerful tool to demonstrate feasibility.
For example:

To support an observing proposal. That is, to demonstrate what constraints a proposed
observation would yield.

To support a hardware proposal. If a response matrix is generated, it can be used to
demonstrate what kind of science could be done with a new instrument.

To support a theoretical paper. A theorist could write a paper describing a model, and
then show how these model spectra would appear when observed. This, of course, is very like
the first case.

Here, we will illustrate the first example. The first step is to define a model on which to
base the simulation. The way XSPEC creates simulated data is to take the current model,
convolve it with the current response matrix, while adding noise appropriate to the integration
time specified. Once created, the simulated data can be analyzed in the same way as real data to
derive confidence limits.

Let us suppose that we want to measure the intrinsic absorption of a faint high-redshift
source using Chandra. Our model is thus a power-law absorbed both by the local Galactic
column and an intrinsic column. First, we set up the model. From the literature we have the
Galactic absorption column and redshift so:

XSPEC12>mo pha*zpha(zpo)

Input parameter value, delta, min, bot, top, and max values for ...

1 0.001(
100000 1le+06
1:phabs:nH>0.08

1 0.001(
100000 1le+06
2:zphabs:nH>1.0

0 -0.01(
10 10
3:zphabs:Redshift>5.1

1 0.01(
9 10
4:zpowerlw:Pholndex>1.7

0 -0.01(
10 10
5:zpowerlw:Redshift>5.1

1 0.01(
le+24 le+24

6:zpowerlw:norm>

0.01)

0.01)

0.01)

0.01)

0.01)

49

Model phabs<1>*zphabs<2>*zpowerlw<3> Source No.: 1

Model Model Component Parameter
par comp
1 1 phabs nH
2 2 zphabs nH
3 2 zphabs Redshift
4 3 zpowerlw Pholndex
5 3 zpowerlw Redshift
6 3 zpowerlw norm

unit

10722
10722

0 0

0 0
-0.999 -0.999

-3 -2
-0.999 -0.999

0 0

Active/0ff

Value
8.00000E-02 +/- 0.0
1.00000 +/- 0.0
5.10000 frozen
1.70000 +/- 0.0
5.10000 frozen
1.00000 +/- 0.0

Now suppose that we know that the observed 0.5—2.5 keV flux is 1.1x10™ ergs/cm?/s.
We now can derive the correct normalization by using the commands energies, flux and

newpar. That is, we'll determine the flux of the model with the normalization of unity. We then

work out the new normalization and reset it:

XSPEC12>energies 0.5 2.5 1000
XSPEC12>flux 0.5 2.5
Model Flux 0.052736 photons (1.0017e-10 ergs/cm”2/s) range (0.50000 - 2.5000

keV)

XSPEC12> newpar 6 1.1e-3
3 variable fit parameters
XSPEC12>Flux

Model Flux 2.6368e-05 photons (5.0086e-14 ergs/cm”2/s) range (0.50000 -

2.5000 keV)

Here, we have changed the value of the normalization (the fifth parameter) from 1.0 to
1.1x10™% 1 1.00x10™° = 1.1x10° to give the required flux.

The simulation is initiated with the command fakeit. If the argument none is given, we
will be prompted for the name of the response matrix. If no argument is given, the current
response will be used. We also need to reset the energies command before the fakeit to ensure
that the model is calculated on the entire energy range of the response:

50

XSPEC12>energies reset

XSPEC12>fakeit none

For fake data, file #1 needs response file: aciss_aimpt_cyl5.rmf
... and ancillary response file: aciss_aimpt_cyl5.arf

There then follows a series of prompts asking the user to specify whether he or she wants
counting statistics (yes!), the name of the fake data (file test. fak in our example), and the
integration time (40,000 seconds -- the correction norm and background exposure time can be
left at their default values).

Use counting statistics in creating fake data? (y):

Input optional fake file prefix:

Fake data file name (aciss_aimpt_cyl5.fak): test.fak

Exposure time, correction norm, bkg exposure time (1.00000, 1.00000,
1.00000): 40000.0

No background will be applied to fake spectrum #1

1 spectrum in use

Fit statistic : Chi-Squared = 350.95 using 1024 PHA bins.

***Warning: Chi-square may not be valid due to bins with zero variance
in spectrum number(s): 1

Test statistic : Chi-Squared = 350.95 using 1024 PHA bins.
Reduced chi-squared = 0.34407 for 1020 degrees of freedom
Null hypothesis probability = 1.000000e+00

***Warning: Chi-square may not be valid due to bins with zero variance
in spectrum number(s): 1

Current data and model not fit yet.

The first thing we should note is that the default statistics are not correct for these data.
For Poisson data and no background we should cstat for the fit statistic and pchi for the test
statistic:
XSPEC12>statistic cstat

Default fit statistic is set to: C-Statistic
This will apply to all current and newly loaded spectra.

Fit statistic : C-Statistic = 513.63 using 1024 PHA bins and 1020
degrees of freedom.
Test statistic : Chi-Squared = 350.95 using 1024 PHA bins.
Reduced chi-squared = 0.34407 for 1020 degrees of freedom
Null hypothesis probability = 1.000000e+00

***Warning: Chi-square may not be valid due to bins with zero variance
in spectrum number(s): 1

51

Current data and model not fit yet.
XSPEC12>statistic test pchi
Default test statistic is set to: Pearson Chi-Squared
This will apply to all current and newly loaded spectra.

Fit statistic : C-Statistic = 513.63 using 1024 PHA bins and 1020
degrees of freedom.
Test statistic : Pearson Chi-Squared = 639.35 using 1024 PHA bins.
Reduced chi-squared = 0.62682 for 1020 degrees of freedom
Null hypothesis probability = 1.000000e+00

***Warning: Pearson Chi-square may not be valid due to bins with zero model
value
in spectrum number(s): 1

Current data and model not fit yet.

As we can see from the warning message we need to ignore some channels where there is
no effective response. Looking at a plot of the data and model indicates we should ignore below
0.15 keV and above 10 keV so:

XSPEC12>ignore **-0.15 10.0-**

11 channels (1-11) ignored in spectrum # 1
340 channels (685-1024) ignored iIn spectrum # 1
Fit statistic : C-Statistic = 510.55 using 673 PHA bins and 669
degrees of freedom.
Test statistic : Pearson Chi-Squared = 635.19 using 673 PHA bins.
Reduced chi-squared = 0.94947 for 669 degrees of freedom
Null hypothesis probability = 8.217205e-01

Current data and model not fit yet.

We assume that the Galactic column is known so freeze the first parameter. We then
perform a fit followed by the error command:

XSPEC12> freeze 1
XSPEC12>Fit

XSPEC12>parallel error 3
XSPEC12>err 2 4 6
Parameter Confidence Range (2.706)
2 1.16302 5.64805 (-2.00255,2.48247)
4 1.73345 1.95111 (-0.106137,0.111521)

6 0.00126229 0.00221906 (-0.000397759,0.000559019)

Note that our input parameters do not lie within the 90% confidence errors however since
this will happen one times in ten (by definition) this should not worry us unduly. For a real
observing proposal we would likely repeat this experiment with different input values of the

52

intrinsic absorption to learn how well we could constrain it given a range of possible actual
values.

4.6 Producing Plots: Modifying the Defaults

The final results of using XSPEC are usually one or more tables containing confidence
ranges and fit statistics, and one or more plots showing the fits themselves. So far, the plots
shown have generally used the default settings, but it is possible to edit plots to improve their
appearance.

The plotting package used by XSPEC is PGPLOT, which is comprised of a library of
low-level tasks. At a higher level is QDP/PLT, the interactive program that forms the interface
between the XSPEC user and PGPLOT. QDP/PLT has its own manual; it also comes with on-
line help. Here, we show how to make some of the most common modifications to plots.

In this example, we'll take the simulated Chandra spectrum and make a better plot.
Figure | shows the basic data and folded model plot. The only additional changes we have made
to this plot are to increase the line widths to make them print better. We made this plot as
follows:
XSPEC12>setplot energy
XSPEC12>iplot data
PLT>Iwidth 3
PLT>Iwidth 3 on 1..2

PLT>time off
PLT>hard figi.ps/ps

The first lwidth command increases the line widths on the frame while the second
increases it on the data and model. The time off command just removes a username and time
stamp from the bottom right of the plot. The hard command makes a “hardcopy”, in this case a
PostScript file. Before looking at other PLT commands we can use to modify the plot there is
one more thing we can try at the XSPEC level. The current bin sizes are much smaller than the
resolution so we may as well combine bins in the plot (but not in the fitting) to make it clearer.

XSPEC12>setplot rebin 100 4

Combines four spectral bins into one. The setplot rebin command combines bins till
either a S/N of the first argument is reached or the number of bins in the second argument have
been combined. We do an iplot again then do the following modifications:

PLT> viewport 0.2 0.2 0.8 0.7

The first thing we'll do is change the aspect ratio of the box that contains the plot
(viewport in QDP terminology). The viewport is defined as the coordinates of the lower left and
upper right corners of the page. The units are such that the full width and height of the page are
unity. The labels fall outside the viewport, so if the full viewport were specified, only the plot
would appear. The default box has a viewport with corners at (0.1, 0.1) and (0.9, 0.9). For our
purposes, we want a viewport with corners at (0.2, 0.2) and (0.8, 0.7): with this size and shape,
the hardcopy will fit nicely on the page and not have to be reduced for photocopying.

Figure I: The data and folded model for the simulated Chandra ACIS-S
spectrum.

data and folded model

T ' T T T T 53

0.03
T

0.02

normalized counts s-1 keV-!

0.01

(!
o e ‘
. |||||l|| i s MV
1 2 5
Energy (keV)

Next we want to change some of the labels:

PLT> label top Simulated Spectrum
PLT> label file Chandra ACIS-S
PLT> label y counts s\u-1\d keV\u-1\d

Note the change in the y-axis label is to remove the string “normalized”. The
normalization referred to is almost always unity so this label can generally be changed. To get
help on a PLT command, just type help followed by the name of the command. Note that PLT
commands can be abbreviated, just like XSPEC commands. To see the results of changing the
viewport and the labels, just enter the command plot.

The two changes we want to make next are to rescale the axes and to change the y-axis to
a logarithmic scale. The commands for these changes also are straightforward: the rescale
command takes the minimum and maximum values as its arguments, while the log command
takes x or y as arguments:
PLT> rescale x 0.3 6.0
PLT> rescale y 1.0e-4 0.03

PLT> log y
PLT> plot

To revert to a linear scale, use the command log off y. The only remaining extra change
is to reduce the size of the characters. This is done using the csize command, which takes the
normalization as its argument. One (1) will not change the size, a number less than one will
reduce it and a number bigger than one will increase it.

Figure J: A simulated Chandra ACIS-S spectrum produced to show how a plot
can be modified by the user.

Simulated Spactrum

Chandra ACIS-5

54

0.01
|

103
]

counts s-1 kel

Energy (keV)

PLT> csize 0.8
PLT> plot

We make the PostScript file and also save the plot information using the wenv command
that, in this case, writes files figj.qdp and figj.pco containing the plot data and commands,
respectively.

PLT> hardcopy figj.-ps/ps
PLT> wenv figj
PLT> quit

The result of all this manipulation is shown proudly in Figure J.

Markov Chain Monte Carlo Example
To illustrate MCMC methods we will use the same data as the first walkthrough.
XSPEC12> data s54405
kéﬁEC12> model phabs(pow)
kéﬁEC12> renorm

XSPEC12> chain type gw
XSPEC12> chain walkers 8
XSPEC12> chain length 10000

We use the Goodman-Weare algorithm with 8 walkers and a total length of 10,000. For
the G-W algorithm the actual number of steps are 10,000/8 but we combine the results from all 8

Figure K: The statistic from an MCMC run showing the initial burn-in phase.

Results: MCMC

55

Parameter: Pholndex
2.2
T

| L | L | L | L 1 L 1 1 |
0 0.2 0.4 0.6 0.8 1 1.2

Parameter: nH

Criding swep

walkers into a single output file. We start the chain at the default model parameters except that
we use the renorm command to make sure that the model and the data have the same
normalization. If we had multiple additive parameters with their own norms then a good starting
place would be to use the fit 1 command to initially set the normalizations to something sensible.

XSPEC12> chain run testl.fits

The first thing to check is what happened to the fit statistic during the run.
XSPEC12> plot chain 0O

The result is shown in Figure K, which plots the statistic value against the chain step. It is
clear that after about 2000 steps the chain reached a steady state. We would usually have told
XSPEC to discard the first few thousand steps but included them for illustrative purposes. Let us
do this again but specifying a burn-in phase that will not be stored.

XSPEC12> chain burn 5000
XSPEC12> chain run testl.fits

The output chain now comprises 10,000 steady-state samples of the parameter probability
distribution. Repeating plot chain 0 will confirm that the chain is in a steady state. The other
parameter values can be plotted either singly using eg plot chain 2 for the power-law index or in
pairs eg plot chain 1 2 giving a scatter plot as shown in Figure L.

Using the error command at this point will generate errors based on the chain values.

XSPEC12>error 1 2 3
Errors calculated from chains

Figure L: The scatter plot from a 10,000 step MCMC run.

56

Parameter Confidence Range (2.706)
1 0.264971 0.919546
2 2.1134 2.41307
3 0.0107304 0.0171814

The 90% confidence ranges are determined by ordering the parameter values in the chain
then finding the center 90%.

4.7 INTEGRAL/SPI

4.7.1 A Walk Through Example

Consider an observation of the Crab, for which a (standard) 5°x5°dithering observation
strategy was employed. Since the Crab (pulsar and nebular components are of course un-
resolvable at INTEGRAL's spatial resolution) is by far the brightest source in it immediate
region of the sky, and its position is precisely known, we can opt not to perform SPI1 or IBIS
imaging analysis prior to XSPEC analysis. We thus run the standard INTEGRAL/SPI analysis
chain on detectors 0-18 up to the SPIHIST level for (or BIN_I level in the terminology of the
INTEGRAL documentation), selecting the "PHA" output option. We then run SPIARF,
providing the name of the PHA-II file just created, and selecting the "update"” option in the
spiarf.par parameter file (you should refer to the SPIARF documentation prior to this step if it is
unfamiliar). The celestial coordinates for the Crab are provided in decimal degrees (RA,Dec =
83.63,22.01) interactively or by editing the parameter file. This may take a few minutes,
depending on the speed of your computer and the length of your observation. Once completed,
SPIARF must be run one more time, setting the "bkg_resp" option to "y"; this creates the
response matrices to be applied to the background model, and updates the PHA-II response
database table accordingly. Then SPIRMF, which interpolates the template RMFs to the users
desired spectral binning, also writes information to the PHA response database table to be used
by XSPEC. Finally, you should run SPIBKG_INIT, which will construct a set of bbackground
spectral templates to initialize the SP1 background model currently installed in XSPEC (read the
FTOOLS help for that utility carefully your first time). You are now ready to run XSPEC; a
sample session might look like this (some repetitive output has been suppressed):

%
% Xspec

XSPEC version: 12.2.1
Build Date/Time: Wed Nov 2 17:14:21 2005

XSPEC12>package require Integral 1.0
1.0
XSPEC12>data ./myDataDir/rev0044_crab.pha{l1-19}

19 spectra in use

RMF # 1
Using Response (RMF) File resp/compl_100x100.rmF
RMF # 2
Using Response (RMF) File resp/comp2_100x100.rmF
RMF # 3

Using Response (RMF) File resp/comp3_100x100.rmF

Using Multiple Sources

For Source # 1

Using Auxiliary Response (ARF) Files
resp/rev0044_100ch_crab_cmpl.arf.fits
resp/rev0044_100ch_crab_cmp2.arf.fits
resp/rev0044_100ch_crab_cmp3.arf_fits

For Source # 2

Using Auxiliary Response (ARF) Files
resp/rev0044 _100ch_bkg_cmpl.arf.fits
resp/rev0044_100ch_bkg_cmp2.arf.fits
resp/rev0044_100ch_bkg_cmp3.arf.fits

Source File: ./myDataDir/rev0044_crab.pha{l}

Net count rate (cts/s) for Spectrum No. 1 3.7011e+01 +/- 1.2119e-01
Assigned to Data Group No. : 1

Assigned to Plot Group No. : 1

Source File: ./myDataDir/rev0044 crab.pha{2}

Net count rate (cts/s) for Spectrum No. 2 3.7309e+01 +/- 1.2167e-01
Assigned to Data Group No. : 1

Assigned to Plot Group No. : 2

Source File: ./myDataDir/rev0044 crab.pha{19}

Net count rate (cts/s) for Spectrum No. 19 3.6913e+01 +/- 1.2103e-01
Assigned to Data Group No. : 1

Assigned to Plot Group No. : 19

XSPEC12>mo 1:crab po

Input parameter value, delta, min, bot, top, and max values for ...

1 Pholndex 1.0000E+00 1.0000E-02 -3.0000E+00
-2.0000E+00 9.0000E+00 1.0000E+01
crab: :powerlaw:Pholndex>2.11 0.01 1.5 1.6 2.5 2.6

2 norm 1.0000E+00 1.0000E-02 0.0000E+00
0.0000E+00 1.0000E+24 1.0000E+24

crab::powerlaw:norm>8. 0.1 1. 2. 18. 20.
XSPEC12>mo 2:bkg spibkg5

Input parameter value, delta, min, bot, top, and max values for ...

1 Par_1 0.0000E+00 1.0000E-02 -2.0000E-01
-1.5000E-01 1.5000E-01 2.0000E-01
bkg: :spibkg5:Par_1>/*

57

XSPEC12>ign 1-19:68-80

XSPEC12>ign 1-19:90-100

XSPEC12>Fit

Number of trials and critical delta: 10 1.0000000E-02

58

Model bkg:spibkg5 Source No.: 2 Active/On

Model Component Name: spibkg5 Number: 1
N Name unit Value Sigma
1 Par_1 9.0650E-03 +/- 2_.8651E-03
2 Par_2 1.6174E-02 +/- 3.4778E-03
25 Par_25 -1.9537E-02 +/- 6.1429E-03
26 norm 9.7286E-01 +/- 1.3527E-03

Model crab:powerlaw Source No.: 1 Active/0n

Model Component Name: powerlaw Number: 1
N Name unit Value Sigma
1 Pholndex 2.1163E+00 +/- 1.8946E-02
2 norm 1.1390E+01 +/- 8.1414E-01

Chi-Squared = 1.8993005E+03 using 1463 PHA bins.
Reduced chi-squared = 1.3235544E+00 for 1435 degrees of freedom
Null hypothesis probability = 1.5268098E-15

XSPEC12>

Note that the syntax used for the data statement (appended curly bracket, specifying use
of spectra 1-19), and the separate model commands, which are indexed and named (in this case
simply "crab" for the source of interest and "bkg" for the background model, "spibkg_lo". These
commands are described in detail elsewhere in this document, as are the the spibkg_lo,
spibkg_med and spibkg_hi models. In this case, 100 logarithmically-spaced energy bins
spanning the nominal 20-8000 keV band of the SPI instrument were used.

