PHOTOIONPhotoionization models from Ali Kinkhabwala produced as part of a PhD thesis at Columbia Astrophysics Laboratory. A detailed description is available in astro-ph/0304332 and an example of their use in the analysis of an XMM-Newton observation of MCG -6-30-15 is given in this unpublished paper. To run these models you will need the source tar file, data tar file and photoion_lmodel.dat file. The source can be built under either xspec v11 or v12. For v11 the source tar file should be untarred in your $LMODDIR directory and the contents of photoion_lmodel.dat added to the lmodel.dat file. For v12 the source tar file can be untarred in its own directory. The data tar file should be untarred in its own directory which will then be specified within xspec using the command "xset PHOTOION_DIR directory-name" where directory-name is the directory in which the data files were placed. Note that the data tar file was updated on Nov 7, 2006 because the earlier version was missing several files.
NEUTRAL:Here's an example of a set of model parameters for NEUTRAL applied to a power-law spectrum. Abundances are from the "ISM" column of Table 2 in Wilms, Allen, & McCray 2000, ApJ, 542, 914. (see below for a description of the parameters.)
---------------------------------------------------------------------------
---------------------------------------------------------------------------
Model: neutral[1]( powerlaw[2] )
Model Fit Model Component Parameter Unit Value
par par comp
1 1 1 neutral N_H cm^-2 1.0000E+20 frozen
2 2 1 neutral sigma_v km/s 0.00 frozen
3 3 2 powerlaw PhoIndex 2.000 +/- 0.000
4 4 2 powerlaw norm 1.000 +/- 0.000
---------------------------------------------------------------------------
---------------------------------------------------------------------------
where the parameters are1: N_H - Neutral hydrogen column density. 2: sigma_v - Radial velocity width (sigma) of absorbing medium. If sigma_v=0, line absorption is NOT included. If sigma_v>0, line absorption IS included.
VNEUTRAL:Here's an example of a set of model parameters for VNEUTRAL applied to a power-law spectrum. Abundances are from the "ISM" column of Table 2 in Wilms, Allen, & McCray 2000, ApJ, 542, 914. (See below for a description of the parameters)
---------------------------------------------------------------------------
---------------------------------------------------------------------------
Model: vneutral[1]( powerlaw[2] )
Model Fit Model Component Parameter Unit Value
par par comp
1 1 1 vneutral N_H cm^-2 1.0000E+20 frozen
2 2 1 vneutral sigma_v km/s 0.000 frozen
3 3 1 vneutral A_He abund 1.000 frozen
4 4 1 vneutral A_C abund 1.000 frozen
5 5 1 vneutral A_N abund 1.000 frozen
6 6 1 vneutral A_O abund 1.000 frozen
7 7 1 vneutral A_Ne abund 1.000 frozen
8 8 1 vneutral A_Mg abund 1.000 frozen
9 9 1 vneutral A_Al abund 1.000 frozen
10 10 1 vneutral A_Si abund 1.000 frozen
11 11 1 vneutral A_S abund 1.000 frozen
12 12 1 vneutral A_Ar abund 1.000 frozen
13 13 1 vneutral A_Ca abund 1.000 frozen
14 14 1 vneutral A_Fe abund 1.000 frozen
15 15 1 vneutral A_Ni abund 1.000 frozen
16 16 1 vneutral redshift 0.000 frozen
17 17 1 vneutral v km/s 0.000 frozen
18 18 1 vneutral EMIN keV 1.0000E-03 frozen
19 19 1 vneutral EMAX keV 15.00 frozen
20 20 1 vneutral SPECBINS 1.0000E+05 frozen
21 21 2 powerlaw PhoIndex 2.000 +/- 0.000
22 22 2 powerlaw norm 1.000 +/- 0.000
---------------------------------------------------------------------------
---------------------------------------------------------------------------
1: N_H - Neutral hydrogen column density.2: sigma_v - Radial velocity width (sigma) of absorbing medium. If sigma_v=0, line absorption is NOT included. If sigma_v>0, line absorption IS included. 3: A_He - Overall Helium abundance relative to "solar" default value. . . . 15: A_Ni - Overall Nickel abundance relative to "solar" default value. 16: redshift - Redshift of absorbing medium. 17: v - Radial velocity shift of absorbing medium. 18: EMIN - Minimum energy [keV] for internal grid. 19: EMAX - Maximum energy [keV] for internal grid. 20: SPECBINS - Total number of energy bins (equally-spaced in energy) for internal grid.
SIABS:Here's an example of a set of model parameters for SIABS applied to a power-law spectrum. (See below for a description of the parameters)
---------------------------------------------------------------------------
---------------------------------------------------------------------------
Model: siabs[1]( powerlaw[2] )
Model Fit Model Component Parameter Unit Value
par par comp
1 1 1 siabs Z 8.000 frozen
2 2 1 siabs z 2.000 frozen
3 3 1 siabs Nion cm^-2 1.0000E+17 frozen
4 4 1 siabs redshift 0.000 frozen
5 5 1 siabs v km/s 0.000 frozen
6 6 1 siabs sigma_v km/s 100.0 frozen
7 7 1 siabs EMIN keV 1.0000E-03 frozen
8 8 1 siabs EMAX keV 15.00 frozen
9 9 1 siabs SPECBINS 1.0000E+05 frozen
10 10 2 powerlaw PhoIndex 2.000 +/- 0.000
11 11 2 powerlaw norm 1.000 +/- 0.000
---------------------------------------------------------------------------
---------------------------------------------------------------------------
1: Z - Atomic number2: z - Number of electrons 3: Nion - Ion column density [cm^-2] 4: redshift - Redshift of source 5: v - Velocity shift 6: sigma_v - Velocity width (sigma) 7: EMIN - Minimum energy [keV] for internal grid. 8: EMAX - Maximum energy [keV] for internal grid. 9: SPECBINS - Total number of energy bins (equally-spaced in energy) for internal grid.