In this example, only one dither-point was used to solve for the Crab spectrum, and the
background. The simple assumption of a single background spectrum (i.e. no detector-to-detector
variations) was assumed. In general, and particularly for fainter sources, a much larger number
of spectra will be needed for a solution (and even for the Crab, the quality of the fit, and the
accuracy of the inferred parameters can be improved). Also, detector-to-detector and/or time (i.e.
pointing-to-pointing) variations will need to be considered. This can be accomplished using the
data-grouping feature of XSPEC, which will be described subsequently. Also notice that
channels between about 70 and 80 were ignored; this is because there are detector electronic
effects contaminating the single-event data for energies from ~1250-1400 keV (refer to the SPI
data analysis manual for additional discussion), and that there are a lot of (scientifically
uninteresting) background model parameters. Also, the highest energies were ignored, since the
source flux becomes insignificant relative to the background.

Some results are illustrated below. These plots were generated with the sequence of
commands:

XSPEC12> setplot group 1-19

59

XSPEC12> plot ldata res

XSPEC12> plot ufspec

Note that without the "setplot group™ command, XSPEC would plot 19 sets of spectral
data, models and residuals. The can become confusing, especially as the number of spectra
included in an analysis becomes much larger than 19! On the other hand, it can be useful to
divide the data into subsets for plotting purposes, e.g. setplot group 1-6 7-12 13-19, to get an idea
of relative shadowing effects of the coded-mask. The left hand plot illustrates the source model,
the background model, the total model (i.e. source + background), and the data (here in count
rates per channel). The right hand plot illustrates the "unfolded model" (blue, power-law curve),
the summed model, and the data as a photon flux. A possible source of confusion is the similarity
of the background model curves plotted in theses two separate representations. The explanation
is that the background, which is dominated by instrumental contributions, is modeled in detector
count space (i.e. the background response matrix has unit effective area. Thus, to be strictly
correct, the right-hand plot is a hybrid of the photon source model and the detector-rate
background model. We further note that at the present time, XSPEC does not have the capability
to plot (or store and manipulate) the background subtracted data. This is a feature under
consideration for a future release.

If we had chosen a observation containing more than a single source, the procedure
would have been similar, except that the sequence of model commands would be extended, e.g.
XSPEC12>data ./MyDataDir/GCDE_aug_03.pha{1-475}
XSPEC12> model 1:1e1740 po
XSPEC12> model 2:gx1 4 po

XSPEC12> model 3:bkg spibkg_lo

60

Here data from the Galactic Center deep exposure campaign were loaded, and two
sources are sought. In this case, a much larger number of spectra were loaded (475 spectra
corresponds to one full 5x5 dither using all 19 detectors.

In this case, the simple approach of applying constant background (i.e. no detector-to-
detector or pointing-to-pointing variation) to the full data set is likely to be a poor approximation.
A more realistic approach would be to use the XSPEC grouping capability to handle such
variations in the background solution. This can be accomplished in the usual manner (refer to the
description of the grouping command in this document), however, it can become tedious in terms
of the required command line inputs. For example, to establish a separate data group for each
detector for a long (e.g. 5x5 dither) observations, a sequence of commands such as this would be
required:

XSPEC12> data 1:1 ./MyDataDir/rev0044_Crab.pha.Ffits{l}
XSPEC12> data 2:2 ./MyDataDir/rev0044_Crab.pha.Ffits{2}
XSPEC12> data 3:3 -/MyDataDir/rev0044_Crab.pha.fits{3}
XSPEC12> data 19:19 ./MyDataDir/rev0044_Crab.pha.Ffits{19}
XSPEC12> data 1:20 ./MyDataDir/rev0044_Crab.pha.Ffits{20}
XSPEC12> data 2:21 ./MyDataDir/rev0044_Crab.pha.Ffits{21}
XSPEC12> data 3:22 -/MyDataDir/rev0044_Crab.pha.Ffits{22}
XSPEC12> data 19:38 ./MyDataDir/rev0044_Crab.pha.Ffits{38}
XSPEC12> data 1:39 /MyDataDir/rev0044 Crab.pha.fits{39}
XSPEC12> data 2:40 ./MyDataDir/rev0044_Crab.pha.Ffits{40}
XSPEC12> data 3:41 -/MyDataDir/rev0044_Crab_pha.Ffits{41}
XSPEC12> data 18:474 -/MyDataDir/rev0044_Crab.pha.fits{474}
XSPEC12> data 19:475 ./MyDataDir/rev0044_Crab.pha.fits{475}

One might then for example, make a first cut attempt by fitting a constant background.
Then, as a next step, one might allow the normalization terms of the background model to vary
over the groups (i.e. over the detector plane). This is accomplished with the "untie™ command,
using the following sequence:

XSPEC12> untie bkg:52

XSPEC12> untie bkg:78

XSPEC12> untie bkg:104
XSPEC12> untie bkg:130
XSPEC12> untie bkg:156
XSPEC12> untie bkg:182
XSPEC12> untie bkg:208
XSPEC12> untie bkg:234
XSPEC12> untie bkg:260
XSPEC12> untie bkg:286
XSPEC12> untie bkg:312
XSPEC12> untie bkg:338
XSPEC12> untie bkg:364
XSPEC12> untie bkg:390

61

XSPEC12> untie bkg:416
XSPEC12> untie bkg:442
XSPEC12> untie bkg:468
XSPEC12> untie bkg:487

Note that use of the "bkg" identifier, which associates the parameters index with the
background model. The specific sequence of numbers use here requires some explanation; the
particular background model employed has 25 parameters (which simply correspond in rank
order to the 25 most variable individual bins), and a normalization term, i.e. parameter 26. Thus,
the normalization for the second detector group is parameter 52, for the third parameter 78, and
so on. Similar command sequences can be used to untie additional background model
parameters. Supposing that we did this and refitted the data. We then might, for example wish to
go back and freeze the individual normalization terms with the freeze command:

XSPEC12> freeze bkg:26
XSPEC12> freeze bkg:52

XSPEC12> freeze bkg:487

By now though, you probably get the idea that this all requires an unreasonable amount
of command-line input. To circumvent this problem, a number of INTEGRAL/SPI specific "tcl"
scripts are available which greatly streamline this process.

4.7.2 INTEGRAL Specific Command Line Scripts

SPldata

The SPIdata procedure, which when installed can be treated as an XSPEC command,
greatly facilitates the data initialization step. For example, the command

XSPEC12> SPldata ./MyData/Dir/rev0044 crab.pha 475 det Y

Opens the Crab observation spectral data file, reads the 475 spectra into memory,
grouping them by detector. The "Y" then indicates that, yes, | wish to ignore the spectral data
channels corresponding to the known detector-electronic noise contamination (this is the
default). Instead of "det" as the grouping option I could have selected "time" to group by time
(quantized into dither-pointing intervals). A "-" lead to the data being initialzed into a single
group. The command:

62

XSPEC12> SPldata ./MyData/Dir/rev0044 crab.pha 475

Reads the 475 spectra into a single data group, and ignores the undesirable channels. If
you forget all this, the command

XSPEC12> SPldata -h

will remind you. The scripts SPluntie, and SPIfreeze have similar command-line syntax.

SPluntie and SPIfreeze

XSPEC12> SPluntie bkg 475 19 -1

The SPluntie command script will accomplish the same result as the sequence of "untie”
commands in the INTEGRAL/SPI example presented in this document. In that case, we had
loaded 475 spectra associated with a single 5x5-dither pattern centered on the Crab nebula. The
spectra were grouped by detector, which is a common approach to SPI analysis given the known
detector-to-detector variations in the background rates. Suppose after an initial fitting pass, for
which we assumed a single background spectrum, we know wish to untie the individual data
group (i.e. detector) background models. This can be accomplished by issuing 25 "untie"
commands as previously noted, or in a single command line using the SPluntie command:

XSPEC12> SPluntie bkg 475 19 -1
untie bkg:52

Chi-Squared = 1.2030200E+04 using 1615 PHA bins.
Reduced chi-squared = 7.5852458E+00 for 1586 degrees of freedom
Null hypothesis probability = 0.0000000E+00

untie bkg:78

Chi-Squared = 1.2030200E+04 using 1615 PHA bins.
Reduced chi-squared = 7.5900314E+00 for 1585 degrees of freedom
Null hypothesis probability = 0.0000000E+00

untie bkg:104
renorm: no renormalization necessary

Chi-Squared = 1.2030200E+04 using 1615 PHA bins.
Reduced chi-squared = 7.5948231E+00 for 1584 degrees of freedom
Null hypothesis probability = 0.0000000E+00

63

One might then make a second pass at fitting the data, hopefully leading to improved
statistics. Subsequently, additional background model parameters could be untied using the
SPluntie procedure as well. For example, to untie three additional parameters over the full data
set?, the command syntax is:

XSPEC12> SPluntie bkg 475 19 1 3

This will untie the first 3 parameters of the background model identified by "bkg", i.e.
equivalent to issuing (475-1)x3 individual untie commands. Note that you can always be
reminded of the command-line argument definitions by typing "SPluntie -h" at the XSPEC
prompt.

Suppose now that you are satisfied with the relative background normalization terms, and
wish to freeze them at their current values for subsequent fitting passes. This could be
accomplished using the SPIfreeze command script:

XSPEC12> SPIfreeze bkg 475 -1
XSPEC12>SPIfreeze bkg 19 1 -1
freeze bkg:52 1

Chi-Squared = 6.6232600E+05 using 1805 PHA bins.
Reduced chi-squared = 3.7589444E+02 for 1762 degrees of freedom
Null hypothesis probability = 0.0000000E+00

freeze bkg:78
Chi-Squared = 6.5791894E+05 using 1805 PHA bins.

Reduced chi-squared = 3.7318148E+02 for 1763 degrees of freedom
Null hypothesis probability = 0.0000000E+00

As with the SPluntie command script, typing "SPIfreeze -h™ at the XSPEC prompt will
scroll the command-line definitions to your screen.

ZNMemmﬂmcmmmSMbmkmmmdmMﬂ&wmmamdmwmmwehwmaawe%ﬁwamommmemmmMHﬁﬁB
hierarchically ordered in terms of decreasing criticality. Thus, freeing the first parameter is likely to have the most
significant impact on the statistics, the second parameter, the next most significant, and so on.

5. XSPEC commands

64

65

5.1 Summary of Commands

The following is a list of the commands available in XSPEC, together with a brief
description of the purpose of each. The commands have been categorized under six
headings: Control, Data, Fit, Model, Plot, Script, and Setting. The Control commands
contain the interface with the operating system: they cause commands to be executed, or
user input written to disk, or control how much is output. The Data commands
manipulate the data being analyzed, by reading data into the program or replacing spectra
or their ancillary detector, background, correction, or efficiency (auxiliary response)
arrays. Additionally data commands control the channels under analysis. The fit
commands invoke the fitting routines, modify their behavior by interchanging fitting
algorithms or statistics in use, fixing parameters, or perform statistical testing. The Model
commands create or manipulate the model, adding or editing components, modifying
parameters, or alternatively performing analytical calculations from a model. The Plot
commands deal with all aspects of plotting. The scripts are auto-loaded Tcl scripts that
can be used in the same ways as commands. Finally the Setting commands sets variables
that affect theoretical models.

Command Category Description
abund SETTING Set the abundance table.
addcomp MODEL Add a component to the model.
addline MODEL Add lines to a model
arf DATA Read an auxiliary response file.
autosave CoNTROL Periodically save the XSPEC status.
backarnd DATA Reset the files to be used for background

g subtraction.
bayes FIT Set up for Bayesian inference.
chain FIT Run a Monte Carlo Markov Chain.
chatter CoNTROL Control the verbosity of XSPEC.

. DATA Reset the files to be used for background
corfile .

correction.
DATA Reset the normalization to be used in

cornorm

correcting the background.

cosmo SETTING Set Ho, go, and A,

66

Command Category Description
cpd PLoT Alias for setplot device.
data DATA Input one or more PHA data files.
delcomp MODEL Delete a component from the model.
diaars DATA Diagonalize the current response for an
grsp ideal response.
MODEL Create a dummy response, covering a
dummyrsp .
given energy range.
. MODEL Add, delete, or replace one component in
editmod
the model.
energies MODEL fSIE()a((:Sfy new energy binning for model
. MODEL Calculate a model component’s
eqwidth) .
equivalent width.
FIT Determine a single parameter confidence
error (rerror) region. rerror is for response
parameters.
exec CoNTROL Execute a shell command from within
XSPEC.
exit CoNTROL Wind up any hardcopy plots and exit
from XSPEC.
MODEL This is now obsolete. See energies
extend
command.
: DATA Produce simulated data files for
fakeit e .
sensitivity studies.
fit FIT Find the best fit model parameters.
flux MODEL Calculate the current model's flux over
an energy range.
FIT Do not allow a model parameter to vary

freeze (rfreeze)

during the fit. rfreeze is for response
parameters.

67

Command Category Description
ftest FIT Calculate the F-statistic between two
model fits
ain MODEL Perform a simple modification of the
g response gain.
FIT Monte Carlo calculation of goodness-of-
goodness fit
hardcopy PLoT Spool the current plot to the printer.
help CoNTROL Obtain help on XSPEC commands.
. . MODEL List possible lines in the specified
identify energy range.
ianore DATA Ignore a range of PHA channels in
g future fit operations.
initnackage MODEL Compile, build, and initialize a package
P g of local models.
. PLoT As plot command but interactive using
iplot PLT
Imod MODEL Load a package of local models.
log ConTROL Open the log file to save output.
Irt SCRIPT Likelihood ratio test between two
models.
MODEL Calculate the current model's luminosity
lumin over a given rest frame energy range and
redshift.
margin FIT MCMC probability distribution.
i MODEL Define a simple model using an
mdefine) i .
arithmetic expression.
method SETTING Set the minimization method.
MODEL Define the model to be used when fitting

model (rmodel)

the data.

68

Command Category Description
modid MODEL Guess line 1Ds in the model.
multifake SCRIPT Perform many iterations of fakeit and
save the results in a FITS file.
newpar MODEL Modify the model parameters (use
(rnewpar) rnewpar for response parameters).
. DATA Restore a range of PHA channels for
notice -
future operations.
arallel CONTROL Enable parallel processing for particular
P tasks in XSPEC.
PLoT Plot various information on the current
plot .
plot device.
query CoNTROL Switch on/off prompt to continue fitting.
quit CoNTROL An alias for exit
FIT Adjust the model norms, and/or control
renorm . :
automatic renorming.
rescalecov SCRIPT Rescale the covariance matrix used in
the proposal chain command.
DATA Reset the files used to determine the
response
detector responses.
CONTROL Save aspects of the current state to a
save .
command file.
. CoNTROL Open the script file to save all
script .
commands input.
PLoT Modify the plot device and other values
setplot .
used by the plot routines.
ConTROL Display current file and model
show . ;
information.
SCRIPT Generate simulated datasets to estimate
simftest the F-test probability for adding a model

component.

69

Command Category Description
source CoNTROL Execute a script file.
statistic SETTING Change the fit statistic in use.
steppar FIT Step through a range of parameter
PP values; perform a fit at each step.
syscall CoNTROL Run a shell command.
systematic MODEL Set the model systematic error.
tclout CONTROL write xspec data to a tcl variable
tcloutr CoNTROL tclout with return value
FIT Allow a model parameter to vary during
thaw (rthaw) the fit. rthaw is for response parameters.
thleaw MODEL Calculates expected fluorescent line
q equivalent width.
time ConTROL Display elapsed time and other statistical
information.
uncertain FIT Alias for error
.) MODEL Untie linked parameters. runtie is for
untie (runtie)
response parameters.
version CoNTROL Print XSPEC version and build date/time
. FIT Change the weighting function used for
weight . .
chi-squared fits.
writefits SCRIPT Write information about the current fit
and errors to a FITS file.
wsect SETTING Change the photoelectric absorption
Cross-sections in use.
wset SETTING Modify a number of XSPEC internal

switches

70

5.2 Description of Syntax

The individual commands are treated in alphabetical order in the following
section. The novice would be well-served by reading the treatments of the data, model,
newpar, and fit commands, in that order, then the other commands as needed. The write-
up for each command includes a brief description of the purpose, an outline of the correct
syntax, a more detailed discussion of the command assumptions and purpose, and a series
of examples. Some commands have one or more subcommands that are similarly
described following the command.

In the command description, the syntax uses the following conventions.

<arg> an argument to the command
. defines <arg c> as <arga> followed
<arg c> =:I: <arg a> <arg b>
by <argb>
<arg>. .. a repeated string of arguments of

the same type
[<arg>] is an optional argument

indicates a choice between an

< > < >
arg a> | <arg b argument of<arg a> or <arg b>

Exceptional responses to the command prompt are :

empty line or line nothing performed, prompt repeated
containing only spaces and
tab characters

any remaining arguments will have

/ the values given on the last
invocation of the command

<EOF> (Ctrl-D on Unix) same as quit
skip input and return to prompt.

/* Defaults for prompted values will be
used.

Print list of commands, or summary

?, ?command, command ? -
help for a single command

5.3 Control Commands

5.3.1 autosave: set frequency of saving commands
Set or disable autosave, which saves the XSPEC environment to a file periodically.
Syntax: autosave <option>

where <option> is either off or a non-zero positive integer N. If the option is off, then
auto-saving is disabled.If the option is N, the XSPEC environment is saved every N commands.
The saving of the environment is equivalent to the command

XSPEC12>save all xautosav.xcm .,

71

i.e. both the file and model information is saved to the file xautosav.xcm, placed in the
directory ~/.xspec/cache. Thus in case of an unexpected crash, the state of XSPEC before the crash
can be restored by running @xautosav.xcm. The default value for the auto-save option is 1.

5.3.2 chatter: set verboseness level
Control the verbosity of XSPEC.
Syntax: chatter <chatter level> <log chatter>

where <chatter level>and <log chatter> are integer values.The initial value for
each argument is 10. Higher values will encourage XSPEC to tell the user more, lower values tell
the user less, or make XSPEC “quieter.” <chatter level> applies to the terminal output, while
<log chatter> controls the verbosity in the log file. Currently, the maximum chattiness is
25.Values below five should be avoided, as they tend to make XSPEC far too obscure.Some
commands may temporarily modify the chattiness, such as the error command. A chattiness of 25
will generate a lot of debug output.

Examples:

XSPEC12> chatter 10

// Set the terminal chattiness to 10, same as the initial value.
XSPEC12> chatter ,0

//Set the chattiness for the log file to very low.
//This setting essentially disables the log file output.
XSPEC12> chatter 5

//Make XSPEC very quiet.

XSPEC12> chatter 10 25

// Restore the terminal chattiness to the initial level,
// while in the log file XSPEC will tell all

// (particularly when new data files are read in)

5.3.3 exit, quit: exit program
The command to end the current XSPEC run.
Syntax: exit
After an exit, the current plot files are closed.An <EOF> will have an identical result.

5.3.4 help: display manual or help for a specific command/theoretical model
component

Obtain help on the XSPEC commands, their syntax, and examples of their use.
Syntax: help [<topic list>]

On the first invocation of the help command, an instance of a pdf file reader (by default
Adobe Acrobat Reader) is started (a shortly delay may ensue), or the XSPEC manual is accessed
online. Please see the subsection “Customizing XSPEC” in the XSPEC Overview section for
details on how to control this behavior. The Acrobat reader must be in the user’s path. If this

72

default is used, then subsequent calls to help will use this instance to display other help pages. help
without arguments displays the XSPEC manual, with a bookmark index that allows random access
to the help system, or in the online mode will open to the XSPEC manual homepage.

The design allows for users to add help files for local models and scripts to the help system
if they are placed in the help search path.

Examples:

XSPEC12> help

//show the entire manual.

XSPEC12> help fit

//Go to the help text for the fit command.

XSPEC12> help model pow

//Go to the help text for the powerlaw model. (Entering just “XSPEC12> model”
will produce a scrolled-text list of all available model components.)
XSPEC12> help appendices

//show the manual appendices (which document the user interface, the Cash
statistic, how to add models to XSPEC, a summary of PLT commands, and
associated FTOOLS and other programs for manipulating data).

XSPEC12>help appendix local

//show the appendix describing how to add local models

Help also displays the following information as scrolling text:

XSPEC12> help ?

//Show a list of all available commands.

XSPEC12> help ??

//Show a brief summary and usage syntax of all available commands.
XSPEC12> <command> ?

// Show brief summary and syntax of <command>.

5.3.5 log: log the session output
Open a log file.
Syntax: log [STAMP] <log file>

where <log file> is the name of the file to be opened (default extension is . 1og).If no
arguments are on the line, then the default file name is xspec.log. If <log file> matches the
string none, then the current log file is closed. If the string STAMP is given as an argument then the
log filename will include a data and time stamp. If <log file> has no suffix then the stamp is
appended to the name and a - 1og suffix added. To change the chattiness level for the log file (ie.
the amount ofinformation written to the log file) use the chatter command. The default chatter
level for the log file is 10.

Examples:

XSPEC12> log

//Turn on the log file (default xspec.log).}
XSPEC12> log none

//Close the log file.

XSPEC12> log mylog

//0pen the log file (mylog.log)

XSPEC12> chatter ,, 12

73

//Set the log file chattiness to 12.

5.3.6 parallel: enable parallel processing for particular tasks in XSPEC.
Syntax: parallel <task> <max num of processes>

where <task> is currently limited to leven, error, or steppar. For best results, it is recommended
that you set <max num of processes> to the number of CPU cores on your machine. Set <max num
processes> back to 1 to turn parallel processing off for the particular task. To display current
settings, type ‘parallel” with no arguments.

The leven option will spawn up to <max num> processes during the Levenberg-Marquardt fitting,
specifically to perform the N independent calculations of the parameter first-order partial
derivatives (N being the number of variable fit parameters). [This will not apply if the
USE_NUMERICAL_DIFFERENTIATION variable in the user’s Xspec.init file is changed from
the default “false’ to ‘true’.]

The speed-up that one can expect is highly dependent upon the model in use. For simpler models
with quick calculation times, you will probably see little to no speed gain with parallel leven. But
with multi-core CPUs, gains should be quite noticeable when the model calculation consumes a
large fraction of the overall fitting time. For example, with fits using the time-intensive sedov
model on a 4-core machine, we’ve typically seen about a 40% reduction in fit time compared with
the single processing case.

The error option is for running parallel computations within XSPEC’s error command. This
enables the error calculations for multiple parameters to be performed simultaneously. The speed-
up here should simply be proportional to the number of cores available. However for cases where
complications are reported (such as a new minimum found, or a non-monotonicity in the statistic
space), it is recommended that you perform the error calculations in standard single-process mode.

When the steppar option is set, XSPEC will divide the N-dimensional steppar grid into <max
num> sections of equal size, and spawn a separate process for calculating each section.

If both parallel leven and error or steppar are in use, XSPEC will temporarily disable the lower-
level leven parallelization when running the higher-level parallel error or steppar command
calculations.

Examples:

XSPEC12> model cflow
// Using a model with 5 variable fit parameters.

XSPEC12> parallel leven 4

XSPEC12> fit
// Calculations for the 5 parameters will be divided amongst
// 4 processes during the fit.

XSPEC12> parallel leven 1
// Restores single-process calculation to the
// Levenberg-Marquardt algorithm.

74

XSPEC12> parallel error 3
// Allow up to 3 simultaneous “error’ parameter calculations
// to be performed in parallel.

XSPEC12> error 2 3 6
// Perform error calculations on parameters 2, 3, and 6 in parallel.

XSPEC12> parallel steppar 4
// The following 20x30 steppar grid will be split amongst
// 4 parallel processes.

XSPEC12> steppar 1 10. 11. 20 2 .5 .8 30

// Display current settings:
XSPEC12> parallel
Maximum number of parallel processes:
error: 3
leven: 1
steppar: 4

5.3.7 query: set a default answer for prompts in scripts
Switch on/off the continue fitting questions.
Syntax: query <option>

where <option> is yes, no, or on. If on then the continue fitting question in fit, steppar,
and error will be asked when the number of trials is exceeded. Also, when the number of trials to
find the error is exceeded a question will be asked. For either of the other two options the questions
will not be asked but the answer will be assumed to be yes or no depending on the value set. To
ensure that fitting continues without any questions being asked use the command

XSPEC12> query yes

5.3.8 save: save the current session commands
Save aspects of the current state to a command file.
Syntax: save <option> <filename>

If no <filename> is given, then the file savexspec.xcm is created. If you don't give the
extension to the file name the default is .xcm. The values of <option> allowed are model,
files, and all. The model option writes out commands to recreate the current model and
parameter values; the files option writes out commands to read-in the current spectra, and the
al 1 option does both of the above. The default option is model. To recover the saved context use
the command

XSPEC12>@filename

Examples:

XSPEC12> save model fname

// Write out model commands to the file fname.xcm
XSPEC12> save

// Same as above, but save into file savexspec.xcm.
XSPEC12> save files fname

// Write out data file commands.

75

5.3.9 script: write commands to a script file
Open a script file.
Syntax: script <script file>

where <script file> isthe name of the file to be opened (default extension is .xcm).If
no arguments are on the line, then the default file name is xspec.xcm.If <script file>
matches the string none, then the current script file is closed. The script file saves all commands
that are input. This command is useful for users who use the same set of commands repeatedly.
Once a script file is written and saved, the user then can re-run the same set of commands on other
data by

XSPEC12> source <script file>

Examples:

XSPEC12> script

// Turn on the script file (default xspec.xcm)
XSPEC12> script none

// Close the script file.

XSPEC12> script myscript

// Open the script file (myscript.xcm)

5.3.10 show: output current program state
List selected information to the user's terminal (and the log file, if open).
Syntax: show [<selection>]

where <selection> is a key word to select the information to be printed. If omitted, it is
the information last asked for. Initially, the default selection is al I. (Note: to better integrate the
usage of OGIP type-1I files, much of the information given by “show files” in previous versions is
now displayed by “show data.”)

Selections are:
XSPEC12> show abund
//show current solar abundance table

XSPEC12> show all
//A1l1 the information

XSPEC12> show allfile
// All file information = files + noticed + rates

XSPEC12> show control
// XSPEC control information

XSPEC12> show data

// File names, associated coefficients, and net count rates,
// displayed in order of spectrum number. For higher chatter,
// also displays grouping map.

XSPEC12> show free
// Free parameters

XSPEC12> show files
// Equivalent to “show data” but displayed in order of Ffile name.

XSPEC12> show fit
//Fit information

XSPEC12> show model
//The model specification

XSPEC12> show noticed
//Channel ranges noticed for each file.

XSPEC12> show parameters
//Al1l current parameter values (including gain parameters, if any).

XSPEC12> show parameters <par range>
// Show subset of all model parameters given by <par range>,
// e.g. show parameters 1,3,5-8

XSPEC12> show pha
// Current data, error and model values for each channel.

XSPEC12> show plot
//Current plot settings from setplot command, includes rebinning info.

XSPEC12> show rates
//Folded model, correction rates for each file.

XSPEC12> show response
//show responses loaded

XSPEC12> show rparameters
// All current gain (response) parameters

XSPEC12> show rparameters <par range>
// Show subset of all gain (response) parameters

XSPEC12> show xsect
//show description of cross-section table

5.3.11 syscall: execute a shell command
Execute command in a shell.
Syntax: syscall{[<shell command>]>

76

77

This command executes its arguments by passing them to the users current shell for
execution. Thus file name globbing (i.e. wildcard expansion) are performed on the command
before execution. This is in contrast to the exec command, which executes commands directly,
without first passing them on to a shell.

If no arguments are given, then the command will start an interactive subshell.

78

5.3.12 tclout: create tcl variables from current state

Write internal xspec data to a tcl variable. This facility allows the manipulation of xspec data by
tcl scripts, so that one can, for example, extract data from xspec runs and store in output files,
format xspec output data as desired, use independent plotting software, etc.

Syntax: tclout <option> [<parl>] [<par2>] [<par3>]>

tclout creates the tcl variable $xspec_tclout, which can then of course be set to any named
variable. The allowed values of <option> are :

?

areascal n <s|b>

arfn
backgrnd n
backscal n <s|b>

chain best|last|proposal|stat

chatter

compinfo [<mod>:]n
[<groupn>]

cosmo

Show the valid options. Does not set $xspec_tclout.

Writes a string of blank separated values giving the
AREASCAL values for spectrum n. If no second
argument is given or it is “s” then the values are
from the source file, if “b” from the background
file.

The auxiliary response filename(s) for spectrum n.
Background filename for spectrum n
Same as areascal option but for BACKSCAL value.

The best option returns the parameter values
corresponding to the smallest statistic value in the
loaded chains. The last option returns the final set
of parameter values in the loaded chains. The
proposal option takes arguments distribution or
matrix and returns the name or covariance matrix
for the proposal distribution when using
Metropolis-Hastings. The stat option returns the
output of the last chain stat command.

Current xspec chatter level.

Name, 1% parameter number and number of parameters
of model component n, belonging to model w/
optional name <mod> and optional datagroup
<groupn>.

Writes a blank separated string containing the Hubble
constant (HO), the deceleration parameter (q0), and
the cosmological constant (Lambda0). Note that if
LambdaO is non-zero the Universe is assumed to
be flat and the value of q0 should be ignored.

covariance [m, n]

datagrp [n]

datasets
dof

energies [n]

eqwidth n [errsims]

error [<mod>:]n
(for gain parameters use:
rerror [<sourceNum>:]n)

79

Element (m,n) from the covariance matrix of the most
recent fit. If no indices are specified, then entire
covariance matrix is retrieved.

Data group number for spectrum n. If no n is given,
outputs the total number of data groups.

Number of datasets.
Degrees of freedom in fit, and the number of channels.

Writes a string of blank separated values giving the
energies for spectrum n on which the model is
calculated. If nis not specified or is 0, it will
output the energies of the default dummy response
matrix.

Last equivalent width calculated for spectrum n. If
“errsims” keyword is supplied, this will instead
return the complete sorted array of values
generated for the most recent eqwidth error
simulation.

Writes last confidence region calculated for parameter
n of model with optional name <mod>, and a
string listing any errors that occurred during the
calculation. The string comprises nine letters, the
letter is T or F depending on whether or not an
error occurred. The 9 possible errors are:

new minimum found

non-monotonicity detected

minimization may have run into problem
hit hard lower limit

hit hard upper limit

parameter was frozen

search failed in —ve direction

search failed in +ve direction

© © N o g s~ DN E

reduced chi-squared too high

So for example an error string of “FFFFFFFFT”
indicates the calculation failed because the reduced
chi-squared was too high.

expos n <s|b>
filename n

flux [n] [errsims]

ftest

gain [<sourceNum>:] <specNum>
slope | offset

goodness [sims]

idlineed
ignore [<n>]

lumin [n] [errsims]

margin probability |
[<modName>:]<parNum>

model

80

Same as areascal option but for EXPOSURE value.
Filename corresponding to spectrum n.

Last model flux or luminosity calculated for spectrum
n. Writes a string of 6 values: val errLow errHigh
(in ergs/cm?) val errLow errHigh (in photons).
Error values are .0 if flux was not run with “err”
option.

If the “errsims” keyword is supplied, this will instead
return the completed sorted array of values
generated during the most recent flux error
calculation.

The result of the last ftest command.

For gain fit parameters, value,delta,min,low,high,max
for the slope or offset parameter belonging to the
[<sourceNum>:]<specNum> response. For nonfit
gain parameters, only the value is returned.

The percentage of realizations from the last goodness
command with statistic value less than the best-fit
statistic using the data. If optional “sims” keyword
is specified, this will instead give the full array of
simulation values from the last goodness
command.

Possible line IDs within the range [e-d, e+d].
The range(s) of the ignored channels for spectrum <n>.

Last model luminosity calculated for spectrum n.
Same output format as flux option, in units of
1.0x10™ erg/s.

The probability option returns the probability column
respectively from the most recent margin
command. Otherwise, the parameter column
indicated by <parNum> is returned. Note that for
multi-dimensional margin the returned parameter
column will contain duplicate values, in the same
order as they originally appeared on the screen
during the margin run.

Description of current model(s).

modcomp [<mod>]

modpar [<mod>]

modval [<specNum>[<mod]]

nchan [<n>]

noticed [<n>]
noticed energy [<n>]

nullhyp

param [<mod>:]n

peakrsid n [lo, hi]

pinfo [<mod>:]n

plink [<mod>:]n

plot <option> <array> [<plot
group n>]

plotgrp

81

Number of components in model (with optional model
name).

Number of model parameters (with optional model
name).

Write to Tcl the last calculated model values for the
specified spectrum and optional model name.
Writes a string of blank separated numbers. Note
that the output is in units of photons/cm”2/s/bin.

Total number of channels in spectrum n (including
ignored channels).

Range (low,high) of noticed channels for spectrum n.
The noticed energies for spectrum n.

When using chi-square for fits, this will retrieve the
reported null hypothesis probability.

(value,delta,min,low,high,max) for model parameter n.

Energies and strengths of the peak residuals (+ve and —
ve) for the spectrum n. Optional arguments lo, hi
specify an energy range in which to search.

Parameter name and unit for parameter n of model with
optional name.

Information on parameter linking for parameter n. This
is in the form true/false (T or F) for linked/not
linked, followed by the multiplicative factor and
additive constants if linked.

Write a string of blank separated values for the array.
<option> is one of the valid arguments for the plot
or iplot commands. <array> is one of x, xerr, y,
yerr, or model. xerr and yerr output the 1-sigma
error bars generated for plots with errors. The
model array is for the convolved model in data and
Idata plots. For contour plots this command just
dumps the steppar results. The command does not
work for genetic plot options.

Number of plot groups.

query

rate <n | all>

rerror [<sourceNumber>:]n

response n

sigma [<modelName>:]n

simpars

solab

stat [test]

statmethod [test]

steppar statistic | delstat |
[<modName>:]<parNum>

varpar

version

82

The setting of the query option.

Count rate, uncertainty and the model rate for the
specified spectrum n, or for the sum over all
spectra.

Writes last confidence region calculated for response
parameter n of model with optional source number,
and a string listing any errors that occurred during
the calculation. See the help above on the error
option for a description of the string.

Response filename(s) for the spectrum n.

The sigma uncertainty value for parameter n. If nis
not a variable parameter or fit was unable to
calculate sigma, -1.0 is returned.

Creates a list of parameter values by drawing from a
multivariate Normal distribution based on the
covariance matrix from the last fit. This is the
same mechanism that is used to get the errors on
fluxes and luminosities, and to run the goodness
command.

Solar abundance table values.

Value of statistic. If optional ‘test’ argument is given,
this outputs the test statistic rather than the fit
statistic.

The name of the fit stat method currently in use. If
optional “test” argument is given, this will give the
name of the test stat method.

The statistic and delstat options return the statistic or
delta-statistic column respectively from the most
recent steppar run. Otherwise, the parameter
column indicated by <parNum> is returned. Note
that for multi-dimensional steppars the returned
parameter column will contain duplicate values, in
the same order as they originally appeared on the
screen during the steppar run.

Number of variable fit parameters.

The XSPEC version string.

83

weight Name of the current weighting function.

xflt n XFLT#### keywords for spectrum n. The first number
written is the number of keywords and the rest are
the keyword values.

Examples:

XSPEC12>data filel
XSPEC12> model pha(po)

XSPEC12> fit

XSPEC12>tclout stat

XSPEC12>scan $xspec_tclout “%f” chistat
XSPEC12>tclout param 1

XSPEC12>scan $xspec_tclout “%f’par2
XSPEC12>tclout param 2

XSPEC12>scan $xspec_tclout “%f’par3
XSPEC12>tclout param 3

In this example, scan is a tcl command that does a formatted read of the variable
$xspec_tclout. It reads the first floating point number into the variable given by the last

argument on the line.This sequence creates a simple model, fits it, and then writes the 2° statistic
and the three parameters to tcl variables $chistat, $parl, $par2, and $par3. These can now
be manipulated in any way permitted by tcl. Examples of using tclout and tcloutr can be found in
the Xspec/src/scripts directory.

5.3.13 tcloutr: tclout with return value
Syntax: tcoutr <option> [<parl>] [<par2>] [<par3>]>
tcloutr is identical to the tclout command except that it also provides what is stored in

$xspec_tclout as areturn value. Therefore it can be used in tcl scripts like this:

set varl [tcloutr energies 1]

tcloutr may produce quite a lot of unwanted screen output, which can be avoided by using
tclout.

84

5.3.14 time: print execution time
Get some information about the program run time.
Syntax: time

The time command prints out elapses CPU time attributed to the user and to the system.
Two output lines are given, one for user/system time since the time command was last called, and
one for time elapsed since the program started.

5.3.15 undo: undo the previous command
Undo the affects of the previously entered xspec command.
Syntax: undo

New for xspec version 12, the undo command will restore the state of the xspec session
prior to the most recently entered command. The current implementation does not allow
restoration to more than one command back, so calling undo repeatedly will have no effect. Also, a
plot command cannot be undone.

5.3.16 version: print the version string
Syntax: version

version prints out the information about version number and build date and time (not
current date, time) displayed when XSPEC is started.

85

5.4 Data Commands

5.4.1 arf: change the efficiency file for a given response

Read in one or more auxiliary response files (ARF). An ARF gives area versus
energy and is used to modify the response matrix for a spectrum. The file must be in the
OGIP standard format.