XIABS:Here's an example of a set of model parameters for XIABS applied to a power-law spectrum. This models uses a user-defined distribution in ionization parameter. The file "xi.dat" must exist in the directory you're running XSPEC in. An example can be found in photoion_dat/xi.dat. The ionization parameter distribution is defined by simply connecting the user-defined points in xi.dat with line segments and normalizing. The "fractional ionic abundances" used were taken from an XSTAR simulation of an extremely-low-column-density medium irradiated by a Gamma=2 power law. (See below for a description of the parameters)
---------------------------------------------------------------------------
---------------------------------------------------------------------------
Model: xiabs[1]( powerlaw[2] )
Model Fit Model Component Parameter Unit Value
par par comp
1 1 1 xiabs N_H cm^-2 1.0000E+22 frozen
2 2 1 xiabs A_He abund 1.000 frozen
3 3 1 xiabs A_C abund 1.000 frozen
4 4 1 xiabs A_N abund 1.000 frozen
5 5 1 xiabs A_O abund 1.000 frozen
6 6 1 xiabs A_Ne abund 1.000 frozen
7 7 1 xiabs A_Mg abund 1.000 frozen
8 8 1 xiabs A_Al abund 0.000 frozen
9 9 1 xiabs A_Si abund 1.000 frozen
10 10 1 xiabs A_S abund 1.000 frozen
11 11 1 xiabs A_Ar abund 0.000 frozen
12 12 1 xiabs A_Ca abund 0.000 frozen
13 13 1 xiabs A_Fe abund 1.000 frozen
14 14 1 xiabs A_Ni abund 0.000 frozen
15 15 1 xiabs redshift 0.000 frozen
16 16 1 xiabs v km/s 0.000 frozen
17 17 1 xiabs sigma_v km/s 100.0 frozen
18 18 1 xiabs EMIN keV 1.0000E-03 frozen
19 19 1 xiabs EMAX keV 10.00 frozen
20 20 1 xiabs SPECBINS 4.0000E+04 frozen
21 21 1 xiabs verbose 1.000 frozen
22 22 2 powerlaw PhoIndex 2.000 +/- 0.000
23 23 2 powerlaw norm 1.000 +/- 0.000
---------------------------------------------------------------------------
---------------------------------------------------------------------------
1: N_H - Total hydrogen column density (neutral plus ionized).2: A_He - Overall Helium abundance relative to "solar" default value. . . . 14: A_Ni - Overall Nickel abundance relative to "solar" default value. 15: redshift - Redshift of source 16: v - Radial velocity shift 17: sigma_v - Radial velocity width (sigma) 18: EMIN - Minimum energy [keV] for internal grid. 19: EMAX - Maximum energy [keV] for internal grid. 20: SPECBINS - Total number of energy bins (equally-spaced in energy) for internal grid. 21: verbose - =1 to output numbers/messages, =0 for no output
MIABS:Here's an example of a set of model parameters for MIABS applied to a power-law spectrum. (See below for a description of the parameters)
---------------------------------------------------------------------------
---------------------------------------------------------------------------
Model: miabs[1]( powerlaw[2] )
Model Fit Model Component Parameter Unit Value
par par comp
1 1 1 miabs redshift 0.000 frozen
2 2 1 miabs v km/s 0.000 frozen
3 3 1 miabs sigma_v km/s 100.0 frozen
4 4 1 miabs EMIN keV 1.0000E-03 frozen
5 5 1 miabs EMAX keV 10.00 frozen
6 6 1 miabs SPECBINS 4.0000E+04 frozen
7 7 1 miabs verbose 1.000 frozen
8 8 1 miabs LOG? 0.000 frozen
9 9 1 miabs COLNORM 1.000 frozen
10 10 1 miabs N_e cm^-2 0.000 frozen
11 11 1 miabs H_1 cm^-2 0.000 frozen
12 12 1 miabs He_1 cm^-2 0.000 frozen
13 13 1 miabs He_2 cm^-2 0.000 frozen
14 14 1 miabs C_1 cm^-2 0.000 frozen
15 15 1 miabs C_2 cm^-2 0.000 frozen
16 16 1 miabs C_3 cm^-2 0.000 frozen
17 17 1 miabs C_4 cm^-2 0.000 frozen
18 18 1 miabs C_5 cm^-2 0.000 frozen
19 19 1 miabs C_6 cm^-2 0.000 frozen
20 20 1 miabs N_1 cm^-2 0.000 frozen
21 21 1 miabs N_2 cm^-2 0.000 frozen
22 22 1 miabs N_3 cm^-2 0.000 frozen
23 23 1 miabs N_4 cm^-2 0.000 frozen
24 24 1 miabs N_5 cm^-2 0.000 frozen
25 25 1 miabs N_6 cm^-2 0.000 frozen
26 26 1 miabs N_7 cm^-2 0.000 frozen
27 27 1 miabs O_1 cm^-2 0.000 frozen
28 28 1 miabs O_2 cm^-2 0.000 frozen
29 29 1 miabs O_3 cm^-2 0.000 frozen
30 30 1 miabs O_4 cm^-2 0.000 frozen
31 31 1 miabs O_5 cm^-2 0.000 frozen
32 32 1 miabs O_6 cm^-2 0.000 frozen
33 33 1 miabs O_7 cm^-2 0.000 frozen
34 34 1 miabs O_8 cm^-2 0.000 frozen
35 35 1 miabs Ne_1 cm^-2 0.000 frozen
36 36 1 miabs Ne_2 cm^-2 0.000 frozen
37 37 1 miabs Ne_3 cm^-2 0.000 frozen
38 38 1 miabs Ne_4 cm^-2 0.000 frozen
39 39 1 miabs Ne_5 cm^-2 0.000 frozen
40 40 1 miabs Ne_6 cm^-2 0.000 frozen
41 41 1 miabs Ne_7 cm^-2 0.000 frozen
42 42 1 miabs Ne_8 cm^-2 0.000 frozen
43 43 1 miabs Ne_9 cm^-2 0.000 frozen
44 44 1 miabs Ne_10 cm^-2 0.000 frozen
45 45 1 miabs Mg_1 cm^-2 0.000 frozen
46 46 1 miabs Mg_2 cm^-2 0.000 frozen
47 47 1 miabs Mg_3 cm^-2 0.000 frozen
48 48 1 miabs Mg_4 cm^-2 0.000 frozen
49 49 1 miabs Mg_5 cm^-2 0.000 frozen
50 50 1 miabs Mg_6 cm^-2 0.000 frozen
51 51 1 miabs Mg_7 cm^-2 0.000 frozen
52 52 1 miabs Mg_8 cm^-2 0.000 frozen
53 53 1 miabs Mg_9 cm^-2 0.000 frozen
54 54 1 miabs Mg_10 cm^-2 0.000 frozen
55 55 1 miabs Mg_11 cm^-2 0.000 frozen
56 56 1 miabs Mg_12 cm^-2 0.000 frozen
57 57 1 miabs Al_1 cm^-2 0.000 frozen
58 58 1 miabs Al_2 cm^-2 0.000 frozen
59 59 1 miabs Al_3 cm^-2 0.000 frozen
60 60 1 miabs Al_4 cm^-2 0.000 frozen
61 61 1 miabs Al_5 cm^-2 0.000 frozen
62 62 1 miabs Al_6 cm^-2 0.000 frozen
63 63 1 miabs Al_7 cm^-2 0.000 frozen
64 64 1 miabs Al_8 cm^-2 0.000 frozen
65 65 1 miabs Al_9 cm^-2 0.000 frozen
66 66 1 miabs Al_10 cm^-2 0.000 frozen
67 67 1 miabs Al_11 cm^-2 0.000 frozen
68 68 1 miabs Al_12 cm^-2 0.000 frozen
69 69 1 miabs Al_13 cm^-2 0.000 frozen
70 70 1 miabs Si_1 cm^-2 0.000 frozen
71 71 1 miabs Si_2 cm^-2 0.000 frozen
72 72 1 miabs Si_3 cm^-2 0.000 frozen
73 73 1 miabs Si_4 cm^-2 0.000 frozen
74 74 1 miabs Si_5 cm^-2 0.000 frozen
75 75 1 miabs Si_6 cm^-2 0.000 frozen
76 76 1 miabs Si_7 cm^-2 0.000 frozen
77 77 1 miabs Si_8 cm^-2 0.000 frozen