Syntax: arf [<filespec>...]

where <filespec> =:: [[source #:]<spectrum num>]
<filename>[{ranges}]. .. and where <spectrum num> is the spectrum number for the
first <filename> specified, <spectrum num> plus one is the spectrum number for the next
file (or next entry in {ranges} specifier for Type Il multi-ARF files), and so on.
<filename> is the name of the auxiliary response file to be used with the associated
spectrum. The optional source number defaults to 1, and for ARFs stored in OGIP Type
Il files, {ranges} specifies the row numbers of the desired ARF(s). See the data
command for allowed range specification.

If no <spectrum num> is given in the first <fi lespec> it is assumed to be 1. If
no file specifications are entered, then none of the spectrum responses are modified.An
error message is printed if the spectrum number is greater than the current number of
spectra (as determined from the last use of the data command).A file name none
indicates that no auxiliary response is to be used for that spectrum. If a file is not found or
cannot be opened for input, then the user is prompted for a replacement auxiliary
response file.An <EOF> at this point is equivalent to none. See the data command
forways to completely remove the dataset from consideration.

Note: The ARF command is currently not implemented for data formats which
use multiple RMFs per spectrum, such as Integral/SPI data.

Examples:

It is assumed that there are currently three spectra:

XSPEC> arf a,b,c

// New files for the auxiliary response are given for all three
spectra.

XSPEC> arf 2 none

// No auxiliary response will be used for the second spectrum.
XSPEC> arf ,d.fits

// d.fits becomes the auxiliary response for the second spectrum.
XSPEC> arf 2 e.fits{3-4}

// Rows 3 and 4 of multi-ARF File e.fits become the auxiliary responses
for the second and third spectra.

XSPEC> arf 2:1 f.fits

// f_fits becomes the auxiliary response for the second source of
spectrum 1.

5.4.2 backgrnd: change the background file for a given spectrum
Modify one or more of the files used in background subtraction.

86

Syntax: backgrnd [<filespec>...]
backgrnd <spectrum number> none

where <filespec> =:: [<spectrum num>] <Ffilename>... and where
<filename> is the name of the PHA file to be used for background subtraction. The
numbering scheme is as described for the data command, except that the <spectrum
num> must have previously been loaded.

An error message is printed if <spectrum num> is greater than the current
number of spectra (as determined from the last use of the data command. backgrnd <n>
none indicates that no background subtraction is to be performed for that spectrum. If a
file is not found or cannot be opened for input, then the user is prompted for a
replacement background file(an <EOF> at this point is equivalent to backgrnd
<spectrum number> none). The current ignore status for channels is not affected by
the bkgrnd command. (See the ignore and notice commands). Finally, any grouping
specification will be overridden by the grouping in the source spectral file so that the
source and background are binned in the same way.

The format of the background file must match that of the spectrum file: for this
purpose OGIP Type I and Il are considered to be the same format.

For details of how to remove spectra see the data command documentation.
Examples:
Suppose there are currently three spectra. Then

XSPEC12> backgrnd a,b,c

// New files for background subtraction are given for all

// three spectra.

XSPEC12> backgrnd 2 none

// No background subtraction will be done for the second spectrum.
XSPEC12> backgrnd ,d

// d_pha becomes the background for the second spectrum.

XSPEC12> backgrnd 2 e{4-5}

// Rows 4 and 5 of Type 11 file e.pha become the background for
// the second and third spectrum respectively.

5.4.3 corfile: change the correction file for a given spectrum
Reset the files used for background correction.
Syntax: corfile [<Filespec>...]

where <fi lespec> is the same as for the backgrnd command. The correction
file can be associated with a spectrum to further adjust the count rates. It is a PHA file
whose count rate is multiplied by the current associated correction norm (see the
cornorm and recornrm command) and then subtracted from the input uncorrected data.
The correction norm is not changed by running the corfile command. Default values for
the correction file and norm are included in the data PHA file.Unlike the background file,
the correction data does NOT contribute to the measurement error. A file name of none

87

is equivalent to no correction file used.If an input file can not be opened or found, an
error message is printed and the user prompted for a replacement.As with the backgrnd
command, the correction file is checked against the associated spectrum for number of
channels, grouping status, and detector ID. The current ignore status for channels is not
affected by the corfile command. Note that correction files have the same format as the
PHA files used by the data command.

Examples:

It is assumed that there are currently three spectra:

XSPEC12> corfile a,b,c

// New correction files are used for all three spectra.>

XSPEC12> corfile 2 none

// No correction will be done for the second spectrum.}

XSPEC12> corfile ,d

// The 2nd file now uses d.pha as its correction.

XSPEC12> corfile 2 e{4-5}

// Rows 4 and 5 of Type 11 file e.pha becom the correction files for
the second

// and third spectrum respectively.

5.4.4 cornorm: change the normalization of the correction file
Reset the normalization used in correcting the background.
Syntax: cornorm [[<spectrum range>...] [<cornorm>]]...

where <spectrum range> =:: <first spectrum no.> — <last
spectrum no.> s a range of spectra to which the correction is to be applied and
<cornorm> is the value to be used for the normalization. A decimal point (.) is used to
distinguish a correction norm from a single spectrum <spectrum range>. If no
correction norm is given, then the last value input is used (the initial value is one (1)). If
no range is given, then the last single range input is modified. (See the corfile
command.)

Examples:

Assume that there are four spectra, all with associated correction files already
defined, either by default in their PHA file, or explicitly by using the corfile
command.

XSPEC12> cornorm 1-4 1.

//The correction norm for all four is set to 1.0
XSPEC12> cornorm 0. 1-2 0.3

//The correction norm for the last input range (which was 1-4)
// is set to 0., then files 1 and 2 are reset to 0.3.
XSPEC12> cornorm 4

//Tile 4 has the correction also set to 0.3.

XSPEC12> cornorm 1 4 -.3

//fTiles 1 and 4 are set to -.3.

XSPEC12> cornorm .7

//file 4 (as the last input single range) is set to 0.7.

88

5.4.5 data: read data, background, and responses

Input one or more spectra, together with their associated (background, response)
files.

Syntax: data <file spec1>[,...] [<file spec2>...][/]
data none
data <spectrum #> none

where the file specification is

<fFilespec> =:: [[<data group #:>] <spectrum #>]
<filename>[{ranges}]

If a particular file is not found or cannot be opened for input for some reason, then
the user is prompted for a replacement file name. An <EOF> at this point is equivalent to
typing none. The default extension for all files is - pha, so all other extensions, (e.g.

. Fak) must be entered explicitly. The default directory is the current user directory when
XSPEC is invoked. When a new file is input, by default all its PHA channels are
considered good channels for fitting and plotting purposes (see the ignore and notice
commands).

XSPEC’s “native” data format is the OGIP standard. The standard specifies the
representation of spectrum and all related datasets. XSPEC12 is explicitly designed to be
able to work with other data formats as required: for example, the Integral/SPI spectral
data format, although based on OGIP Typell, deviates slightly. This was necessary
because 3 response/arf pairs are required per spectrum. XSPEC12 has the ability to
specify how response and other data are stored on disk, composed, and combined within
the spectral fitting problem by adding new data modules at run-time. In XSPEC12, unlike
XSPECL11, the channels that are ignored are a property of the spectrum, and therefore
must be reset when the spectrum is replaced by another.

If the file contains multiple spectra, such as an OGIP Type Il PHA file, then the
desired spectrum can be specified by appending {ranges} to the end of the filename,
where n is the row number of the spectrum in the file.

XSPEC12 allows any combination of multiple ranges in the parentheses delimited
by commas. The wildcard characters *and ** may also be used. A ** on either side of
a hyphen indicates either the first or last row in the file, based on whether it is to the left
or right of the hyphen. (If a* is entered on the left or right side of a hyphen, it is
substituted by the most recently entered left or right value respectively.) All rows in the
file may be selected simply with a single * or ** between the brackets with no hyphen.
Examples:

XSPEC12> data pha2data{l,3,5-8,14-26,75-**}
// In addition to the various specified rows between 1 and 26,
// also load rows 75 through the end of the file.

XSPEC12> data pha2data{*}
// Select all rows in the file.

89

For files with multiple spectra the data may either specify a header keyword
specifying the response, auxiliary response, background and correction files, or these may
be string-valued columns specifying a different filename per row.

Consult the http://heasarc.gsfc.nasa.gov/docs/software/ftools package
documentation for details of how to modify the file.

The individual spectral data files are created outside of XSPEC by detector-
specific software. They are organized as XSPEC data files, but often referred to as PHA
files. Whatever its format, the PHA file contains such information as integration time,
detector effective area, and a scaling factor (BACKSCAL in the OGIP standard) that
estimates the expected size of the internal background. The data file also contains the
names of the default files to be used for background subtraction and for the detector
sensitivity versus incident photon energy (the response and arf files). A data file has the
total observed counts for a number of channels and a factor for the size of any systematic
error. Each channel is converted to a count rate per unit area (assumed cm™2). The default
background file is used for background subtraction. An error term is calculated using
Poisson statistics and any systematic error indicated in the file®

spectrum numbering

Multiple Fi lespec clauses can be input on a single data command, or also on
multiple data command. Within XSPEC, each set of data is referred to by its associated
spectrum number. <spectrum #>, as determined by the following rules. For
convenience, we denote the number of spectra that have been previously read in by data
command as Ns

Spectra in XSPEC are numbered sequentially from 1.

If no spectrum number is specified by the user, the spectrum in the first filename
specified is assigned to 1. If spectra have already been loaded at this point, they will be
replaced, deleted, or added to depending on the command. For example, if there are 3
spectra loaded (Ns = 3) and the user types

XSPEC12> data multidatafile{1-2}

then spectra 1 and 2 will be replaced and 3 deleted. The command
XSPEC12> data multidatafile{1-4}

will replace all three spectra and add the fourth.

If the user specifies a “load point”, i.e. the first spectrum number to be created by
the new command, i.e.

XSPEC12> data 3 multidatafile{1-4}

then that load point may not exceed N + 1. If it does, XSPEC will correct the
number and issue a warning.

% For OGIP files, any FITS NULL values will be converted to the value 1.E-32. This should have no practical effect
because any channels with NULL values will presumably be marked as bad or otherwise ignored.

90

A skipped-over argument can be effected by a comma, for example
XSPEC12> data 3 spectruml, , spectrum2

indicates that the spectrum for that position, as input in an earlier invocation of
data, will continue to be used (in this example, spectrum 3 is replaced, 4 is left
untouched, and 5 is either replaced or added. Any spectra with numbers great than 5 are
removed.

If the filename input is none, that spectrum is removed, and so are any higher-
number spectra unless none is terminated with a / character. For example:

XSPEC12> data 3 none

removes all spectra numbered 3 or higher,

XSPEC12>data 3 none/

removes only spectrum 3 and renumbers the rest.

The data command determines the current total number Nt of spectra: either Nt
spectra are implied by the command line, or the highest spectrum number added (after
XSPEC has made corrections as mentioned above) is Nt This is true UNLESS a /
character terminates the data command.

If the line is terminated by a slash (/), then the current number of spectra is the
previous total number of datsets Nsor the number as determined from the command line,
whichever is greater.

The command

XSPEC12> data

by itself prints the one-line help summary, as does
XSPEC12> data ?

data groups

XSPEC allows the user to specify separate data groups for different spectra. Each
data group has its own set of parameters for the defined model. These parameters can be
either independent from data group to data group, or they can be linked across data
groups using the standard XSPEC syntax (see the newpar command). This facility can be
used for, say, analyzing extended sources.

Note that the data group number precedes the spectrum number: in the
example

XSPEC12> data 2:3 spectrum4

which assumes that at least two spectra are already present, the data group number
is 2 and the spectrum number is 3.

91

XSPEC will not allow the data group number to exceed the spectrum number: for
example

XSPEC12> data 3:2 spectrum4
is invalid. XSPEC will correct this and issue a warning.

More Examples:

XSPEC12> data a

/[The file a.pha is read in as the first (and only) spectrum.
XSPEC12> data ,b

//b.pha becomes the second spectrum, the first spectrum is

[unmodified (i.e. it is still a.pha)

XSPEC12> data ¢ 3 d,e,f

/lc.pha replaces a.pha as the first spectrum;d.pha, e.pha, and

/I f.pha provide the, third, fourth, and fifth spectra.

XSPEC12> data g/

/lg.pha replaces c.pha as the first spectrum; the slash (/)

/I indicates that the 2nd through the 5th spectra remain as before.
XSPEC12> data 2 none/

/lthe string none indicates that the 2nd spectrum (b.pha) is to be
/[totally removed. The current total number of datasets thus becomes
/l one less (4).The current spectra are g.pha,d.pha, e.pha,

/l and f.pha.

XSPEC12> data h,,

/[The current total number of spectra becomes 2, the current data
/I sets are from h.pha and d.pha.

XSPEC12> data

/[There is no change in the data status.

XSPEC12> data 1

/IThe number of spectra is set explicitly to one, that being from
Il h.pha.

XSPEC12>datal:1a2:2b3:3¢c

/IRead a.PHA into data group 1, b.pha into data group 2, and c.pha
/linto data group 3

92

XSPEC12>datal:1al:2b2:3c

//IRead a.pha and b.pha into data group 1, and c.pha into data group 2
XSPEC12> data a{3}

/I Read the third spectrum in the file a.pha.

5.4.6 diagrsp: set a ‘perfect’ response for a spectrum
Diagonalize the current response matrix for ideal response.
Syntax: diagrsp

This command diagonalizes the current response matrix. The response matrix is
set so that the channel values are mapped directly into the corresponding energy ranges,
based on the channel energies and energy response range of the current response matrix.

This command is very similar to running dummyrsp in mode 1, with two
important differences. Unlike dummyrsp, usage of this command requires that an actual
response is currently loaded. It takes its energy range and channel binning information
from this currently loaded response rather than user input parameters. Secondly, this
does not change the effeciency (ie. effective area) as a function of energy stored for the
current detector. Invoking this command will simulate a detector with perfect spectral
resolution. If you wish to simulate a detector with perfect resolution AND perfect
efficiency, use the dummyrsp command.

The previous response matrices can be reimplemented with the response
command, with no arguments. Any use of the data and notice commands will replace
the dummy diagonal response with the correct set of matrices.

5.4.7 fakeit: simulate observations of theoretical models
Produce spectra with simulated data.
Syntax: fakeit [nowrite] [<Ffile spec>...]

where <file spec>=:: [<file number>] <file name>[{ranges}]... is
similar to the syntax used in the backgrnd, corfile, and response command. The fakeit
command is used to create a number of spectrum files, where the current model is
multiplied by the response curves and then added to a realization of any background.
Statistical fluctuations can be included. The integration time and correction norm are
requested for each file. The file names input as command line arguments are used as
background. The number of faked spectra produced is the maximum of the number of
spectra currently loaded and the number of file specifications in the command line
arguments. The special case fakeit none makes one fake spectrum for each spectrum
loaded (or one fake spectrum if there are none loaded). See the examples below for a
clearer description.

93

If fakeit is immediately followed by the nowrite specifier, no actual output files
will be generated. In this case the fake spectra will exist just for the duration of the
Xspec session (or until they are unloaded).

If a faked spectrum is based on a currently loaded spectrum, then by default the
background, response, correction file, and numerical information are taken from the
currently-defined data, unless a background file is specified on the command line in
which case it becomes the background. The fakeit none case prompts for the rmf and arf
filenames and sets the default numerical data to 1.0, except the correction norm, which is
set to zero. If the output file is type Il then the exposure time and correction scale factor
will be the same for all spectra in the file.

For each output file, the user will be prompted for an output file name. If a
background file is in use then fakeit will also simulate a new background for each
spectrum. Background files are given the same names as output spectrum files but with
_bkg appended to the end of the stem.

The simulated spectra automatically become the current data files. The ignore
status is completely reset.

Statistical Issues:

The statistical fluctuations used to create the simulated spectra will depend on
whether the current spectra have Poisson or Gaussian errors. If a spectrum file has a
STAT_ERR column and the POISSERR keyword is set to false then xspec assumes
Gaussian errors with sigma from the values in the column. Otherwise, errors are assumed
to be Poisson based on the number of counts. Note that it is possible for the spectrum and
background files to have different error types. For fakeit cases when there is no current
file to use, Poisson errors are assumed.

Type | vs. Type Il Output:

Fakeit determines whether to place its fake spectra and background data into type
I or type Il files based on the following rules.

If fake spectra are based on currently loaded spectra then the output files will
have the same format as those loaded. For example: Assume 3 spectra are currently
loaded, spectrum 1 from file typeldata.pha and spectra 2 and 3 from file
typel ldata.pha. Then,

XSPEC12> fakeit
will produce 3 fake spectra in 2 output files with names prompted from the user. The

first file will be type I, the second type Il containing 2 spectra. The same is true for any
background files produced.

If the user asks for more fake spectra to be created than the number of spectra
currently loaded, for example by typing the following when the same 3 spectra above
described are loaded:

XSPEC12> fakeit 5

94

then fake spectra 1-3 will be placed in the two files as before. For the additional fake
spectra (4 and 5), fakeit uses the following rule: If any of the originally loaded spectra
were in a type Il file, then all of the additional fake spectra will be placed in 1 type Il file.
Otherwise, they will each be placed in a separate type | file. In this example, since a type
Il file was originally loaded (typel Idata.pha) when fakeit was called, spectra 4 and 5
will be placed together in a type Il output file, in addition to the type I and type 1l files
for the first 3 fake spectra.

If there are no currently loaded spectra all output files will be type I unless either
of the following situations exist: 1. Any of the background files entered on the
command line are type Il, as indicated by row specifiers in brackets. 2. The first
response file used clearly belongs to a format associated with type Il data, such as
SPI/Integral with its multiple RMF format (see section on SPI/Integral usage).

Overall, though the method of determining output format for additional spectra
may seem quite complicated, it can be easily summed up: Fakeit will place all additional
spectra and backgrounds (ie. those not based on already loaded data) in type I output
files, unless it detects any evidence of type Il file usage amongst the command line
input, in which case it will produce type 11 output.

Note on grouped spectra:

If an input spectrum has grouping information (ie a GROUPING column telling
XSPEC how to bin up the data) then fakeit will simulate the number of counts in each of
the grouped bins. However, the spectrum that is written out must have the ungrouped
number of channels (and a copy of the GROUPING column from the original spectrum).
The solution that XSPEC adopts is to place all the counts from a grouped bin in the first
channel which goes to make up that bin. This is of no consequence for future uses of the
simulated spectrum provided that the GROUPING column is not changed. So, in this
case grppha or similar tools cannot be run on the simulated spectrum.

Note For SPI/Integral Format:

Since the SPI/Integral format builds its responses from a combination of multiple
RMFs and ARFs, it must use a different scheme than the OGIP type | and Il formats for
storing RMF and ARF file location information. This information is stored ina FITS
extension, named “RESPFILE_DB” , added to the PHA file. Therefore, when fakeit
prompts the user for the location of the response file, simply enter the name of a FITS
file which contains a RESPFILE_DB extension pointing to the RMFs and ARFs to be
applied. When prompted for an ARF name, enter nothing.

The prompts will only appear for the first spectrum in the data set, and the ARFs
will be assigned row by row 1 to 1 with the spectra. For example, if no data is currently
loaded, to create 3 fake SPI spectra from the RMFs and ARFs named in the
RESPFILE_DB extension of the file realSpiData.pha :

XSPEC12> fakeit 3
// ...(various prompts will follow)...

For fake spectrum #1 response file is needed: realSpiData.pha
// ...and ancillary file: <Ret>
// . ..(more fakeit prompts)...

95

This will create 3 fake spectra, each making use of the same RMFs/ARFs, spectrum 1
using the first row of the ARFs, spectrum 2 using the second etc.

*** CAUTION - SPl/Integral ***

As currently implemented, the RESPFILE_DB method of storing ARF locations
does not retain specific row information. The assumption is that the rows in the ARF
correspond 1 to 1 with the rows in the spectral data extension. Therefore, much
confusion can arise when the row numbers of the loaded spectra do not match that of the
fake spectra. For example:

XSPEC12> data my_spi_data.pha{3-4}

// my_spi_data.pha contains a RESPFILE_DB table pointing to
arfli_fits,

// arf2_fit, arf3._fits.

// .. .(fit to some model(s))..-.
XSPEC12> fakeit

This will produce 2 fake spectra generated from the model*response operation, where the
model has parameters based on a fit to the original spectra in rows 3 and 4 of
my_spi_data.pha, which used ROWS 3 AND 4 of the 3 arf files for their own
responses. However, the responses used above to generate the 2 fake spectra will use
ROWS 1 AND 2 of the 3 arf files. This is necessary since the fake spectra will be placed
in rows 1 and 2 of their fakeit output file.

Examples:
Type I files:

For each of these examples, assume 3 spectra are currently loaded, each in its own
type | file, and that the second spectrum has a background file.

XSPEC12> fakeit

This will produce 3 fake spectra each in its own type | output file, and the user will be
prompted for the file names. The response file information will come from each of the
original spectra. If any response information is invalid, the user will then be prompted.
A fake background file will be produced for the second spectrum.

XSPEC12> fakeit 4

Produces 4 fake spectra, the first 3 created as in the previous example. The fourth will be
created with no background spectrum, and this user is prompted for response information.

XSPEC12> fakeit backa, ,none 4

Produces 4 fake spectra. For the first spectrum, a fake background file will be generated
from the file backa. The second uses its own background file as before. The third fake
spectra will no longer use the response information from loaded spectrum 3, the user will
be prompted instead, and its default numerical data will be reset to 1. The fourth
spectrum will be created as in the previous example.

If no data is currently loaded:
XSPEC12> fakeit 2

96

Produces 2 fake spectra in separate type | files, unless the first user entered response file
belongs to a format that is explicitly type Il (ie. SP1/Integral).

Type Il files:

Assume four spectra with no backgrounds have been loaded from one type Il file:
XSPEC12> data original_type2_data.pha{5-8}

Then, after model(s) have been entered and a fit:
XSPEC12> fakeit

This will produce 4 fake spectra in rows 1 to 4 of one type Il output file, with responses
and arfs taken from the columns of original_type2_data.pha.

XSPEC12> fakeit ,,backb{1-3}

This produces 5 fake spectra in two type Il output files, and 3 fake background spectra
also placed in two type Il output files:

The first 4 fake spectra are placed in one output file since that is how the 4 spectra
they were based on were originally organized. The default numerical data for this file are
taken from the original spectra. Fake spectra 3 and 4 now have backgrounds, based on
backb{1} and backb{2} respectively. These will generate 2 fake background spectra,
placed in rows 3 and 4 of the first output fake background file. Rows 1 and 2 of this file
will just consist of zeros since the first 2 spectra have no backgrounds.

The fifth fake spectrum will be placed in the second type Il PHA file. Response
and numerical data will not be based on the existing loaded spectra. A fake background
will be generated from backb{3} and placed in row 1 of the second type Il fake
background file.

Now assume no data is currently loaded:
XSPEC12> fakeit 2 backb{1}

2 fake spectra in one type Il output file are produced, as is a corresponding fake
background file with 2 rows. The fact that the user has entered a type Il background file
on the command line tells fakeit to produce type Il output. The first fake spectrum will
have no associated background, so row 1 in the fake background file will be all zeros.
Row 2 will consist of the fake background generated from backb{1}.

5.4.8 ignore: ignore detector channels
Ignore data channels.(See also notice.)

Syntax: ignore <rangel> [<range2>] ... [<rangeN>]
ignore bad

where

<rangel> =:: <spectrum range>: <channel range> | <channel

range>.

97

If no <spectrum range> is given, then the previous range is used (the initial
default range is file one (1) only). The form of <spectrum range> is

<spectrum range> =::<init spectrum> — <last spectrum> | <spectrum>

where <init spectrum>, <last spectrum>, and <spectrum> are
spectrum numbers, in the order that they were input with the data command. The form
of channel range is

<channel range> =:: <initial channel> — <last channel> | <channel>

If integers are given for the channel ranges then channels will be used while if
reals are given then energies (or wavelengths if setplot wave has been specified).
Energy and wavelength units are determined by the setplot energy and wave settings.
If only the last channel is indicated, then a default value of one (1) is used for the initial
channel. Channels remain ignored until they are explicitly noticed with the notice
command, or if a spectrum is replaced.

Examples:

Assume that 4 spectra have been read in, the first 2 with 100 channels and the last
2 with 50 channels.

XSPEC12> ignore **:1-10

/[The first 10 channels of all 4 spectra are ignored

XSPEC12> ignore 80—**

//An attempt will be made to ignore channels >80 in all four data
/] sets (as that was the last spectrum range specified). As a result,
// only channels 80-100 will be ignored for spectra 1 and 2.

/I No change will occur for spectra 3 and 4, as they have no

/I channels greater than 50.

XSPEC12> ign 4:1-20 3:30-40 45—**

//Channels 11-20 for spectrum 4 are ignored (1-10 were ignored already)
/I while channels 30-40 and 45-50 of spectrum 3 are ignored.
XSPEC12> ignore 1:1-5

/INo channels are ignored, as these were ignored at the beginning.
XSPEC12> ignore 2:1.-5.

/Ngnore all channels between 1 and 5 keV in the second dataset

5.4.9 notice: notice data channels
Notice data channels.(See also ignore.)

Syntax: notice<rangel> <range2> ... <rangeN>

98

notice all
where
<rangel> =:: <spectrum range>: <channel range> | <channel range>.

If no <spectrum range> is given, then the previous range is used (the initial default
range is file one (1) only). The form of <spectrum range> is

<spectrum range> =::<init spectrum> — <last spectrum> | <spectrum>

where <init spectrum>, <last spectrum>, and <spectrum> are spectrum
numbers, in the order that they were input with the data command. The form of channel range is

<channel range> =:: <initial channel> — <last channel> | <channel>

If <channel range> are integers then channels will be used or if reals then energies (or
wavelengths if setplot wave has been specified). Energy and wavelength units are determined by
the setplot energy and wave settings. If only the last channel is indicated, then a default value of
1 is used for the initial channel. Channels remain noticed until they are explicitly ignored with the
ignore command. When a spectrum is replaced by another spectrum, all input channels
automatically are noticed.

XSPEC12> notice all
resets all the channels to ‘noticed’.

Examples:

Assume that 4 spectra have been read in, the first 2 having 100 channels and the last 2
having 50 channels.Assume also that channels 1-10 of all four spectra are ignored and that
channels 80-100 of spectra 1 and 2 are ignored.

In XSPEC12, notice does not force the detector response to be reread (see RESPONSE
DESCRIPTION).

XSPEC12> notice **:1—10

/[The first 10 channels of all 4 spectra are noticed.

XSPEC12> notice 80—**

//an attempt will be made to notice channels >80 in all 4 spectra

/I (as that was the last spectrum range specified) but the result is that
/I only channels 80-100 will be noticed for spectra 1 and 2, with no

/I change for spectra 3 and 4 as they have no channels greater than 50.
XSPEC12> notice 1:1—5

//No channels are noticed, as these channels were noticed

/in the beginning.

99

5.4.10 response: change the detector response for a spectrum

Modify one or more of the matrices used to describe the response(s) of the associated spectrum to
incident X-rays.

Syntax: response [<filespec>...]
response [<source num>:]<spectrum num> none

where

<Filespec> =:: [[<source num>:]<spectrum num>] <file name>...,

and <file name> is the name of the response file to be used for the response of the associated
spectrum. If <file name> ends in a {n}specifier then the nth response will be read from the file.
<spectrum num> is the spectrum number for the first file name in the specification, and follows
similar rules as described in the data command description. An important difference however is that the
response command may only be used to modify the response of a previously loaded spectrum: an error
message is printed if the <spectrum num> is greater than the current number of spectra (as
determined from the last use of the data command).

An optional <source num> may be specified to attach additional responses to a spectrum, and
should be paired with <spectrum num> separated by a “:’. This allows the user to assign multiple
models, each with their own response file, to a particular spectrum. See the model command for
more information. If no <source num> is specified, it always defaults to 1. Source numbers do
not need to be assigned consecutively to a spectrum, and gaps in numbering are allowed. The
additional response may be removed with a response <source num>:<spectrum num> none
command. Both the show data and show response commands will display current information
regarding the response(s) to spectrum assignments.

A file name none indicates that no response is to be used for that spectrum. This situation means
that any incident spectrum will produce no counts for those particular channels. If a file is not
found or cannot be opened for input, then the user is prompted for a replacement response file. An
<EOF> at this point is equivalent to using none as the response. See the data command for ways to
totally remove the spectrum from consideration. The user is also prompted for a replacement if the
response file has a different number of PHA channels than the associated spectrum. A warning will
be printed out if the response detector ID is different from the associated spectrum’s. The current
ignore status for channels is not affected by the command. (See the ignore and notice commands).

Examples:
It is assumed that there are currently three spectra:
Single source usage:

XSPEC12> response a,b,c I/l New files for the response are given for all three files.
XSPEC12> response 2 none /I No response will be used for the second file.
XSPEC12> response ,d{2} /I The second response in d becomes the response for

//the second file.

100

Multiple source usage:

XSPEC12> response 2:1 e /I A second source with response e.pha is now added to
/I the first spectrum. A second model can be assigned
/1 to this source.

XSPEC12>response 2:2f 3:2 g /I A second and third source is assigned to spectrum 2.

XSPEC12> response 2:2 none // The second source is now removed from spectrum 2.

5.5 Fit Commands

5.5.1 bayes: set up for Bayesian inference

Syntax: bayes [<option> | <mod par #>] {<prior type>
<hyperparameters>}
where <option> =:: [off | on | cons]. Ifaparameter number is given as the

first argument then this command sets up the prior for the specified model parameter but does not
turn Bayesian inference on. If the first argument to the "bayes' command is not a parameter number
then one of the options ‘off’, “‘on’, or “‘cons’ is used. The first two turn Bayesian inference off or
on, while “‘cons’ turns Bayesian inference on and gives all parameters a constant prior. The options
for prior types are as follows.

Prior type Log(prior)
cons 0
exp -par/hparl- log(hparl)
jeffreys -log(par)
gauss -0.5log(2mhpar2) — 0.5(hparl-
par)’/hpar2?

Where par is the parameter value and hpar# the hyperparameter values. jeff is an abbreviation for
the Jeffreys prior, which is 1/x for an assumed Gaussian distribution of the parameter.

5.5.2 chain: run a Monte Carlo Markov Chain.

Syntax: chain [burn <length>] [clear] [filetype fits]ascii] [info]

[length <length>] [load <filename>] [proposal [<distr> <source>]]|[<user-

defined>]] [rand on]off] [run [>]<filename>] [stat <par num>] [temperature

<value>] [type mh]gw] [unload <range>] [walkers <value>]

101

If the proposal source is set to use the fit correlation matrix (the default), you must perform
a fit before running any chains.

When chains are loaded (and their parameters correspond to the currently loaded model),

they will be used by the various XSPEC commands that require distributions of parameter values,

such as eqwidth or flux when calculating error estimations. The error command itself will also
use the loaded chains, determining the error range from a central percentage of the sorted chain
values. This is likely to be faster than the error command’s standard algorithm when not using

chains.

burn <length>

clear

filetype fits]ascii

info

length <length>

load <filename>

proposal <distr> <source>

Specifies that the first <length> steps
should be thrown away prior to storing
the chain.

Does a reset and removes all chains
from the list.

Chooses the format of the output chain
file. Fits (the default) writes the
chain to a binary table in a FITS file.
ascii writes the chain to a simple text
file. Either format is readable when
using the 1oad command.

Prints out information on the current
chains.

Sets the length for new chains.

Loads a chain which has been run earlier,
stored in file given by <filename>.

Selects the proposal distribution and source of
covariance information to be used when
running new chains. The default is proposal
gaussian fit. Currently implemented
<distr> options are: gaussian and
cauchy. <source> options are:

chain

102

Covariance is taken from the currently
loaded chains.

diagonal <values> The values of a diagonal covariance

matrix are entered directly on the
command line, separated by commas
and/or spaces: C_11 C_22 ... C_nn.

<filename> Covariance is read in from a user-

specified text file. The file must contain
the values of an NxN matrix where N is
the current number of freely varying
parameters. The values of each matrix
row should be entered on one line with
whitespace separation. Since this matrix
is always symmetrical, values above the
diagonal may be omitted. For example a
2x2 matrix could be entered as:

0.98
0.150.96

Covariance is taken from the correlation
information produced by the current fit.

matrix <values> The lower half and diagonal of a

symmetrical square covariance matrix are
entered directly on the command line,

separated by commas and/or spaces:
C 11 C21C22C31C32¢C33...
C_nn

Typing chain proposal with no other arguments will
show a list of all available proposal options.

For an alternative to XSPEC’s <distr> <source>
proposal options, the user may instead want to provide
their own custom randomization algorithm. This can be
done by writing their own C++ class(es) derived from an
XSPEC randomizer base class. The custom class is added
at runtime using the same initpackage/lmod command
sequence as for local models, and is specified by
proposal <name> where <name> is the unique name
attribute the user provides for their class. Please see
Appendix G for more information on writing a custom
randomizing class, and initpackage for building and
loading it.

rand on|off

recalc

run [>]<filename>

stat [<modName>:]<parldx>

linel:

line2:

line3:
line4:

line5:

Specifies whether the chain start point
will be randomized, or taken from the
current parameters.

A deprecated option that performs the

equivalent of proposal gaussian
chain.

Runs a new chain written to the
specified file, or append to an already
loaded file if the “>” character preceeds
the filename. The chain is written to the
file as it runs so its performance can be
monitored by examining the file. For
high-chatter settings, additional
information is printed to the screen. A
long run may be interrupted with Ctrl-C,
in which case the chain file will still
exist but will not be automatically
loaded. If appending to a file, the
current filetype setting must match
the format of the file or XSPEC will
prevent it.

Writes out statistical information on a
particular parameter of the chain,
specified by the parameter index
number (with optional model name).
The information displayed is:

The mean of the parameter over each
chain file.

The parameter mean over all chain files
and the variance between chain means.

The variance within the chains.

The Rubin-Gelman convergence
criterion.

The fraction of repeats, defined as the
number of lines in the chain file for
which all parameter values are identical
to the previous line, divided by the
number of lines in the file.

103

temperature

<value>

type mh | gw

unload <range>

walkers <value>

Sets the temperature parameter used in
the Metropolis-Hastings algorithm for
the proposal acceptance or rejection.
The default value is 1.0 and zero or
negative values are forbidden. By using
the run append option, it is possible for
different sections of the chain file to use
different temperatures. The
temperatures and the line numbers to
which they apply are stored in the
header of the FITS format chain files, or
in the metadata section at the top of the
ASCII text format files.

Determines the algorithm used to
generate the chain. Choices are “mh”
(Metropolis-Hastings) or “gw”
(Goodman-Weare, the default). If using
Goodman-Weare, must also set the
walkers parameter.

Removes the chains specified by
<range> from the list in xspec. Note

that this does NOT delete the chain files.

Sets the walkers parameter for the
Goodman-Weare chain algorithm (see
type). This must be an even integer,
and both the chain length and burn
length should be divisible by it (XSPEC
will adjust the lengths to make them so
if necessary).

104

All loaded chains must contain the same fit parameters. xspec will prevent the loading of a
chain with a different number of parameters from the currently loaded chains.

Examples:

XSPEC12>chain length 100

//Sets length of chains produced by the run command to 100.

XSPEC12>chain run chain_filel.out

//Runs a chain based on current valid fit parameters, output to

5.5.3

105

//chain_filel.out

XSPEC12>chain run >chain_filel.out

//Appends another run of length 100 to the end of chain_filel._out
XSPEC12>chain load chain_old.out

//Loads a pre-existing chain file, the result of an earlier run
//command. Warning is issued if not the same length as
//chain_filel.out

XSPEC12>chain stat 3

//Prints statistical information on the 3" parameter of the chain.
XSPEC12>chain proposal gaussian myfile.txt

//New chain proposals will be a normal distribution using
//covariance values stored in myfile.txt rather than fit
//correlation matrix.

XSPEC12>chain prop gauss diag -1 .001 .0001

// New chain proposals will be a normal distribution using a 3x3
// diagonal covariance matrix with the values from the

// command line.

XSPEC12>chain temperature .8

// Sets the Metropolis-Hastings temperature value to .8 for

// Tuture chain runs, replacing the default 1.0.

XSPEC12>chain clear

/[Removes the 2 loaded chains from xspec’s chain list.

error, uncertain: determine confidence intervals of a fit
Determine the confidence region for a model parameter.

Syntax: error [[stopat <ntrial> <toler>] [maximum <redchi>] [nonew]

[<delta Ffit statistic>] [<model param range>...]]
where
<model param range> =:: [<modelName:>]<first param>-- <last param>

determines the ranges of parameters to be examined, and <delta fit statistic>

(distinguished from the model parameter indices by the inclusion of a decimal point), is the change
in fit statistic used.

For response parameters (see gain command), use rerror with identical syntax except:
<response param range> =:: [<sourceNum:>]<first param>-- <last param>
The error command uses one of two algorithms. If Monte Carlo Markov Chains are loaded

(see chain command) the error range is determined by sorting the chain values, and then taking a

106

central percentage of the values corresponding to the confidence level as indicated by <delta fit
statistic>. This s likely to be the faster of the two algorithms.

When chains are not loaded, error’s algorithm is as follows:

Each indicated parameter is varied, within its allowed hard limits, until the value of the fit
statistic, minimized by allowing all the other non-frozen parameters to vary, is equal to the last
value of fit statistic determined by the £it command plus the indicated <delta fit
statistic>, to within an absolute (not fractional) tolerance of <toler>. Note that before the
error command is executed, the data must be fitted. The initial default values are the range 1—1
and the <delta fit statistic> of 2.706, equivalent to the 90% confidence region for a single
interesting parameter. The number of trials and the tolerance for determining when the critical fit
statistic is reached can be modified by preceeding them with the stopat keyword. Initially, the
values are 20 trials with a tolerance of 0.01 in fit statistic.