78 78 1 miabs Si_9 cm^-2 0.000 frozen
79 79 1 miabs Si_10 cm^-2 0.000 frozen
80 80 1 miabs Si_11 cm^-2 0.000 frozen
81 81 1 miabs Si_12 cm^-2 0.000 frozen
82 82 1 miabs Si_13 cm^-2 0.000 frozen
83 83 1 miabs Si_14 cm^-2 0.000 frozen
84 84 1 miabs S_1 cm^-2 0.000 frozen
85 85 1 miabs S_2 cm^-2 0.000 frozen
86 86 1 miabs S_3 cm^-2 0.000 frozen
87 87 1 miabs S_4 cm^-2 0.000 frozen
88 88 1 miabs S_5 cm^-2 0.000 frozen
89 89 1 miabs S_6 cm^-2 0.000 frozen
90 90 1 miabs S_7 cm^-2 0.000 frozen
91 91 1 miabs S_8 cm^-2 0.000 frozen
92 92 1 miabs S_9 cm^-2 0.000 frozen
93 93 1 miabs S_10 cm^-2 0.000 frozen
94 94 1 miabs S_11 cm^-2 0.000 frozen
95 95 1 miabs S_12 cm^-2 0.000 frozen
96 96 1 miabs S_13 cm^-2 0.000 frozen
97 97 1 miabs S_14 cm^-2 0.000 frozen
98 98 1 miabs S_15 cm^-2 0.000 frozen
99 99 1 miabs S_16 cm^-2 0.000 frozen
100 100 1 miabs Ar_1 cm^-2 0.000 frozen
101 101 1 miabs Ar_2 cm^-2 0.000 frozen
102 102 1 miabs Ar_3 cm^-2 0.000 frozen
103 103 1 miabs Ar_4 cm^-2 0.000 frozen
104 104 1 miabs Ar_5 cm^-2 0.000 frozen
105 105 1 miabs Ar_6 cm^-2 0.000 frozen
106 106 1 miabs Ar_7 cm^-2 0.000 frozen
107 107 1 miabs Ar_8 cm^-2 0.000 frozen
108 108 1 miabs Ar_9 cm^-2 0.000 frozen
109 109 1 miabs Ar_10 cm^-2 0.000 frozen
110 110 1 miabs Ar_11 cm^-2 0.000 frozen
111 111 1 miabs Ar_12 cm^-2 0.000 frozen
112 112 1 miabs Ar_13 cm^-2 0.000 frozen
113 113 1 miabs Ar_14 cm^-2 0.000 frozen
114 114 1 miabs Ar_15 cm^-2 0.000 frozen
115 115 1 miabs Ar_16 cm^-2 0.000 frozen
116 116 1 miabs Ar_17 cm^-2 0.000 frozen
117 117 1 miabs Ar_18 cm^-2 0.000 frozen
118 118 1 miabs Ca_1 cm^-2 0.000 frozen
119 119 1 miabs Ca_2 cm^-2 0.000 frozen
120 120 1 miabs Ca_3 cm^-2 0.000 frozen
121 121 1 miabs Ca_4 cm^-2 0.000 frozen
122 122 1 miabs Ca_5 cm^-2 0.000 frozen
123 123 1 miabs Ca_6 cm^-2 0.000 frozen
124 124 1 miabs Ca_7 cm^-2 0.000 frozen
125 125 1 miabs Ca_8 cm^-2 0.000 frozen
126 126 1 miabs Ca_9 cm^-2 0.000 frozen
127 127 1 miabs Ca_10 cm^-2 0.000 frozen
128 128 1 miabs Ca_11 cm^-2 0.000 frozen
129 129 1 miabs Ca_12 cm^-2 0.000 frozen
130 130 1 miabs Ca_13 cm^-2 0.000 frozen
131 131 1 miabs Ca_14 cm^-2 0.000 frozen
132 132 1 miabs Ca_15 cm^-2 0.000 frozen
133 133 1 miabs Ca_16 cm^-2 0.000 frozen
134 134 1 miabs Ca_17 cm^-2 0.000 frozen
135 135 1 miabs Ca_18 cm^-2 0.000 frozen
136 136 1 miabs Ca_19 cm^-2 0.000 frozen
137 137 1 miabs Ca_20 cm^-2 0.000 frozen
138 138 1 miabs Fe_1 cm^-2 0.000 frozen
139 139 1 miabs Fe_2 cm^-2 0.000 frozen
140 140 1 miabs Fe_3 cm^-2 0.000 frozen
141 141 1 miabs Fe_4 cm^-2 0.000 frozen
142 142 1 miabs Fe_5 cm^-2 0.000 frozen
143 143 1 miabs Fe_6 cm^-2 0.000 frozen
144 144 1 miabs Fe_7 cm^-2 0.000 frozen
145 145 1 miabs Fe_8 cm^-2 0.000 frozen
146 146 1 miabs Fe_9 cm^-2 0.000 frozen
147 147 1 miabs Fe_10 cm^-2 0.000 frozen
148 148 1 miabs Fe_11 cm^-2 0.000 frozen
149 149 1 miabs Fe_12 cm^-2 0.000 frozen
150 150 1 miabs Fe_13 cm^-2 0.000 frozen
151 151 1 miabs Fe_14 cm^-2 0.000 frozen
152 152 1 miabs Fe_15 cm^-2 0.000 frozen
153 153 1 miabs Fe_16 cm^-2 0.000 frozen
154 154 1 miabs Fe_17 cm^-2 0.000 frozen
155 155 1 miabs Fe_18 cm^-2 0.000 frozen
156 156 1 miabs Fe_19 cm^-2 0.000 frozen
157 157 1 miabs Fe_20 cm^-2 0.000 frozen
158 158 1 miabs Fe_21 cm^-2 0.000 frozen
159 159 1 miabs Fe_22 cm^-2 0.000 frozen
160 160 1 miabs Fe_23 cm^-2 0.000 frozen
161 161 1 miabs Fe_24 cm^-2 0.000 frozen
162 162 1 miabs Fe_25 cm^-2 0.000 frozen
163 163 1 miabs Fe_26 cm^-2 0.000 frozen
164 164 1 miabs Ni_1 cm^-2 0.000 frozen
165 165 1 miabs Ni_2 cm^-2 0.000 frozen
166 166 1 miabs Ni_3 cm^-2 0.000 frozen
167 167 1 miabs Ni_4 cm^-2 0.000 frozen
168 168 1 miabs Ni_5 cm^-2 0.000 frozen
169 169 1 miabs Ni_6 cm^-2 0.000 frozen
170 170 1 miabs Ni_7 cm^-2 0.000 frozen
171 171 1 miabs Ni_8 cm^-2 0.000 frozen
172 172 1 miabs Ni_9 cm^-2 0.000 frozen
173 173 1 miabs Ni_10 cm^-2 0.000 frozen
174 174 1 miabs Ni_11 cm^-2 0.000 frozen
175 175 1 miabs Ni_12 cm^-2 0.000 frozen
176 176 1 miabs Ni_13 cm^-2 0.000 frozen
177 177 1 miabs Ni_14 cm^-2 0.000 frozen
178 178 1 miabs Ni_15 cm^-2 0.000 frozen
179 179 1 miabs Ni_16 cm^-2 0.000 frozen
180 180 1 miabs Ni_17 cm^-2 0.000 frozen
181 181 1 miabs Ni_18 cm^-2 0.000 frozen
182 182 1 miabs Ni_19 cm^-2 0.000 frozen
183 183 1 miabs Ni_20 cm^-2 0.000 frozen
184 184 1 miabs Ni_21 cm^-2 0.000 frozen
185 185 1 miabs Ni_21 cm^-2 0.000 frozen
186 186 1 miabs Ni_23 cm^-2 0.000 frozen
187 187 1 miabs Ni_24 cm^-2 0.000 frozen
188 188 1 miabs Ni_25 cm^-2 0.000 frozen
189 189 1 miabs Ni_26 cm^-2 0.000 frozen
190 190 1 miabs Ni_27 cm^-2 0.000 frozen
191 191 1 miabs Ni_28 cm^-2 0.000 frozen
192 192 2 powerlaw PhoIndex 2.000 +/- 0.000
193 193 2 powerlaw norm 1.000 +/- 0.000
---------------------------------------------------------------------------
---------------------------------------------------------------------------
1: redshift - Redshift of source2: v - Radial velocity shift 3: sigma_v - Radial velocity width (sigma) 4: EMIN - Minimum energy [keV] for internal grid. 5: EMAX - Maximum energy [keV] for internal grid. 6: SPECBINS - Total number of energy bins (equally-spaced in energy) for internal grid. 7: verbose - =1 to output numbers/messages, =0 for no output 8: LOG? - = 0 to use linear units for column densities, = 1 to use log (base 10) units for column densities 9: COLNORM - Overall column density normalization (default = 1.0). Convenient for multiplying all the column densities simultaneously by the same factor. 10: N_e - Total electron radial column density (to get Thomson depth). 11: H_1 - Neutral hydrogen radial column density. Number denotes number of bound electrons. 12: He_1 - Single-electron helium radial column density. 13: He_2 - Neutral helium radial column density. 14: C_1 - Single-electron C radial column density.