If a new minimum is found in the course of finding the error, the default behavior is to abort
the calculation and then automatically rerun it using the new best fit parameters. If you prefer not to
automatically rerun the error calculation, then enter nonew at the start of the command string. The
max imum keyword ensures that error will not be run if the reduced chi-squared of the best fit
exceeds <redchi>. The default value for <redchi>is 2.0.

Since there are very many scenarios which may cause an error calculation to fail, it is
highly recommended that you check the results by viewing the 9-letter error string, which is part of
the output from the tclout error command (see tclout for a description of the error string). If
everything went well, the error string should be “FFFFFFFFF”.

Examples:

Assume that the current model has four model parameters.

XSPEC12> error 1-4

/[Estimate the 90% confidence ranges for each parameter.

XSPEC12> error 9.0

/[Estimate the confidence range for parameters 1-4 with delta fit

/] statistic = 9.0, equivalent to the 3 sigma range.

XSPEC12> error 2.706 1 31. 2

/[Estimate the 90% ranges for parameters 1 and 3, and the 1. sigma

/ range for parameter 2.

XSPEC12> error 4

/[Estimate the 1. sigma range for parameter 4.

XSPEC12> error nonew 4

/ISame as before, but calculation will NOT automatically restart if a new minimum is found.
XSPEC12> error stop 20,,3

/[Estimate the 1-sigma range for parameter 3 after resetting the number

107

/I of trials to 20.Note that the tolerance field had to be included
/l(or at least skipped over).

5.5.4 fit: fit data
Find the best fit model parameters for the current data by minimizing the current statistic.
Syntax: fit <fFit method parameters>

The arguments to fit depend on the fitting method currently in use. See the method
command for details (and for the usage of the USE_NUMERICAL_DIFFERENTIATION option
in the user’s startup Xspec.init file). Output from the fit command also depends on the fitting
method currently in use.

Using the Levenberg-Marquardt algorithm, the parameters accepted are the maximum
<number of iterations> before the user is prompted, the <critical delta>, which is the
(absolute, not fractional) change in the statistic between iterations less than which the fit is deemed
to have converged, and <critical beta>.

The <critical beta> provides an optional second stopping criterion, and it refers to the
|betal/N value reported during a Levenberg-Marquardt fit. This is the norm of the vector
derivatives of the statistic with respect to the parameters divided by the number of parameters. At
the best fit this should be zero, and so provides another measure of how well the fit is converging.
<critical beta> is set to a negative value by default, which renders it inactive.

Including the string delay as an argument to fit turns on delayed gratification. It is turned
off by nodelay. Delayed gratification modifies the way the damping parameter is set and has
been shown in many cases to speed up convergence. The default is nodelay .

If <number of iterations>, <critical delta>, <critical beta>, delay, or
node lay is entered through the fit command, it also becomes the future default value for the
currently loaded fit method (ie. Levenberg-Marquardt).

Examples:

XSPEC12> fit

/I Fit with the default number of iterations and critical delta
/I chi-squared.

XSPEC12> fit 60

/I Fit with 60 as the number of iterations.

XSPEC12> fit 50 1.e-3

I Fit with 1.e-3 as the critical delta.

XSPEC12> fit 50 1.e-3 20.

/I Same fit, but will now use |betal/N = 20.0 as another stopping criterion in addition
/I to that of the critical delta.

5.5.5

108

XSPEC12> fit delay
/I Same fit, but will now use delayed gratification.

freeze: set parameters as fixed
Do not allow indicated model parameters to vary. (See also thaw.)

Syntax: freeze [<param range>...]
where
<param range =:: [modelName:] <param#> | <param#> — <param#>.

For response parameters (see gain command):
rfreeze [<param range>...]

where
<param range =:: [source number:] <param#> | <param#> — <param#>.

The indicated model parameter or range of model parameters will be marked so they cannot

be varied by the fit command. By default,the range will be the last range input by either a freeze
or thaw command.

Examples:
Currently there are six parameters, initially all unfrozen.

XSPEC12> freeze 2

/[Parameter 2 is frozen

XSPEC12> freeze 4-6

/[Parameters 4, 5, and 6 are frozen.

XSPEC12> thaw 2 3-5

/[Parameters 2, 4, and 5 are thawed, parameter 3 is unaffected.
XSPEC12> freeze

/[Parameters 3,4,5 are frozen (the last range input by a freeze
/lor thaw command).

XSPEC12> rfreeze 4-6

/IResponse parameters 4, 5, and 6 are frozen.

5.5.6 ftest: calculate the F-statistic from two chi-square values

Calculate the F-statistic and its probability given new and old values of 2° and number of

degrees of freedom (DOF).

109

Syntax: ftest chisg2 dof2 chisgql dofl

The new 7° and DOF, chisg2 and dof2, should come from adding an extra model
component to (or thawing a frozen parameter of) the model which gave chisql and dofl.If the F-
test probability is low then it is reasonable to add the extra model component. WARNING : it is not
correct to use the F-test statistic to test for the presence of a line (see Protassov et al 2002, ApJ 571,
545). WARNING: this command can only be used if the extra model component is additive, this
does not give the correct result if the component is multiplicative (see Orlandini et al. 2012, ApJ
748, 86).

5.5.7 goodness: perform a goodness of fit Monte-Carlo simulation
Perform a Monte Carlo calculation of the goodness-of-fit.
Syntax: goodness [<# of realizations>] [sim | nosim]

This command simulates <# of realizations> spectra based on the model and writes
out the percentage of these simulations with the fit statistic less than that for the data. If the
observed spectrum was produced by the model then this number should be around 50%. This
command only works if the sole source of variance in the data is counting statistics. The
sim]nosim switch determines whether each simulation will use parameter values drawn from a
Gaussian distribution centered on the best fit with sigma from the covariance matrix. The sim
switch turns on this option, nosiim turns it off in which case all simulations are drawn from the
best-fit model. The default starting setting is nosim.

5.5.8 margin: MCMC probability distribution.

Use the currently loaded MCMC chains to calculate a multi-dimensional probability
distribution.

Syntax: margin <step spec.> [<step spec.> ...]

where <step spec.> ::= [{LOG or NOLOG}] [<model name>:]<Ffit param index>
<low value> <high value> <no. steps>. The indicated fit parameter is stepped from ‘<low
value>’ to “<high value>" in ‘<no. steps>+1’ trials. The stepping is either linear or log. Initially,
the stepping is linear but this can be changed by the optional string ‘log’ before the fit parameter
index. ‘nolog’ will force the stepping to be returned to the linear form. The number of steps is set
initially to ten. The results of the most recently run margin command may be examined with plot
margin (for 1-D and 2-D distributions only). This command does not require that spectral data
files are loaded, or that a valid fit must exist.

Examples:

110

Assuming chain(s) are loaded consisting of 4 parameters.
XSPEC12>margin 1 10.0 12.0 20 log 3 1.0 10.0 5

//Calculate a 2-D probability distribution of parameter 1 from 10.0-12.0 in 20
linear bins, and parameter 3 from 1.0-10.0 in 5 logarithmic bins.

XSPEC12>margin 2 10.0 100.0 10 nolog 4 20. 30. 10

//Now calculate for parameter 2 in 10 log bins and parameter 4 in 10 linear
bins.

5.5.9 renorm: renormalize model to minimize statistic with current
parameters

Renormalize model, or change renorm conditions.
Syntax: renorm [AUTO | NONE | PREFIT]

The renorm command will adjust the normalizations of the model by a single multiplication
factor, which is chosen to minimize the fit statistic.Such a renorm will be performed explicitly
whenever the command is used without a key-word, or during certain XSPEC commands, as
determined by the following key-words:

AUTO - Renormalize after a model or newpar command, and at the beginning of a fit
PREFIT - Renormalize only at the beginning of a fit
NONE - Perform no automatic renormalizations, i.e., only perform them when a

renorm command is given explicitly.

5.5.10 steppar: generate the statistic “surface” for 1 or more parameters

Perform a fit while stepping the value of a parameter through a given range. Useful for
determining confidence ranges in situations where greater control is needed than given with the
error command.

Syntax: steppar [<current|best>] <step spec> [<step spec>...]
where

<step spec> ::= [<log | nolog>] [<xmodelName>:]<param index> <low value> <high value> <# steps>
or

<step spec> ::= [<log | nolog>] [<xmodelName>:]<param index> delta <step size> <# steps>

In the first case the parameter is stepped from <low value>to <high value> in <#
steps> plus one trials. In the second case the parameter is stepped from <best fit value>-<step
size>*<# steps> to <best fit value>+<step size>*<# steps>, ie a total of 2<# steps>+1 trials. The
stepping is either linear or log. Initially, the stepping is linear but it can be changed by the optional
string log before the parameter index. nolog will force the stepping to be returned to the linear

111

form. If more than one parameter is entered, then <# steps> must be entered for each one except
the last. Note that every variable parameter whose <param index> is NOT entered in the command
will still be allowed to vary freely during each steppar iteration.

To perform a steppar run on gain (or response) parameters, the optional [<modelName>:]
specifier is replaced by an optional [<sourceNumber>:] specifier, and the letter ‘r’ needs to be attached
as a prefix to the <parameter index>. For example:

steppar 2:r3 1.5 2. 10
will step the third response parameter belonging to source number 2.

The number of steps is set initially to 10. At each value, the parameter is frozen, a fit
performed, and the resulting value of chi-squared given. If best is given as an argument then the
non-stepped parameters are reset to the best-fit values at each grid point. Alternatively, if current is
given as an argument then the non-stepped parameters are started at their values after the last grid
point (the default).

If multiple <step spec> are given for different parameters, then a raster scan of the
parameter ranges is performed. At the end of the set, the parameters and chi-squared are restored to
the values they had initially.

If the model is in a best-fit state when a steppar run is started and a new best fit is found
during the run, the user will be prompted at the end of the run to determine if they wish to accept
the new best-fit values for their parameters. This prompting can be disabled by the setting of the
query flag.

Depending on the machine, a steppar run may be sped up significantly by assigning it to
multiple processes. See the parallel command with the steppar option for more details.

Examples:

Assume that the current model has four parameters:

XSPEC12> steppar 3 1.5 2.5
//Step parameter 3 from 1.5 to 2.5 in steps of .1.
XSPEC12> steppar log
//Repeat the above, only use multiplicative steps of 1.0524.
XSPEC12> step nolog 2 -.2 .2 20
//Step parameter 2 linearly from -.2 to .2 in steps of 0.02.
XSPEC12> step 2 delta 0.02 5
//Step parameter 2 linearly from the best-fit value-0.1 to
//the best-fit value+0.1 in a total of 11 steps.

5.5.11 thaw: allow fixed parameters to vary.
Allow indicated parameters to vary. (See also freeze).
Syntax: thaw{[<param range>...]}
where
<param range> =:: [modelName:]<param #> | <param #>-- <param #>

For response parameters (see gain command):
rthaw {[<param range>...]}

112

where

<param range> =:: [sourceNum:]<param #> | <param #>-- <param #>

The indicated parameter, or range of parameters, will be marked as variable by the fitting
commands and treated as a fitting parameter in subsequent fits. By default, the range will be the
last range input by either a freeze or thaw command. See the freeze examples for an example of the
use of the thaw command.

5.5.12 weight: change weighting used in computing statistic
Change the weighting function used in the calculation of chi-squared.

Syntax: weight [standard | gehrels | churazov | model]

Standard weighting uses JN or the statistical error given in the input spectrum. Gehrels weighting

uses 1++/N +0.75, a better approximation when N is small (Gehrels, N. 1986, ApJ 303, 336).
Churazov weighting uses the suggestion of Churazov et al. (1996, ApJ 471, 673) to estimate the
weight for a given channel by averaging the counts in surrounding channels. Model weighting uses
the value of the model, not the data, to estimate the weight.

5.6 Model Commands

Overview of XSPEC12 Changes: In XSPEC12 several models can exist simultaneously,
unlike XSPECL11. Different models are distinguished by name, which is a character string assigned
by the user. The purpose of this is to allow an intuitive syntax for creating multiple models
simultaneously fit to data, assigned to a corresponding number of sources. The familiar XSPEC11
syntax is, however, fully supported by assigning an internal symbol name.

For example, INTEGRAL/SPI data is modeled using 2 or more sources, one assigned to the
background, and one or more assigned to objects resolved by the coded mask.

XSPEC12>data rev_001234{1-19}
XSPEC12>model 1:sourcel phabs(cutoffpl)

XSPEC12>model 2:source2 phabs(powerlaw)
XSPEC12>model 3:bkg spibk

Note that a source number must precede the name to avoid confusion with model
expressions. The “normal” case, fitting to a single source, corresponds to source 1.

113

When the fit command is given the parameters of the model will be labeled sourcel:1,
sourcel:2,...source2:1, source2:2,...bkg:1, bkg:2, etc.

Another use for multiple models is to name a model, fit with it, and then mark it as
“inactive,” i.e. not fit to data. A second model may then be defined and fit to the data, and
afterward be interchanged. This is designed to allow the user to compare the fits from competing
models without recalculation.

Apart from the removal of the pre-XSPEC10 model expression format, which was
previously declared deprecated and is now no longer recognized, this new functionality provides a
proper superset of the XSPEC11 syntax. The command

XSPEC12> model wa(po)

Creates a “default” model which takes an internal (hidden) symbol as a name. Its
parameters are sequenced from 1 as in XSPEC11.

Another enhancement is in the newpar command. XSPEC12’s expression analyzer
developed for parsing model expressions is also used for parameter links. Thus newpar link
expressions can be polynomials in multiple parameters, such as

XSPEC12> newpar parl = par2*par2
or
XSPEC12> newpar parl = 0.5*par3 + 1.5*pard

In sum, most of the syntax enhancements added to XSPEC12 support the presence of
multiple models. The need to identify parameters of different models uniquely requires that their
name and number be specified, which requires enhancements in the syntax not only in the model-
related commands model, addcomp, delcomp, and editmod but also the parameter-related
commands newpar, freeze, thaw, untie, steppar, and error. However, if the model is not named,
all of these commands can be used identically as in XSPEC11.

5.6.1 addcomp: add component to a model
Add a component to the model.
Syntax: addcomp [modelName:]n <comp>

where n is the component number before which the new component is to be inserted, and
<comp> is the name of the new component. Components are numbered in sequence in order of
appearance in the expression entered. The new component is regarded as an operator on the
component added if it is not additive.

The optional modelName qualifier allows the user to address a named model.

The user is prompted for parameter values for the component. If there are m components in
the current model, then acceptable values for the component number added are 1 to m+1.

114

XSPEC detects the type of the model (additive, multiplicative etc), checks the correctness
of the syntax of the output model, and adds the component if the resulting models obeys the syntax
rules documented in the model command.

Thus,

XSPEC12> mo wa(po)

Followed by
XSPEC12> addcomp 2 bb

Yields the model achieved by
XSPEC12> mo wa(bb + po)

See also delcomp (delete component by number).
Other Examples will serve to clarify addcomp’s behavior.
Suppose that the current model specification is
gat+po
which using the show command would yield the description
model = gaussian[1] + powerlaw[2]

The comments give the model expression following the entry of addcomp and delcomp
commands:

XSPEC12> addcomp 2 wab

//gaussian[1]+wabs[2] (powerlaw[3])
XSPEC12> addcomp 4 pha

//(gaussian[1]+wabs[2] (powerlaw[3]))phabs[4]1}
XSPEC12> delcomp 1

//(wabs[1] (powerlaw[2]))phabs[3]}
XSPEC12> addcomp 2 zg

//(wabs[1] (zgauss[2]+powerlaw[3]))phabs[4]}
XSPEC12> delcomp 3
//(wabs[1](zgauss[2]))phabs[3]

XSPEC12> mo wa(po)

XSPEC12> addcomp 1 ga

// gauss[1] + wabs[2]*powerlaw[3]
XSPEC12> delcomp 1

XSPEC12> addcomp 1 pha

// phabs[1]*wabs[2]*powerlaw[3]

XSPEC12>mo wabs(po)

XSPEC12> addcomp 3 bb

// wabs[1]*powerlaw[2] + bbody[3]
XSPEC12> delcomp 1

XSPEC12> addcomp 3 pha

115

// wabs[1]*powerlaw[2]*pha[3]

XSPEC12> addcomp 3 po

// ERROR: po (additive) is interpreted as being added to the multiplicative
// model pha[3], which is a context error.

For multiply nested models..

XSPEC12> mo wa(po + pha(bb + ga))

XSPEC12> addcomp 6 po

// wabs[1](powerlaw[2] + phabs[3](bbody[4] + ga[5]) + powerlaw[6])

XSPEC12> addcomp 5 peg

// wabs[1l](powerlaw[2] + phabs[3](bbody[4] + pegpwlw[5] ga[6]) + powerlaw[7])
XSPEC12> addcomp 7 wa

// wabs[1](powerlaw[2] + phabs[3](bbody[4] + pegpwlw[5] ga[6]) +
wabs[7]*powerlaw[8])

5.6.2 addline: add spectral lines to a model
Tcl script to add one or more lines to the current model in an optimum fashion.

Syntax: addline [<nlines>] [<modeltype>] [{fit|nofit}]

<nlines> additional lines are added one at a time. Line energies are set to that of the largest
residual between the data and the model. For each line a fit is performed with the line width and
normalization as the only free parameters. The default option is one gaussian line. The other
<modeltype> that can be used is lorentz. If no third argument is given then the sigma and
normalization of each line are fit. If “"nofit" is specified then the fit is not performed but if ~fit" is
specified then all free parameters are fit.

addline currently will only work with the default model (i.e. not for named models).

5.6.3 delcomp: delete a model component
Delete one or more components from the current model.
Syntax: delcomp [modelName:]<comp num range>
where
<comp num range>
is range of positions in the model specification of the components to be deleted.
Examples:
Suppose that the current model specification is
wa(po+gat+ga).
Then

116

XSPEC12> delcomp 3-4

//Changes the model to wa(po)
XSPEC12> delcomp 1

//Changes the model to po

5.6.4 dummyrsp: create and assigh dummy response
Create a “dummy” response, covering a given energy range.

Syntax: dummyrsp [<low Energy> [<high Energy> [<# of ranges>[<log or
linear> [<channel offset> [<channel width> [<source_Num:spec_Num>]111111]

This command creates a dummy response matrix based on the given command line
arguments, which will either temporarily supersede the current response matrix, or create a
response matrix if one is not currently present. There are two main uses for this command: to do a
“quick and dirty” analysis of uncalibrated data (mode 1), and to examine the behaviour of the
current model outside the range of the data's energy response (mode 2). Note that mode 2 usage
has now been rendered redundant by the more flexible energies command.

All parameters are optional. The initial default values for the arguments are 0.01 keV, 100
keV, 200 logarithmic energy steps, 0.0 channel offset, and 0.0 channel width. The default values of
the first 5 parameters will be modified each time the parameter is explicitly entered. The channel
width parameter however always defaults to 0.0 which indicates mode 2 operation, described
below.

In addition to the 6 optional parameters allowed for versions 11.x and earlier, a seventh
optional parameter has been added allowing the user to apply the dummy response to just one
particular source of a spectrum. It consists of two integers for (1-based) source number and
spectrum number, separated by a colon. Either both integers should be entered, or they should be
left out entirely. ie. A dummy response is either made for EVERY source in every spectrum, or
just 1 source in 1 spectrum. This parameter always defaults to all sources and all spectra.

For mode 1 usage, simply enter a non-zero value for the channel width. In this instance,
one has a spectrum for which typically no response matrix is currently available. This command
will create a diagonal response matrix with perfect efficiency, allowing for the differences in
binning between the photon energies and the detector channel energies (see example below). The
response matrix will range in energy from <low Energy>to <high Energy>, using <# of
ranges> as the number of steps into which the range is logarithmically or linearly divided. The
detector channels are assigned to have widths of energy <channel width> (specified in keV),
the lower bound of the first channel starting at an energy of <channel offset>. Then the data
can be fit to models, etc., under conditions that assume a perfect detector response.

For mode 2 usage (channel width = 0.0), one can use this command to examine the current
model outside the range of the energy response of the detector. When examining several aspects of
the current model, such as plotting it or determining flux, XSPEC uses the current evaluation array.
This, in turn, is defined by the current response files being used, which depend on the various
detectors. For example, low energy datasets (such as those from the EXOSAT LESs) may have
responses covering 0.05 to 2 keV, while non-imaging proportional counters can span the range
from 1 to 30 keV. If the user wishes to examine the behavior of the model outside of the current

117

range, then he or she temporarily must create a dummy response file that will cause the model to be
evaluated from <low energy>to <high energy>, using <# of ranges> as the number of
steps into which the range is logarithmically or linearly divided. If one wishes only to set the
energy response range, than the <channel width> argument may be omitted. In this case, or in
the case where no data file has been read in, all entries of the dummy response matrix are set to
zero. Under these circumstances the dummyrsp has no physically correct way of mapping the
model into the data PHA channels, so the user should not try to fit—or plot-the data while the
dummyrsp is active in this mode. Also, data need not even be loaded when calling this command
in mode 2.

The previous response matrices can be reimplemented with the response command, with
no arguments. Any use of the data and notice commands will replace the dummy response with
a correct set of matrices, or with no response matrix if none was originally present.

Examples:

XSPEC12> dummyrsp
//Create the dummy response for all spectra and sources with the
//default limits, initially .01, 100, and 200 bins.

XSPEC12> dummyrsp .001 1
//Create a dummy response with 200 bins that cover the range from
//0.001 to 1 keV.

XSPEC12> dummyrsp ,,,500
//The same range, but now with 500 bins.

XSPEC12> dummyrsp ,,,,lin
//The same range, but now with linearly spaced bins.

XSPEC12> dummyrsp ,,,,,0-1
//The same range, but now create a diagonal response matrix, with
//channel widths of 0.1 keV.

XSPEC12> response
//Restore any previous correct responses.

Example dummy response matrix:
Assume a spectrum with 4 channels, then
XSPEC12> dummyrsp .0 30.0 3 lin 5.0 8.0

will produce the following response:

Detector channel energies

5.0-13.0 130-21.0 |21.0-290 |29.0-37.0
. 00-100 |05 0 0 0
:E)')’ 100-200 |0.3 0.7 0 0
Y 200-300 |0 0.1 0.8 0.1

118

5.6.5 editmod: edit a model component
Add, delete, or replace one component in the current model.

Syntax: editmod [<delimiter>] <componentl> <delimiter> <component2>
<delimiter> ... <componentN> [<delimiter>]

where
<delimiter>

is some combination of (,+,*,and), and <componentJ> is one of the models known to XSPEC.

The arguments for this command should specify a new model, with thesame syntax as the
previous model, except for one component whichmay be either added, deleted, or changed to a
different component type. XSPEC then compares the entered model with the current
model,determines which component is to be modified (prompting the user if necessary to resolve
ambiguities) and then modifies the model,prompting the user for any new parameter values which
may be needed.

Examples:

XSPEC12> mo wabs(po)

XSPEC12> ed wabs(po+ga)
//This command will add the component gauss to model
// in the specified place and prompt the user for its initial
// parameters.

XSPEC12> mo wabs(po+zg)

XSPEC12> ed po+zg
//This command will delete the component wabs from the
//model, leaving the other components and their current
//parameter values unchanged

XSPEC12> mo wabs(po+po)

XSPEC12> ed wabs(po)
//Here an ambiguity exists as to which component to delete.
//1n this case XSPEC will print out the current model,
//showing the component number for each component, and then
//prompt the user for which component he wants deleted.

XSPEC12> mo wabs(po+ga)

XSPEC12> ed wabs(po+zg)
//The component gauss will be replaced by the component zgauss,
//and the user will be prompted for parameter values for the new
// component

5.6.6 energies: specify new energy binning for model fluxes

Supply an energy-binning array to be used in model evaluations in place of their associated
response energies. The calculated model spectra are then interpolated onto the response energy
arrays before multiplying by the response matrix. This command replaces and enhances the extend
command from earlier versions.

Syntax: energies <range specifier> [<additional range specifiers>...]

119

energies <input ascii file>
energies extend <extension specifier>
energies reset
where the first <range specifier> ::= <low E> <high E> <nBins> log | lin
<additional range specifiers> ::= <high E> <nBins> log | lin
<extension specifier> ::= low | high <energy> <nBins> log | lin
All energies are in keV. Multiple ranges may be specified to allow for varied binning in different
segments of the array, but note that no gaps are allowed in the overall array. Therefore only the

first range specifier accepts a <low E> parameter. Additional ranges will automatically begin at the
<high E> value of the previous range.

The extend option provides the same behavior as the old extend command. Models will use
associated response energy arrays, with an additional low and/or high array extension. <energy> is
the value to which the array is extended, using <nBins> additional log or linear bins.

With the <input ascii file> option, the user can instead supply a customized energy array from a
text file. The format requirements are simply that the bin values must appear 1 to a line and in
ascending sorted order. Blank lines are allowed and so are comments, which must be preceded by
a‘#’. A simple example:

myEnergyBinning.txt

1

1.0

10. # now some linear bins

15.

20.

25.

which would actually produce the same energy array as:
energies .1 10. 2 log 25. 3 lin

Once an energy array is specified, it will apply to all models, and will be used in place of any
response energy array (from actual or dummy responses) for calculating and binning the model
flux. It will also apply to any models that are created after it is specified. To turn off this behavior
and return all models back to using their response energies, simply type “energies reset”.

Similarly, an array extension created by the “extend” option will continue to be applied to all
models until it is either overwritten by another extension, replaced by a new energies array, or
removed with the “reset” option. This allows both low and high extensions to exist together.

When a custom-energy binned model flux array needs to be multiplied by a response matrix, xspec
will temporarily rebin the flux array to match up with the response energy binning. This is done by
simply scaling the flux by the fractional overlap between the custom and response bins. If there is

no overlap between the custom and response energies, then the response will be multiplied by zero.

The energies command saves the most recently entered range and extension specifiers to be used as
default values the next time it is called. The initial default range specifier is 1 range with <low E>

120

=.1, <high E> = 10., <nBins> = 1000, and 1in. The initial default extension specifier is high with
<energy> = 100., <nBins> = 200, and log.

Examples:

XSPEC12> energies ,50,,log

// Creates an array from .1 to 50. of 1000 logarithmic bins.
XSPEC12> energies ,,,,100. 5 lin

// Modifies previous array by adding 5 linear bins from 50. to 100.
XSPEC12> energies ,,,,200.

// The 2™ range is now 50. to 200. in 5 linear bins.
XSPEC12> energies 1.,,100

// Array is now just 1 range, 1. to 50. in 100 logarithmic bins.
XSPEC12> energies myFile.txt

// Array is replaced with values stored in myFile.txt
XSPEC12> energies extend ,75.,,11In

// NModels will go back to using response energies, but with an

// extension of the high end to 75. keV in 100 additional linear bins.
XSPEC12> energies extend low .01

// Add a low-end extension to .01 keV with 100 new linear bins.
XSPEC12> energies reset

// All models will go back to using the original energy arrays

// from responses.

5.6.7 eqwidth: determine equivalent width
Determine the equivalent width of a model component.

Syntax: eqwidth [[RANGE <frac range>] <[model name:]model component number>]
[err <number> <level> | noerr]

The command calculates the integrated photon flux produced by an additive model component
(combined with its multiplicative and/or convolution pre-factors) (FLUX), the location of the peak
of the photon spectrum (E), and the flux (photons per keV) at that energy of the continuum
(CONTIN). The equivalent width is then defined as {EW = FLUX / CONTIN} in units of keV.
New for version 12: the continuum is defined to be the contribution from all other components of
the model.

There are certain models with a lot of structure where, were they the continuum, it might be
inappropriate to estimate the continuum flux at a single energy. The continuum model is integrated
(from E(1—<frac range)>to E(1+<frac range)>. The initial value of <frac range>is
0.05 and it can changed using the RANGE keyword.

The err/noerr switch sets whether errors will be estimated on the equivalent width. The
error algorithm is to draw parameter values from the distribution and calculate an equivalent width.
<number> of sets of parameter values will be drawn. The resulting equivalent widths are ordered
and the central <level> percent selected to give the error range. You can get the full array of
simulated equivalent width values by calling ‘tclout eqwidth’ with the ‘errsims’ option (see tclout
command).

121

When Monte Carlo Markov Chains are loaded (see chain command), they will provide the
distribution of parameter values for the error estimate. Otherwise the parameter values distribution
is assumed to be a multivariate Gaussian centered on the best-fit parameters with sigmas from the
covariance matrix. This is only an approximation in the case that fit statistic space is not quadratic.

Examples:

The current model is assumed to be My(A;+Ax+A3z+A,+M3(As)), where the My, models are
multiplicative and the A, models are additive.

XSPEC12> eqwidth 3
// Calculate the total flux of component M;A, (the third
// component of the model with its multiplicative pre-factor)
// and find its peak energy (E). The continuum flux is
// Tound by the integral flux of M;(A;+As+A;+M>(As5)), using the
// range of 0.95E to 1.05E to estimate the flux.
XSPEC12> eqwidth range .1 3
// As before, but now the continuum is estimated from
// its behavior over the range 0.9E to 1.1E.
XSPEC12> eqwidth range 0 3
// Now the continuum at the single energy range (E)
// will be used.
XSPEC12> egwidth range .05 2
// Now the component M;A; is used as the feature, and
// N1(A+As+A,+M>(As)) are used for the continuum. The range
// has been reset to the original value.
XSPEC12> eqwidth 1
// 1llegal, as M; is not an additive component.

5.6.8 flux: calculate fluxes
Calculate the flux of the current model between certain limits.

Syntax: flux [<lowEnergy> [<hiEnergy>]] [err <number> <level> |
noerr]

where <lowEnergy>and <hiEnergy> are the values over which the flux is
calculated.Initial default values are 2 to 10 keV.

-2 S—l -2 S—l

The flux is given in units of photons cm and ergs cm . The energy range must be
contained by the range covered by the current spectra (which determine the range over which the
model is evaluated).Values outside this range will be reset automatically to the extremes. Note that
the energy values are two separate arguments, and are NOT connected by a dash. (see parameter
ranges in the freeze command).

The flux will be calculated for all loaded spectra. If no spectra are loaded (or none of the
loaded spectra have a response), the model is evaluated over the energy range determined by its
dummy response. (In XSPEC12, models are automatically assigned default dummy responses
when there is no data, so the dummyrsp command need not be given.) If more than 1 model has
been loaded, whichever model the user has specified to be the active one for a given source is the
one used for the flux calculation.

122

The results of a flux command may be retrieved by the “tclout flux <n>" command where n
is the particular spectrum of interest. If the flux was calculated for the case of no loaded spectra,
the results can be retrieved by “tclout flux” with the <n> argument omitted.

The err/noerr switch sets whether errors will be estimated on the flux. The error
algorithm is to draw parameter values from the distribution and calculate a flux. <number> of sets
of parameter values will be drawn. The resulting fluxes are ordered and the central <level>
percent selected to give the error range. You can get the full array of simulated flux values by
calling “tclout flux” with the “errsims’ option (see tclout command).

When Monte Carlo Markov Chains are loaded (see chain command), they will provide the
distribution of parameter values for the error estimate. Otherwise the parameter values distribution
is assumed to be a multivariate Gaussian centered on the best-fit parameters with sigmas from the
covariance matrix. This is only an approximation in the case that fit statistic space is not quadratic.

There is also a model component cflux which can be used to estimate fluxes and errors for
part of the model. For instance, defining the model as wabs(pow + cflux(ga)) provides a fit
parameter which gives the flux in the gaussian line.

Examples:

The current data have significant responses to data within 1.5 to 18 keV.

XSPEC12> flux
//Calculate the current model flux over the default range.
XSPEC12> flux 6.4 7.0
//Calculate the current flux over 6.4 to 7 keV
XSPEC12> flux 1 10
//The flux is calculated from 1.5 keV (the lower limit of the
//current response®s sensitivity) to 10 keV.

5.6.9 gain: modify a response file gain

Modify a response file gain, in a particularly simple way. *CAUTION* This command is
to be used with extreme care for investigation of the response properties. To properly fit data, the
response matrix should be recalculated explicitly (outside of XSPEC) using any modified gain
information derived.

The gain command shifts the energies on which the response matrix is defined and shifts
the effective area curve to match. The effective area curve stored by XSPEC is either the ARF, if
one was in use, or is calculated from the RSP file as the total area in each energy range. This
means that if there are sharp features in the response then these will only be handled correctly by
the gain command if they are in the ARF or if no ARF is input. The new energy is calculated by

E' = E/<slope> - <intercept>
where <intercept> is in units of keV.

Syntax: gain [<sourceNum>:]<specNum> <slope> <intercept>
gain fit [[<sourceNum>:]<specNum>]
gain nofit { [[<sourceNum>:]<specNum>] | all }

123

gain off

The first variant of the gain command shown above will apply the gain shift specified by
the <slope> and <intercept> parameters to the response belonging to spectrum <specNum>, and
optionally specified <sourceNum> if the data is analyzed with multiple models. The initial default
<specNum> is 1; later, the default is the number of the spectrum last modified. Initially, all
responses are assumed to have nominal gains, determined implicitly by the data in the response
files. This is equivalent to a <slope> of 1 and an <intercept> of zero. All responses can be reset
back to this original state by entering gain off. Note that in this mode of usage, the slope and
intercept values do NOT become variable fit parameters. They are simply fixed values used to
modify the response.

The gain fit mode is used when the user wishes to have the slope and intercept parameters
determined by the results of a fit. The <specNum> and optional <sourceNum> parameters specify
to which response the fit gain values are to be applied. These may be omitted only if a single
spectrum is loaded, with a single model source. Otherwise at least a spectrum number is required.
The user will then be prompted for slope and intercept parameter information in the same way as
model parameters are normally entered. These values are then immediately applied to the
response, and will be adjusted the next time a fit is run.

Gain fit parameters belong to the more general category of response parameters in
XSPEC, and may be modified using an equivalent set of commands to those used for regular model
parameters. The command names are the same except prefixed by the letter “‘r’:

XSPEC commands for Equivalent commands for
editing/viewing model gain (or response)
parameters parameters

newpar rnewpar

freeze rfreeze

thaw rthaw

untie runtie

error rerror

model rmodel

show par show par, show rpar

For example after assigning gain fit parameters to source 1 of spectrum 1 (with “gain fit
17):
XSPEC12> rfreeze 1
XSPEC12> rnewpar 2 .05
XSPEC12> show rpar

124

Response parameters defined:

Source No.: 1
Rpar Spectrum Rmodel Rpar_name Unit Value

1 1 gain slope 1.00000 frozen
2 1 gain offset 5.00000E-02 +/- 0.0

Rnewpar can also link gain parameters to one another and can adjust the hard and soft
parameter limits, as newpar does for model parameters. The default gain parameter hard limits are
hardcoded in XSPEC, but these can be overridden by setting GSLOP_MIN, GSLOP_MAX,
GOFFS_MIN, and GOFFS_MAX keywords in the matrix extension of your response file.

The gain operation itself belongs to the category of response functions, which in future
versions of XSPEC may be defined with rmodel just as regular XSPEC model functions are
defined with model. Though gain is currently the only available response function, the following
command will work:

// Apply gain to the response belonging to source 2 of spectrum 1
XSPEC12>rmodel 2:1 gain

which is equivalent to:

XSPEC12>gain fit 2:1

The nofit argument switches off the fitting and leaves the gain at the current values of the
parameters. Unless the argument all is given, it is applied to a single response specified by
<specNum> and optional <sourceNum>. As with gain fit, both arguments may be omitted if only a
single spectrum with 1 source is loaded. When all is specified, fitting is switched off for the gain
parameters of all responses. gain off will switch off fitting for all gain parameters, and will reset
all of them to their nominal value.

Whenever a new response file is defined for a spectrum, the response will return to the nofit
state with nominal value. The ignore and notice commands however will not affect the current
gain of the response. THE GAIN COMMAND IS NOT CURRENTLY IMPLEMENTED FOR
DUMMY RESPONSES.

. Examples:
XSPEC12>gain 1 0.98
/I The response belonging to spectrum 1 is adjusted with a slope of 0.98.
/I The 1 may be omitted if only 1 spectrum (with 1 source) is loaded.
XSPEC12>gain 1,,.03
/I The offset also is moved now by 0.03 keV.
XSPEC12>gain 2:41.10.1
/I The response belonging to source number 2, spectrum 4, is adjusted with slope 1.1

125

/[and offset 0.1 keV.

XSPEC12>gain off

/I The above 2 responses, and any others that have been adjusted, are reset to slope

/1 1.0, offset 0.0.

XSPEC12> gain fit 3

/I Variable fit parameters are created for spectrum 3 response. User will be prompted
/[for starting fit parameter values of slope and offset.

XSPEC12> fit

// Best fit gain values will now be determined for and applied to spectrum 3 response.
XSPEC12> gain nofit 3

/I Spectrum 3 response will retain its current gain values, but values will not be

/I adjusted during future fits.

NOTE: Current gain information may be easily viewed with the show response command. Gain
fit parameters may also be viewed with the show par or show rpar commands.