.
PHSI:Here's an example of a set of model parameters for PHSI. (See below for a description of the parameters)
---------------------------------------------------------------------------
---------------------------------------------------------------------------
Model: phsi[1]
Model Fit Model Component Parameter Unit Value
par par comp
1 1 1 phsi type 1.000 frozen
2 2 1 phsi Z 8.000 frozen
3 3 1 phsi z 2.000 frozen
4 4 1 phsi Nion cm^-2 1.0000E+17 frozen
5 5 1 phsi Tion eV 4.000 frozen
6 6 1 phsi redshift 0.000 frozen
7 7 1 phsi v_rad km/s 0.000 frozen
8 8 1 phsi v_trans km/s 0.000 frozen
9 9 1 phsi sig_rad km/s 100.0 frozen
10 10 1 phsi sig_tran km/s 100.0 frozen
11 11 1 phsi INPUT 0.000 frozen
12 12 1 phsi INSHIFT? 0.000 frozen
13 13 1 phsi Gamma 2.000 frozen
14 14 1 phsi L_EMIN keV 1.0000E-03 frozen
15 15 1 phsi L_EMAX keV 100.0 frozen
16 16 1 phsi L_X 1e30e/s 1.0000E+14 frozen
17 17 1 phsi FLUXAVE 1.000 frozen
18 18 1 phsi f 0.1000 frozen
19 19 1 phsi D pc 1.4400E+07 frozen
20 20 1 phsi EMIN keV 1.0000E-03 frozen
21 21 1 phsi EMAX keV 15.00 frozen
22 22 1 phsi SPECBINS 1.0000E+05 frozen
23 23 1 phsi fileincr -1.000 frozen
24 24 1 phsi verbose 1.000 frozen
25 25 1 phsi norm 1.000 +/- 0.000
---------------------------------------------------------------------------
---------------------------------------------------------------------------
1: type - =-1 to give the y-axis as dimensionless total opacity if
x-axis is in wavelength, =0 to give the y-axis as dimensionless total
opacity if x-axis is in energy, = 1 for pure absorption, = 2 for pure
reemission, = 3 for pure reemission, recombination alone, = 4 for
absorption plus reemission (lower limit), = 5 for absorption plus
reemission (upper limit), (
The following were designed for cataclysmic variable spectra : see Mukai et al. 2003)
= 6 for unobscured intrinsic continuum plus reemission spectrum,
= 7 for unobscured intrinsic continuum plus reemission spectrum
assuming "infinite" radial velocity width, i.e., lines, but not edges,
are unsaturated at all column densities,
= 8 same as type=7, except without intrinsic continuum2: Z - Atomic number 3: z - Number of electrons 4: Nion - Ion column density in cm^-2 5: Tion - Electron temperature [eV] for recombination contribution. 6: redshift - Redshift of source 7: v_rad - Radial velocity shift 8: v_trans - Transverse velocity shift 9: sig_rad - Radial velocity width (sigma) 10: sig_tran - Transverse velocity width (sigma) 11: INPUT - For inputting external spectrum (keep at default value of "0"). 12: INSHIFT? - For redshifting external spectrum (keep at default value of "0"). 13: Gamma - Power-law slope L(E)=AE^(-Gamma). 14: L_EMIN - Low-energy limit [eV] to power law. 15: L_EMAX - High-energy limit [eV] to power law. 16: L_X - Total rest-frame luminosity (from L_EMIN [eV] to L_EMAX [eV]) in 10^30 ergs/s. For non-zero redshift, cosmological correction is applied. 17: FLUXAVE - This is the average flux of the intrinsic continuum (default = 1). For highly variable sources like Sy1 galaxies, this allows the user to determine the "average" flux level to determine the proper level of reemission. 18: f - Covering factor: f=Omega/4*Pi 19: D - Distance to source in parsec. If D is set to "0.", then the Hubble law using the standard lambdaCDM cosmology (from the MAP results). 20: EMIN - Minimum energy [keV] for internal grid. This grid has nothing to do with the input luminosity spectrum. For type>=2 (calculation of reemission spectrum), make sure that energy range includes all regions with significant photoelectric absorption. 21: EMAX - Maximum energy [keV] for internal grid. This grid has nothing to do with the input luminosity spectrum. For type>=2 (calculation of reemission spectrum), make sure that energy range includes all regions with significant photoelectric absorption ( EMAX >= 15.0 keV should be sufficient). 22: SPECBINS - Total number of energy bins (equally-spaced in energy) for internal grid. 23: fileincr - < 0 for no output files, >= 0 for output files are produced. E.g., fileincr=22 would produce four files with output columns as follows: E_spectrum_22.qdp (Observed E [keV], half-bin width [keV], and spectrum [photons/cm^2/s/keV]), l_spectrum_22.qdp (Observed lambda [Angstrom], half-bin width [A], and spectrum [photons/cm^2/s/A]), E_output_22.qdp (Observed E [eV], tau, L(E)/(4*Pi*D^2) [photons/cm^2/s/eV], type1 spectrum [ph/cm^2/s/eV], type2 spectrum ["], type3 spectrum ["], type4 spectrum ["], type5 spectrum ["], type6 spectrum ["], photoexcitation spectrum ["], RR spectrum ["], DR spectrum ["]) l_output_22.qdp (Observed lambda [Angstrom], tau, L(lambda)/(4*Pi*D^2) [photons/cm^2/s/A], type1 spectrum [ph/cm^2/s/A], type2 spectrum ["], type3 spectrum ["], type4 spectrum ["], type5 spectrum ["], type6 spectrum ["], photoexcitation spectrum ["], RR spectrum ["], DR spectrum ["]) 24: verbose - =1 for output numbers/messages, =0 for no output numbers/messages
PHXI:Here's an example of a set of model parameters for PHXI. This models uses a user-defined distribution in ionization parameter. The file "xi.dat" must exist in the directory you're running XSPEC in. See photoion_dat/xi.dat for an example of this file. The ionization parameter distribution is defined by simply connecting the user-defined points in xi.dat with line segments and normalizing. The "fractional ionic abundances" used were taken from an XSTAR simulation of an extremely-low-column-density medium irradiated by a Gamma=2 power law. (See below for a description of the parameters)
---------------------------------------------------------------------------
---------------------------------------------------------------------------