° Historical notes

The gain command has been slightly revised for XSPEC12. Previously when a user entered
a gain command, it was generally interpreted to apply to an entire model. This new
implementation clearly defines an applied gain as belonging to a particular response. It also offers
less ambiguity for dealing with XSPEC12’s multiple models scheme. So for example if 2 spectra
are loaded, each in its own data group, and the user enters a gain fit command, under the old
system they would be prompted for 2 sets of parameters since the model is applied to 2 data
groups. With the new system, the user specifies which particular response (belonging to either
spectrum 1 or 2) they wish to apply the gain fit to, and are then prompted for just the 1 set of gain
parameters for that response. This is more clearly demonstrated with the examples below. The
new command options *“gain nofit all” and “gain off” are also described below.

*** NOTE: Backwards incompatible syntax change ***

Beginning with XSPEC 12.5.1, gain parameters must be specified as
[<sourceNum>:]<specNum> and NOT <specNum>[:<sourceNum>]. This reversal was made so
that the gain command conforms to the [<sourceNum>:]<specNum> usage in other XSPEC
commands, such as response and arf.

5.6.10 identify: identify spectral lines
List possible lines in the specified energy range.

126

Syntax: identify <energy> <delta_energy> <redshift> <line_list>

The energy range searched is <energy >*A < energy > (keV) in the rest frame of the
source. If working in wavelength mode, as set by the setplot command, then the <energy> and
<delta energy> parameters should be entered as wavelengths (in Angstroms). <line list>
specifies the list of lines to be searched. The options are bearden, which searches the Bearden
compilation of fluorescence lines (Bearden, J.A., 1967, Rev.Mod.Phys. 39, 78), mekal, which uses
the lines from the mekal model (g.v.) and apec, which uses the APEC
http://cxc.harvard.edu/atomdb line list. The apec option takes an additional two arguments: the
temperature of the plasma (keV) and a minimum emissivity of lines to be shown. If the command
xset has been used to set APECROOT then identify uses the APECROOT value to define the new
atomic physics data files. See the help on the apec model for details.

5.6.11 initpackage: initialize a package of local models

The initpackage command initializes a package of local models from their source code and
from a model component description file in “model.dat” format which defines the component’s
name, type, function call, and its parameter names and initial settings. Further details of the file
format, function and parameter specifications are given in Appendix C, Adding Local Models To
XSPEC. [Note: initpackage is now also supported on Cygwin. The former Cygwin-only
static_initpackage command has been removed.]

Syntax: initpackage <name> <description file> [<directory>] [-udmget]

The <name> argument names the package. For internal reasons package names must be
lowercase: the initpackage command will force lower case and warn the user if the argument
contains uppercase letters. Also there should be no numerals in the package name.

The <description file> argument specifies the model component description file. The third
argument <directory> is optional and specifies the location of the source code. If it is not given, the
value of the setting LOCAL_MODEL_DIRECTORY given in the user’s Xspec.init file will be
used. Finally, the <description file>, if not specified as an absolute pathname, will be read from the
same directory as the source code.

Another optional argument is “-udmget”, for local model libraries containing Fortran code
which makes use of XSPEC’s now-obsolete udmget function for dynamic memory allocation.
None of the functions in XSPEC’s built-in models library use udmget anymore, and the necessary
xsudmget.cxx file no longer resides there. If a user still requires this code for their own local
models, they should add “-udmget” (without the quotes) at the end of the comamnd line.
initipackage will then copy the files xsudmget.cxx and xspec.h into the user’s local model
directory.

initpackage performs the following tasks:

reads the model description file

writes code that will load the new component calculation functions

writes a makefile that will drive the compilation and installation of the new code
invokes the compiler and builds the library.

127

A separate command, Imod, actually loads the library.This two step process makes it easier
to determine where the user is during the process if compilation failures arise. Further, if the model
is complete and working correctly, only the Imod command need be invoked.

Initpackage can also be run as a stand-alone program outside of XSPEC. When used like
this however, after initpackage has finished the user must manually run hmake to build their
library. XSPEC performs this part automatically using a script file.

5.6.12 Imod, localmodel: load a package of local models

The Imod command (localmodel is an alias for this command) loads a user model package
Further details are given in Appendix C. [Note: This command is now also supported on
Cygwin.]

Syntax: Imod <name> [directory]

As for initpackage, the <name> argument is the name of the model package being loaded,
and the <directory> is the its location, defaulting to the setting of
LOCAL_MODEL_DIRECTORY given in the user’s Xspec.init

Imod performs the following tasks:
. loads the library corresponding to the package named <name>
. reads the model description file supplied by the initpackage command for the library
e adds the new model components to the list of models recognized by the model command.

Note that Imod requires that the user has write-access to <directory> (please see Appendix
C for details).

5.6.13 lumin: calculate luminosities
Calculate the luminosity of the current model for a given redshift and rest frame energy range.

Syntax: lumin [<lowEnergy> [<hiEnergy>] [<redshift>] [err <number> <level>
|noerr]

where <low Energy> and <hi Energy> are the rest frame energies over which the luminosity
is calculated and <redshift> is the source redshift.Initial default values are 2 to 10 keV for 0
redshift. The luminosity is given in units of ergs/s. The energy range redshifted to the observed
range must be contained by the range covered by the current spectra (which determine the range
over which the model is evaluated). Values outside this range will be automatically reset to the
extremes. Note that the energy values are two separate arguments and are NOT connected by a
dash (see parameter ranges in the freeze command description).

The lumin will be calculated for all loaded spectra. If no spectra are loaded (or none of the
loaded spectra have a response), the model is evaluated over the energy range determined by its
dummy response. (In XSPEC12, models are automatically assigned default dummy responses

128

when there is no data, so the dummyrsp command need not be given.) If more than 1 model has
been loaded, whichever model the user has specified to be the active one for a given source is the
one used for the lumin calculation.

The results of a lumin command may be retrieved by the “tclout lumin <n>" command
where n is the particular spectrum of interest. If lumin was calculated for the case of no loaded
spectra, the results can be retrieved by “tclout lumin” with the <n> argument omitted.

The err/noerr switch sets whether errors will be estimated on the luminosity. The error
algorithm is to draw parameter values from the distribution and calculate a luminosity. <number>
of sets of parameter values will be drawn. The resulting luminosities are ordered and the central
<level> percent selected to give the error range. You can get the full array of simulated lumin
values by calling “tclout lumin” with the “errsims’ option (see tclout command).

The parameter values distribution is assumed to be a multivariate Gaussian centered on the best-fit
parameters with sigmas from the covariance matrix. This is only an approximation in the case that
fit statistic space is not quadratic.

Examples:

The current data have significant response to data within 1 to 18 keV.

XSPEC> lumin,,,0.5

//Calculate the current model luminosity over the default range for z=0.5
XSPEC> lumin 6.4 7.0

//Calculate the current luminosity over 6.4 to 7 keV.

5.6.14 mdefine: Define a simple model using an arithmetic expression.

Syntax: mdefine [name [expression [: [type] [emin emax]]]

where 'name’ = the name of the model. If "name" is a previously defined model with
mdefine, the current definition will overwrite the old one, and the user is warned:; if it is a built-in
model, however, the user will be asked to use a different name.

‘expression’ = a string of arithmetic expression. Simple rules for expression:

1) The energy term, must be 'e’ or 'E' in the expression. Other words, which are not
numerical constants nor internal functions, are assumed to be model parameters.

2) If a convolution model varies with the location on the spectrum to be convolved, the
special variable ".e" or ".E" may be used to refer to the convolution point.

3) The expression may contain spaces for better readability.

‘type' = user may optionally specify the type of the model, the valid types are (add, mul,
con). (Mix models are not yet implemented as of v12.5.0) Please note that the character

:" must be used to separate the options from the "expression”. If "type" is not given
default is add.

‘'emin emax' = user may also specify the minimum and maximum energy values for the
model, the default values are 1.e-20 and 1.e+20, respectively.

129

Note that MDEFINE can also be used to display and delete previously defined models:

1) To display the name, type and expression of all previously defined models:
XSPEC12>mdefine

2) To display the name, type and expression of a previously defined model by the name,
MNAME:

XSPEC12> mdefine MNAME

3) To delete a previously defined model by the name, MNAME:
XSPEC12> mdefine MNAME :

Operators:
The following operators are recognized in an expression:

+ = plus operator

- = minus operator

* = multiplying operator

/ = dividing operator

** = exponentiation operator

A = exponentiation operator
Functions:

The following internal functions are supported:
Unary FUNCEIONSt i i i ceacaaaaan

EXP (expr) = exp of avector expression

SIN (expr) = sineof vector expression in rad

SIND (expr) = sine of a vector expression in degree
COS (expr) = cosine of a vector expression in rad
COSD (expr) = cosine of a vector expression in degree
TAN (expr) = tangent of a vector expression in rad
TAND (expr) = tangent of a vector expression in degree
LOG (expr) = base 10 log of a vector expression

LN (expr) = natural log of a vector expression
SQRT (expr) = sqrtof a vector expression

ABS (expr) = absolute value of a vector expression
INT (expr) = integer part of a vector expression
ASIN (expr) = sin”-1 of a vector expression in rad
ACOS (expr) = cos™-1 of a vector expression in rad
MEAN(expr) = mean value of a vector expression
DIM (expr) = dimension of a vector expression
SMIN (expr) = minimum value of a vector expression

SMAX (expr) maximum value of a vector expression

130

Binary Functions-

MAX (exprl, expr2) = maximum of the two vector expressions
MIN (exprl, expr2) minimum of the two vector expressions

Examples:

XSPEC12> mdef dplaw E**pl + F*E**p2 I define a model named "dplaw™ with
3 parameters, pl, p2, f

XSPEC12> mdef junk a*e+b*log(e)/sin(e) 1 define a model named "junk'" with
2 parameters (a, b)

XSPEC12> mdef junk2 exp(-a*e) : mul 1 define a model named "junk2"™ with
1 parameter, a; the option
following ":" says that it will be

a multiplicative model.

XSPEC12> mdef junk3 0.2+B*e : mul 1 define a model named "junk3™ with
1 parameter, B, options following
' says that this will be a
multiplicative model

XSPEC12> mdef bb E**2/T**4/(exp(E/T)-1) I try to define a blackbody model
with name "bb", you get warning:

***Warning: bb is a pre-defined model
Please use a different name for your model.

XSPEC12> mdef sg exp(-E"2/(2*A*_E)) / sqrt(6.283*A*sqrt(.E)) : con
I this defines a Gaussian

convolution model with sigma
varying with square root of

energy.

XSPEC12> mdef junk2 : I delete junk2
XSPEC12> mdef I display all user-defined models
-- Name ---- Type —----—- Expression ----—-

dplaw add E**pl+F*E**p2

Junk add a*E+b*LOG(E)/SIN(E)

Junk3 mul a+b*E

sg con EXP(-E"2/(2*A* _.E))/SQRT(6.283*A*SQRT(-.E))

5.6.15 model: define a theoretical model

Define the form of the theoretical model to be fit to the data.

131

model [<source num>:<name>] [<delimiter>] <componentl> <delimiter>
<component2> <delimiter>... <componentN> [<delimiter>]

model [?]

model [<name>|unnamed] none

model clear

model <name>|unnamed active|inactive

rmodel [<source num>:]<spec num> <response function>|none

where <delimiter> is some combination of (, +, *,), and <componentJ> is one of the model
components known to XSPEC. The optional name must be preceded by a source number followed

by a colon. To specifically refer to the default model use the string unnamed. Descriptions of these

models may be accessed by typing help models at the prompt.

The source argument and name, if present, assign that model to be used with one of the sources
found to be in the spectrum during the data pipelining. These 2 parameters allow one to
simultaneously analyze multiple models, each assigned to their own responses. The model will be
referred to the channel space using a response corresponding to that source number. To create a
model for a source number higher than 1, a detector response must first exist for that number. See
the examples below and the response command for more information about using multiple sources.
This ability to assign multiple models both generalizes and replaces the XSPEC11 method of using
‘/b’ to specify background models.

After the model is loaded, if there are data present the model is attached through the instrumental
response to the spectra to be fitted, as in XSPEC11. Unlike XSPEC11, however, if there are no data
loaded the model will be attached to a default diagonal dummy response. The parameters of that
dummy response (energy range, number of flux points, linear/logarithmic intervals) can be set by
the user in the Xspec.init file using the DUMMY setting. Thus any model can be plotted in energy
or wavelength space as soon as it has been defined.

The model components are of various types depending on what they represent and how they
combine with other models additive, multiplicative, convolution, pile-up, and mixing models. Each
component may have one or more parameters that can be varied during the fit (see the newpar
command writeup).

Additive model components are those directly associated with sources, such as power laws,
thermal models, emission lines, etc. The net effect of two independent additive models is
just the sum of their individual emissivities.

Multiplicative model components do not directly produce photons, but instead modify (by
an energy-dependent multiplicative parameter) the spectrum produced by one or more
additive components. Examples of multiplicative models are photoelectric absorption
models, edges, absorption lines, etc.

Convolution models components modify the spectrum as a whole, acting like operators
rather than simply applying bin by bin multiplication factors. An example of a convolution
model is a gaussian smoothing with energy dependent width. Thus, when using convolution
models, the ordering of components is in general significant (see below under syntax
rules).

132

The pile-up model is similar to the operation of the convolution models. The only
difference is that the flux is multiplied by the effective area on input and divided by the
same factors on output.

Mixing model components implement two-dimensional transformations of model spectra.
The data are divided into regions by assigning them to 2 or more datagroups, and the
transformation “mixes” the flux among the regions. An example is the projct (projection)
model, which assumes that the regions are 3-dimensional ellipsoidal shells in space, and
projects the flux computed from the other components onto 2-dimensional elliptical annuli.

A list of all the currently installed models is given in response to the command
model ? (the “?” is not actually required)

(this will leave the current model in use).

The new command variants have the following uses:
model [<name>] none

removes the model of name <name> if given. Without the <name> argument, the command
removes the unnamed “default” model, which is of course the XSPEC11 behavior.

model clear
removes all models
model <name>|unnamed active|inactive

makes the model named <name> active (fit to data) or inactive. Inactive models are tied to a
dummy (unit diagonal) response. Making a model assigned to a given source active makes any
previous model assigned to that source inactive. Note that to make the default unnamed model
active or inactive refer to it by the string unnamed.

See the commands delcomp, addcomp and editmod for details on how to modify the current
model without having to enter a completely new model.

rmodel [<source num>:]<spec num> <response function>|none

assigns or removes a response function to the response belonging to <source num> of spectrum
<spec num>. Currently the only available <response function> in XSPEC is gain, which makes
rmodel redundant with the gain command usage:

gain fit [<source num>:]<spec num>
The rmodel none option removes the response function and restores the response to its initial state.

Syntax Rules

Model components are combined in the obvious algebraic way, with + separating additive models,
* separating multiplicative models, and parentheses to show which additive models the
multiplicative models act on. The * need not be included next to parentheses, where it is redundant.
Also, if only one additive model is being modified by one or more multiplicative models, the

133

required brackets may be replaced by a *. In this case the additive model must be the last
component in the grouping. Thus

M1*(A1+A2) + Ma*M3a(As) + Mg*A, + As

is a valid model, where the M's signify multiplicative models and the A's additive models.

The old style syntax for entering models (versions 9.02 and earlier) is not supported in version 12
and will return a syntax error.

XSPEC12’s recursive lexical analyzer and expression parser allows, in principle, infinite nesting
depth. It has been tested to 3 levels of parentheses, although it should be said that this new behavior
is a by-product of the design rather than fulfilling an important need. Thus, expressions such as

M1*(A1 + Ax*(As + Ma*M3*(As + A7))) + C1*(As + Ag*(A1p + Ma*Ag))
are supported.

The model expression is analyzed on entry and syntax errors, or undefined models, will return
control to the prompt with an error message. XSPEC12’s model definition algorithm treats
expressions delimited by ‘+’ signs that are not within parentheses as separate “Component
Groups”. The Component Group comprises a list of components of the different types, and these
are in turn calculated and then combined to produce an internal “Sum Component”. These Sum
Components from each such component group are then added to produce the output model (note
that if there is an overall component — for example, a convolution or mixing component — then all
of the model will be contained inside one Component Group).

The syntax rules that are checked for are as follows:
Expression must not begin with a “*”
A “*” must be preceded and followed by words or a brace (redundant braces are removed).

A standalone component must be additive. A standalone component is defined as a single
component model or a single component at the beginning (end) of the expression followed
(preceded) by a “+”, or in the middle of the expression delimited by 2 “+” signs.

A convolution or mixing component must not appear at the end, or followed by a closing brace.

When using convolution or mixing components, the order in which they are applied is in general
significant.For example, the two models

Ci*Mi(A1+A;) and My* Cyp (Ar+Ay)

are not necessarily equivalent (here the C's represent convolution models).The way XSPEC handles
the ordering of components is by first computing the spectrum for the additive components of a
given additive group (A1+A2 in the above example). It then applies all multiplicative or
convolution components in the additive group from right to left in the order they appear in the
model formula.

N.B. Beginning with v12.5.0, convolutions no longer have to precede the source. Parentheses may
also be used to specify convolution precedence, so the following two examples are not equivalent:

Cr*Mi(Ar+Az) and (C*My) (AtAr)

134

Examples

Note that po (= powerlaw) and ga (= gauss) are additive models, and that wabs and phabs
(different photoelectric absorption screens) are multiplicative models.

XSPEC12>

//
XSPEC12>
XSPEC12>
XSPEC12>
XSPEC12>
XSPEC12>
XSPEC12>
XSPEC12>

model po

The single component po (powerlaw) is the model.
model po+ga

model (po+ga)wabs

model phabs(po+ga)

model wa(phabs(po)+ga)

model wa po phabs ga //error: old syntax

model wa*phabs*po

model (po+po)phabs

//Note that though the first and second components are the same

//
XSPEC12>

form, their parameters are varied separately.
model phabs*wa(po)

A complex (and almost certainly unphysical) example is the following:

XSPEC12>model wa(po+pha(peg+edge(disk+bbod)))const + pla(pos+hr*step) + not*gau

Applying multiple models:

Assume 3 spectra are loaded, each with a single response (source 1 by default).

XSPEC12>
//
//
XSPEC12>
//
XSPEC12>
//
//
//
XSPEC12>
//
//
OR
XSPEC12>
XSPEC12>
//
//

5.6.16

model wa(po)

The unnamed model wa(po) will apply to all 3 spectra, accordingly
multiplied by each spectrum’s response.

response 2:2 new_resp.pha 2:3 another_new_resp.pha

Additional responses assigned to source number 2 for spectra 2 and 3.
model 2:second_mod ga

The model “second_mod” will now apply to source 2, and is therefore
multiplied by new _resp.pha and another_new_resp.pha for spectra 2
and 3 respectively.

model second_mod inactive

“second_mod” will no longer apply to spectra 2 and 3, though they
retain responses for source 2.

response 2:2 none
response 2:3 none
No responses exist for source number 2, second mod is
rendered inactive.

modid: write out possible IDs for lines in the model.

Tcl script to write out possible IDs for gaussian or lorentzian lines in t