Model: phxi[1]
Model Fit Model Component Parameter Unit Value
par par comp
1 1 1 phxi type 1.000 frozen
2 2 1 phxi N_H cm^-2 1.0000E+22 frozen
3 3 1 phxi A_He abund 1.000 frozen
4 4 1 phxi A_C abund 1.000 frozen
5 5 1 phxi A_N abund 1.000 frozen
6 6 1 phxi A_O abund 1.000 frozen
7 7 1 phxi A_Ne abund 1.000 frozen
8 8 1 phxi A_Mg abund 1.000 frozen
9 9 1 phxi A_Al abund 0.000 frozen
10 10 1 phxi A_Si abund 1.000 frozen
11 11 1 phxi A_S abund 1.000 frozen
12 12 1 phxi A_Ar abund 0.000 frozen
13 13 1 phxi A_Ca abund 0.000 frozen
14 14 1 phxi A_Fe abund 1.000 frozen
15 15 1 phxi A_Ni abund 0.000 frozen
16 16 1 phxi redshift 0.000 frozen
17 17 1 phxi v_rad km/s 0.000 frozen
18 18 1 phxi v_trans km/s 0.000 frozen
19 19 1 phxi sig_rad km/s 100.0 frozen
20 20 1 phxi sig_tran km/s 100.0 frozen
21 21 1 phxi INPUT 0.000 frozen
22 22 1 phxi INSHIFT? 0.000 frozen
23 23 1 phxi Gamma 2.000 frozen
24 24 1 phxi L_EMIN keV 1.0000E-03 frozen
25 25 1 phxi L_EMAX keV 100.0 frozen
26 26 1 phxi L_X 1e30e/s 1.0000E+14 frozen
27 27 1 phxi FLUXAVE 1.000 frozen
28 28 1 phxi f 0.1000 frozen
29 29 1 phxi D pc 1.4400E+07 frozen
30 30 1 phxi EMIN keV 1.0000E-03 frozen
31 31 1 phxi EMAX keV 15.00 frozen
32 32 1 phxi SPECBINS 1.0000E+05 frozen
33 33 1 phxi fileincr -1.000 frozen
34 34 1 phxi verbose 1.000 frozen
35 35 1 phxi norm 1.000 +/- 0.000
---------------------------------------------------------------------------
---------------------------------------------------------------------------
1: type - =-1 to give the y-axis as dimensionless total opacity if
x-axis is in wavelength, =0 to give the y-axis as dimensionless total
opacity if x-axis is in energy, = 1 for pure absorption, = 2 for pure
reemission, = 3 for pure reemission, recombination alone, = 4 for
absorption plus reemission (lower limit), = 5 for absorption plus
reemission (upper limit), (
The following were designed for cataclysmic variable spectra : see Mukai et al. 2003)
= 6 for unobscured intrinsic continuum plus reemission spectrum,
= 7 for unobscured intrinsic continuum plus reemission spectrum
assuming "infinite" radial velocity width, i.e., lines, but not edges,
are unsaturated at all column densities,
= 8 same as type=7, except without intrinsic continuum2: N_H - Total hydrogen column density (neutral plus ionized). 3: A_He - Overall helium abundance relative to "solar". . . . 16: redshift - Redshift of source 17: v_rad - Radial velocity shift 18: v_trans - Transverse velocity shift 19: sig_rad - Radial velocity width (sigma) 20: sig_tran - Transverse velocity width (sigma) 21: INPUT - For inputting external spectrum (keep at default value of "0"). 22: INSHIFT? - For redshifting external spectrum (keep at default value of "0"). 23: Gamma - Power-law slope L(E)=AE^(-Gamma). 24: L_EMIN - Low-energy limit [eV] to power law. 25: L_EMAX - High-energy limit [eV] to power law. 26: L_X - Total rest-frame luminosity (from L_EMIN [eV] to L_EMAX [eV]) in 10^30 ergs/s. For non-zero redshift, cosmological correction is applied. 27: FLUXAVE - This is the average flux of the intrinsic continuum (default = 1). For highly variable sources like Sy1 galaxies, this allows the user to determine the "average" flux level to determine the proper level of reemission. 28: f - Covering factor: f=Omega/4*Pi 29: D - Distance to source in parsec If D is set to "0.", then the Hubble law using the standard lambdaCDM cosmology (from the MAP results). 30: EMIN - Minimum energy [keV] for internal grid. This grid has nothing to do with the input luminosity spectrum. For type>=2 (calculation of reemission spectrum), make sure that energy range includes all regions with significant photoelectric absorption. 31: EMAX - Maximum energy [keV] for internal grid. This grid has nothing to do with the input luminosity spectrum. For type>=2 (calculation of reemission spectrum), make sure that energy range includes all regions with significant photoelectric absorption. EMAX >= 15.0 keV should be sufficient. 32: SPECBINS - Total number of energy bins (equally-spaced in energy) for internal grid. 33: fileincr - < 0 for no output files, >= 0 for output files are produced. E.g., fileincr=22 would produce four files with output columns as follows: E_spectrum_22.qdp (Observed E [keV], half-bin width [keV], and spectrum [photons/cm^2/s/keV]), l_spectrum_22.qdp (Observed lambda [Angstrom], half-bin width [A], and spectrum [photons/cm^2/s/A]), E_output_22.qdp (Observed E [eV], tau, L(E)/(4*Pi*D^2) [photons/cm^2/s/eV], type1 spectrum [ph/cm^2/s/eV], type2 spectrum ["], type3 spectrum ["], type4 spectrum ["], type5 spectrum ["], type6 spectrum ["], photoexcitation spectrum ["], RR spectrum ["], DR spectrum ["]) l_output_22.qdp (Observed lambda [Angstrom], tau, L(lambda)/(4*Pi*D^2) [photons/cm^2/s/A], type1 spectrum [ph/cm^2/s/A], type2 spectrum ["], type3 spectrum ["], type4 spectrum ["], type5 spectrum ["], type6 spectrum ["], photoexcitation spectrum ["], RR spectrum ["], DR spectrum ["]) 34: verbose - =1 for output numbers/messages, =0 for no output numbers/messages 35: norm - XSPEC internal 'normalization' parameter. Leave this at '1.000.'
PHOTOION: Here's an example of a set of model parameters for PHOTOION. (See below for a description of the parameters)
---------------------------------------------------------------------------
---------------------------------------------------------------------------
Model: photoion[1]
Model Fit Model Component Parameter Unit Value
par par comp
1 1 1 photoion type 1.000 frozen
2 2 1 photoion redshift 0.000 frozen
3 3 1 photoion v_rad km/s 0.000 frozen
4 4 1 photoion v_trans km/s 0.000 frozen
5 5 1 photoion sig_rad km/s 100.0 frozen
6 6 1 photoion sig_tran km/s 100.0 frozen
7 7 1 photoion INPUT 0.000 frozen
8 8 1 photoion INSHIFT? 0.000 frozen
9 9 1 photoion Gamma 2.000 frozen
10 10 1 photoion L_EMIN keV 1.0000E-03 frozen
11 11 1 photoion L_EMAX keV 100.0 frozen
12 12 1 photoion L_X 1e30e/s 1.0000E+14 frozen
13 13 1 photoion FLUXAVE 1.000 frozen
14 14 1 photoion f 0.1000 frozen
15 15 1 photoion D pc 1.4400E+07 frozen
16 16 1 photoion EMIN keV 1.0000E-03 frozen
17 17 1 photoion EMAX keV 15.00 frozen
18 18 1 photoion SPECBINS 1.0000E+05 frozen
19 19 1 photoion fileincr -1.000 frozen
20 20 1 photoion verbose 1.000 frozen
21 21 1 photoion COLNORM 1.000 frozen
22 22 1 photoion N_e cm^-2 0.000 frozen
23 23 1 photoion H_1 cm^-2 0.000 frozen
24 24 1 photoion He_1 cm^-2 0.000 frozen
25 25 1 photoion He_2 cm^-2 0.000 frozen
26 26 1 photoion C_1 cm^-2 0.000 frozen
27 27 1 photoion C_2 cm^-2 0.000 frozen
28 28 1 photoion C_3 cm^-2 0.000 frozen
29 29 1 photoion C_4 cm^-2 0.000 frozen
30 30 1 photoion C_5 cm^-2 0.000 frozen
31 31 1 photoion C_6 cm^-2 0.000 frozen
32 32 1 photoion N_1 cm^-2 0.000 frozen
33 33 1 photoion N_2 cm^-2 0.000 frozen
34 34 1 photoion N_3 cm^-2 0.000 frozen
35 35 1 photoion N_4 cm^-2 0.000 frozen
36 36 1 photoion N_5 cm^-2 0.000 frozen
37 37 1 photoion N_6 cm^-2 0.000 frozen
38 38 1 photoion N_7 cm^-2 0.000 frozen
39 39 1 photoion O_1 cm^-2 0.000 frozen
40 40 1 photoion O_2 cm^-2 0.000 frozen
41 41 1 photoion O_3 cm^-2 0.000 frozen
42 42 1 photoion O_4 cm^-2 0.000 frozen
43 43 1 photoion O_5 cm^-2 0.000 frozen
44 44 1 photoion O_6 cm^-2 0.000 frozen
45 45 1 photoion O_7 cm^-2 0.000 frozen
46 46 1 photoion O_8 cm^-2 0.000 frozen
47 47 1 photoion Ne_1 cm^-2 0.000 frozen
48 48 1 photoion Ne_2 cm^-2 0.000 frozen
49 49 1 photoion Ne_3 cm^-2 0.000 frozen
50 50 1 photoion Ne_4 cm^-2 0.000 frozen
51 51 1 photoion Ne_5 cm^-2 0.000 frozen
52 52 1 photoion Ne_6 cm^-2 0.000 frozen
53 53 1 photoion Ne_7 cm^-2 0.000 frozen
54 54 1 photoion Ne_8 cm^-2 0.000 frozen
55 55 1 photoion Ne_9 cm^-2 0.000 frozen
56 56 1 photoion Ne_10 cm^-2 0.000 frozen
57 57 1 photoion Mg_1 cm^-2 0.000 frozen
58 58 1 photoion Mg_2 cm^-2 0.000 frozen
59 59 1 photoion Mg_3 cm^-2 0.000 frozen
60 60 1 photoion Mg_4 cm^-2 0.000 frozen
61 61 1 photoion Mg_5 cm^-2 0.000 frozen
62 62 1 photoion Mg_6 cm^-2 0.000 frozen
63 63 1 photoion Mg_7 cm^-2 0.000 frozen
64 64 1 photoion Mg_8 cm^-2 0.000 frozen
65 65 1 photoion Mg_9 cm^-2 0.000 frozen
66 66 1 photoion Mg_10 cm^-2 0.000 frozen
67 67 1 photoion Mg_11 cm^-2 0.000 frozen
68 68 1 photoion Mg_12 cm^-2 0.000 frozen
69 69 1 photoion Al_1 cm^-2 0.000 frozen
70 70 1 photoion Al_2 cm^-2 0.000 frozen
71 71 1 photoion Al_3 cm^-2 0.000 frozen
72 72 1 photoion Al_4 cm^-2 0.000 frozen
73 73 1 photoion Al_5 cm^-2 0.000 frozen
74 74 1 photoion Al_6 cm^-2 0.000 frozen
75 75 1 photoion Al_7 cm^-2 0.000 frozen
76 76 1 photoion Al_8 cm^-2 0.000 frozen
77 77 1 photoion Al_9 cm^-2 0.000 frozen
78 78 1 photoion Al_10 cm^-2 0.000 frozen
79 79 1 photoion Al_11 cm^-2 0.000 frozen
80 80 1 photoion Al_12 cm^-2 0.000 frozen
81 81 1 photoion Al_13 cm^-2 0.000 frozen
82 82 1 photoion Si_1 cm^-2 0.000 frozen
83 83 1 photoion Si_2 cm^-2 0.000 frozen
84 84 1 photoion Si_3 cm^-2 0.000 frozen
85 85 1 photoion Si_4 cm^-2 0.000 frozen
86 86 1 photoion Si_5 cm^-2 0.000 frozen
87 87 1 photoion Si_6 cm^-2 0.000 frozen
88 88 1 photoion Si_7 cm^-2 0.000 frozen
89 89 1 photoion Si_8 cm^-2 0.000 frozen
90 90 1 photoion Si_9 cm^-2 0.000 frozen
91 91 1 photoion Si_10 cm^-2 0.000 frozen
92 92 1 photoion Si_11 cm^-2 0.000 frozen
93 93 1 photoion Si_12 cm^-2 0.000 frozen
94 94 1 photoion Si_13 cm^-2 0.000 frozen
95 95 1 photoion Si_14 cm^-2 0.000 frozen
96 96 1 photoion S_1 cm^-2 0.000 frozen
97 97 1 photoion S_2 cm^-2 0.000 frozen
98 98 1 photoion S_3 cm^-2 0.000 frozen
99 99 1 photoion S_4 cm^-2 0.000 frozen
100 100 1 photoion S_5 cm^-2 0.000 frozen
101 101 1 photoion S_6 cm^-2 0.000 frozen
102 102 1 photoion S_7 cm^-2 0.000 frozen
103 103 1 photoion S_8 cm^-2 0.000 frozen
104 104 1 photoion S_9 cm^-2 0.000 frozen
105 105 1 photoion S_10 cm^-2 0.000 frozen
106 106 1 photoion S_11 cm^-2 0.000 frozen
107 107 1 photoion S_12 cm^-2 0.000 frozen
108 108 1 photoion S_13 cm^-2 0.000 frozen
109 109 1 photoion S_14 cm^-2 0.000 frozen
110 110 1 photoion S_15 cm^-2 0.000 frozen
111 111 1 photoion S_16 cm^-2 0.000 frozen
112 112 1 photoion Ar_1 cm^-2 0.000 frozen
113 113 1 photoion Ar_2 cm^-2 0.000 frozen
114 114 1 photoion Ar_3 cm^-2 0.000 frozen
115 115 1 photoion Ar_4 cm^-2 0.000 frozen
116 116 1 photoion Ar_5 cm^-2 0.000 frozen
117 117 1 photoion Ar_6 cm^-2 0.000 frozen
118 118 1 photoion Ar_7 cm^-2 0.000 frozen
119 119 1 photoion Ar_8 cm^-2 0.000 frozen
120 120 1 photoion Ar_9 cm^-2 0.000 frozen
121 121 1 photoion Ar_10 cm^-2 0.000 frozen
122 122 1 photoion Ar_11 cm^-2 0.000 frozen
123 123 1 photoion Ar_12 cm^-2 0.000 frozen
124 124 1 photoion Ar_13 cm^-2 0.000 frozen
125 125 1 photoion Ar_14 cm^-2 0.000 frozen
126 126 1 photoion Ar_15 cm^-2 0.000 frozen
127 127 1 photoion Ar_16 cm^-2 0.000 frozen
128 128 1 photoion Ar_17 cm^-2 0.000 frozen
129 129 1 photoion Ar_18 cm^-2 0.000 frozen
130 130 1 photoion Ca_1 cm^-2 0.000 frozen
131 131 1 photoion Ca_2 cm^-2 0.000 frozen
132 132 1 photoion Ca_3 cm^-2 0.000 frozen
133 133 1 photoion Ca_4 cm^-2 0.000 frozen
134 134 1 photoion Ca_5 cm^-2 0.000 frozen
135 135 1 photoion Ca_6 cm^-2 0.000 frozen
136 136 1 photoion Ca_7 cm^-2 0.000 frozen
137 137 1 photoion Ca_8 cm^-2 0.000 frozen
138 138 1 photoion Ca_9 cm^-2 0.000 frozen
139 139 1 photoion Ca_10 cm^-2 0.000 frozen
140 140 1 photoion Ca_11 cm^-2 0.000 frozen
141 141 1 photoion Ca_12 cm^-2 0.000 frozen
142 142 1 photoion Ca_13 cm^-2 0.000 frozen
143 143 1 photoion Ca_14 cm^-2 0.000 frozen
144 144 1 photoion Ca_15 cm^-2 0.000 frozen
145 145 1 photoion Ca_16 cm^-2 0.000 frozen
146 146 1 photoion Ca_17 cm^-2 0.000 frozen
147 147 1 photoion Ca_18 cm^-2 0.000 frozen
148 148 1 photoion Ca_19 cm^-2 0.000 frozen
149 149 1 photoion Ca_20 cm^-2 0.000 frozen
150 150 1 photoion Fe_1 cm^-2 0.000 frozen
151 151 1 photoion Fe_2 cm^-2 0.000 frozen
152 152 1 photoion Fe_3 cm^-2 0.000 frozen
153 153 1 photoion Fe_4 cm^-2 0.000 frozen
154 154 1 photoion Fe_5 cm^-2 0.000 frozen
155 155 1 photoion Fe_6 cm^-2 0.000 frozen
156 156 1 photoion Fe_7 cm^-2 0.000 frozen
157 157 1 photoion Fe_8 cm^-2 0.000 frozen
158 158 1 photoion Fe_9 cm^-2 0.000 frozen
159 159 1 photoion Fe_10 cm^-2 0.000 frozen
160 160 1 photoion Fe_11 cm^-2 0.000 frozen
161 161 1 photoion Fe_12 cm^-2 0.000 frozen
162 162 1 photoion Fe_13 cm^-2 0.000 frozen
163 163 1 photoion Fe_14 cm^-2 0.000 frozen
164 164 1 photoion Fe_15 cm^-2 0.000 frozen
165 165 1 photoion Fe_16 cm^-2 0.000 frozen
166 166 1 photoion Fe_17 cm^-2 0.000 frozen
167 167 1 photoion Fe_18 cm^-2 0.000 frozen
168 168 1 photoion Fe_19 cm^-2 0.000 frozen
169 169 1 photoion Fe_20 cm^-2 0.000 frozen
170 170 1 photoion Fe_21 cm^-2 0.000 frozen
171 171 1 photoion Fe_22 cm^-2 0.000 frozen
172 172 1 photoion Fe_23 cm^-2 0.000 frozen
173 173 1 photoion Fe_24 cm^-2 0.000 frozen
174 174 1 photoion Fe_25 cm^-2 0.000 frozen
175 175 1 photoion Fe_26 cm^-2 0.000 frozen
176 176 1 photoion Ni_1 cm^-2 0.000 frozen
177 177 1 photoion Ni_2 cm^-2 0.000 frozen
178 178 1 photoion Ni_3 cm^-2 0.000 frozen
179 179 1 photoion Ni_4 cm^-2 0.000 frozen
180 180 1 photoion Ni_5 cm^-2 0.000 frozen
181 181 1 photoion Ni_6 cm^-2 0.000 frozen
182 182 1 photoion Ni_7 cm^-2 0.000 frozen
183 183 1 photoion Ni_8 cm^-2 0.000 frozen
184 184 1 photoion Ni_9 cm^-2 0.000 frozen
185 185 1 photoion Ni_10 cm^-2 0.000 frozen
186 186 1 photoion Ni_11 cm^-2 0.000 frozen
187 187 1 photoion Ni_12 cm^-2 0.000 frozen
188 188 1 photoion Ni_13 cm^-2 0.000 frozen
189 189 1 photoion Ni_14 cm^-2 0.000 frozen
190 190 1 photoion Ni_15 cm^-2 0.000 frozen
191 191 1 photoion Ni_16 cm^-2 0.000 frozen
192 192 1 photoion Ni_17 cm^-2 0.000 frozen
193 193 1 photoion Ni_18 cm^-2 0.000 frozen
194 194 1 photoion Ni_19 cm^-2 0.000 frozen
195 195 1 photoion Ni_20 cm^-2 0.000 frozen
196 196 1 photoion Ni_21 cm^-2 0.000 frozen
197 197 1 photoion Ni_21 cm^-2 0.000 frozen
198 198 1 photoion Ni_23 cm^-2 0.000 frozen
199 199 1 photoion Ni_24 cm^-2 0.000 frozen
200 200 1 photoion Ni_25 cm^-2 0.000 frozen
201 201 1 photoion Ni_26 cm^-2 0.000 frozen
202 202 1 photoion Ni_27 cm^-2 0.000 frozen
203 203 1 photoion Ni_28 cm^-2 0.000 frozen
204 204 1 photoion C_1_T eV 4.000 frozen
205 205 1 photoion C_2_T eV 2.500 frozen
206 206 1 photoion N_1_T eV 4.000 frozen
207 207 1 photoion N_2_T eV 3.000 frozen
208 208 1 photoion O_1_T eV 10.00 frozen
209 209 1 photoion O_2_T eV 4.000 frozen
210 210 1 photoion Ne_1_T eV 10.00 frozen
211 211 1 photoion Ne_2_T eV 10.00 frozen
212 212 1 photoion Ne_3_T eV 10.00 frozen
213 213 1 photoion Ne_4_T eV 10.00 frozen
214 214 1 photoion Ne_5_T eV 10.00 frozen
215 215 1 photoion Ne_6_T eV 10.00 frozen
216 216 1 photoion Ne_7_T eV 10.00 frozen
217 217 1 photoion Ne_8_T eV 10.00 frozen
218 218 1 photoion Ne_9_T eV 10.00 frozen
219 219 1 photoion Ne_10_T eV 10.00 frozen
220 220 1 photoion Mg_1_T eV 10.00 frozen
221 221 1 photoion Mg_2_T eV 10.00 frozen
222 222 1 photoion Mg_3_T eV 10.00 frozen
223 223 1 photoion Mg_4_T eV 10.00 frozen
224 224 1 photoion Mg_5_T eV 10.00 frozen
225 225 1 photoion Mg_6_T eV 10.00 frozen
226 226 1 photoion Mg_7_T eV 10.00 frozen
227 227 1 photoion Mg_8_T eV 10.00 frozen
228 228 1 photoion Mg_9_T eV 10.00 frozen
229 229 1 photoion Mg_10_T eV 10.00 frozen
230 230 1 photoion Al_1_T eV 10.00 frozen
231 231 1 photoion Al_2_T eV 10.00 frozen
232 232 1 photoion Al_3_T eV 10.00 frozen
233 233 1 photoion Al_4_T eV 10.00 frozen
234 234 1 photoion Al_5_T eV 10.00 frozen
235 235 1 photoion Al_6_T eV 10.00 frozen
236 236 1 photoion Al_7_T eV 10.00 frozen
237 237 1 photoion Al_8_T eV 10.00 frozen
238 238 1 photoion Al_9_T eV 10.00 frozen
239 239 1 photoion Al_10_T eV 10.00 frozen
240 240 1 photoion Si_1_T eV 10.00 frozen
241 241 1 photoion Si_2_T eV 10.00 frozen
242 242 1 photoion Si_3_T eV 10.00 frozen
243 243 1 photoion Si_4_T eV 10.00 frozen
244 244 1 photoion Si_5_T eV 10.00 frozen
245 245 1 photoion Si_6_T eV 10.00 frozen
246 246 1 photoion Si_7_T eV 10.00 frozen
247 247 1 photoion Si_8_T eV 10.00 frozen
248 248 1 photoion Si_9_T eV 10.00 frozen
249 249 1 photoion Si_10_T eV 10.00 frozen
250 250 1 photoion S_1_T eV 10.00 frozen
251 251 1 photoion S_2_T eV 10.00 frozen
252 252 1 photoion S_3_T eV 10.00 frozen
253 253 1 photoion S_4_T eV 10.00 frozen
254 254 1 photoion S_5_T eV 10.00 frozen
255 255 1 photoion S_6_T eV 10.00 frozen
256 256 1 photoion S_7_T eV 10.00 frozen
257 257 1 photoion S_8_T eV 10.00 frozen
258 258 1 photoion S_9_T eV 10.00 frozen
259 259 1 photoion S_10_T eV 10.00 frozen
260 260 1 photoion Ar_1_T eV 10.00 frozen
261 261 1 photoion Ar_2_T eV 10.00 frozen
262 262 1 photoion Ar_3_T eV 10.00 frozen
263 263 1 photoion Ar_4_T eV 10.00 frozen
264 264 1 photoion Ar_5_T eV 10.00 frozen
265 265 1 photoion Ar_6_T eV 10.00 frozen
266 266 1 photoion Ar_7_T eV 10.00 frozen
267 267 1 photoion Ar_8_T eV 10.00 frozen
268 268 1 photoion Ar_9_T eV 10.00 frozen
269 269 1 photoion Ar_10_T eV 10.00 frozen
270 270 1 photoion Ca_1_T eV 10.00 frozen
271 271 1 photoion Ca_2_T eV 10.00 frozen
272 272 1 photoion Ca_3_T eV 10.00 frozen
273 273 1 photoion Ca_4_T eV 10.00 frozen
274 274 1 photoion Ca_5_T eV 10.00 frozen
275 275 1 photoion Ca_6_T eV 10.00 frozen
276 276 1 photoion Ca_7_T eV 10.00 frozen
277 277 1 photoion Ca_8_T eV 10.00 frozen
278 278 1 photoion Ca_9_T eV 10.00 frozen
279 279 1 photoion Ca_10_T eV 10.00 frozen
280 280 1 photoion Fe_1_T eV 10.00 frozen
281 281 1 photoion Fe_2_T eV 10.00 frozen
282 282 1 photoion Fe_3_T eV 10.00 frozen
283 283 1 photoion Fe_4_T eV 10.00 frozen
284 284 1 photoion Fe_5_T eV 10.00 frozen
285 285 1 photoion Fe_6_T eV 10.00 frozen
286 286 1 photoion Fe_7_T eV 10.00 frozen
287 287 1 photoion Fe_8_T eV 10.00 frozen
288 288 1 photoion Fe_9_T eV 10.00 frozen
289 289 1 photoion Fe_10_T eV 10.00 frozen
290 290 1 photoion Ni_1_T eV 10.00 frozen
291 291 1 photoion Ni_2_T eV 10.00 frozen
292 292 1 photoion Ni_3_T eV 10.00 frozen
293 293 1 photoion Ni_4_T eV 10.00 frozen
294 294 1 photoion Ni_5_T eV 10.00 frozen
295 295 1 photoion Ni_6_T eV 10.00 frozen
296 296 1 photoion Ni_7_T eV 10.00 frozen
297 297 1 photoion Ni_8_T eV 10.00 frozen
298 298 1 photoion Ni_9_T eV 10.00 frozen
299 299 1 photoion Ni_10_T eV 10.00 frozen
300 300 1 photoion norm 1.000 +/- 0.000
---------------------------------------------------------------------------
---------------------------------------------------------------------------
1: type - =-1 to give the y-axis as dimensionless total opacity if
x-axis is in wavelength, =0 to give the y-axis as dimensionless total
opacity if x-axis is in energy, = 1 for pure absorption, = 2 for pure
reemission, = 3 for pure reemission, recombination alone, = 4 for
absorption plus reemission (lower limit), = 5 for absorption plus
reemission (upper limit), (
The following were designed for cataclysmic variable spectra : see Mukai et al. 2003)
= 6 for unobscured intrinsic continuum plus reemission spectrum,
= 7 for unobscured intrinsic continuum plus reemission spectrum
assuming "infinite" radial velocity width, i.e., lines, but not edges,
are unsaturated at all column densities,
= 8 same as type=7, except without intrinsic continuum2: redshift - Redshift of source 3: v_rad - Radial velocity shift 4: v_trans - Transverse velocity shift 5: sig_rad - Radial velocity width (sigma) 6: sig_tran - Transverse velocity width (sigma) 7: INPUT - For inputting external spectrum (keep at default value of "0"). 8: INSHIFT? - For redshifting external spectrum (keep at default value of "0"). 9: Gamma - Power-law slope L(E)=AE^(-Gamma). 10: L_EMIN - Low-energy limit [eV] to power law. 11: L_EMAX - High-energy limit [eV] to power law. 12: L_X - Total rest-frame luminosity (from L_EMIN [eV] to L_EMAX [eV]) in 10^30 ergs/s. For non-zero redshift, cosmological correction is applied. 13: FLUXAVE - This is the average flux of the intrinsic continuum (default = 1). For highly variable sources like Sy1 galaxies, this allows the user to determine the "average" flux level to determine the proper level of reemission. 14: f - Covering factor: f=Omega/4*Pi 15: D - Distance to source in parsec. If D is set to "0.", then the Hubble law using the standard lambdaCDM cosmology (from the MAP results). 16: EMIN - Minimum energy [keV] for internal grid. This grid has nothing to do with the input luminosity spectrum. For type>=2 (calculation of reemission spectrum), make sure that energy range includes all regions with significant photoelectric absorption. 17: EMAX - Maximum energy [keV] for internal grid. This grid has nothing to do with the input luminosity spectrum. For type>=2 (calculation of reemission spectrum), make sure that energy range includes all regions with significant photoelectric absorption. EMAX >= 15.0 keV should be sufficient. 18: SPECBINS - Total number of energy bins (equally-spaced in energy) for internal grid. 19: fileincr - < 0 for no output files, >= 0 for output files are produced. E.g., fileincr=22 would produce four files with output columns as follows: E_spectrum_22.qdp (Observed E [keV], half-bin width [keV], and spectrum [photons/cm^2/s/keV]), l_spectrum_22.qdp (Observed lambda [Angstrom], half-bin width [A], and spectrum [photons/cm^2/s/A]), E_output_22.qdp (Observed E [eV], tau, L(E)/(4*Pi*D^2) [photons/cm^2/s/eV], type1 spectrum [ph/cm^2/s/eV], type2 spectrum ["], type3 spectrum ["], type4 spectrum ["], type5 spectrum ["], type6 spectrum ["], photoexcitation spectrum ["], RR spectrum ["], DR spectrum ["]) l_output_22.qdp (Observed lambda [Angstrom], tau, L(lambda)/(4*Pi*D^2) [photons/cm^2/s/A], type1 spectrum [ph/cm^2/s/A], type2 spectrum ["], type3 spectrum ["], type4 spectrum ["], type5 spectrum ["], type6 spectrum ["], photoexcitation spectrum ["], RR spectrum ["], DR spectrum ["]) 20: verbose - =1 for output numbers/messages, =0 for no output numbers/messages 21: COLNORM - Overall column density normalization (default = 1.0). Convenient for multiplying all the column densities simultaneously by the same factor. 22: N_e - Total electron radial column density (to get Thomson depth). 23: H_1 - Neutral hydrogen radial column density. Number denotes number of bound electrons. 24: He_1 - Single-electron helium radial column density. 25: He_2 - Neutral helium radial column density. 26: C_1 - H-like C radial column density. 27: C_2 - He-like C radial column density. . . . 204: C_1_T - Electron temperature for recombinations forming H-like C. 204: C_2_T - Electron temperature for recombinations forming He-like C. . . . 300: norm - XSPEC internal 'normalization' parameter. Leave this at '1.000.'
ADDEXT:Here's an example of a set of model parameters for ADDEXT. ADDEXT allows the user to input an external spectrum located in the file "addext.qdp". (See below for a description of the parameters)
---------------------------------------------------------------------------
---------------------------------------------------------------------------
Model: addext[1]
Model Fit Model Component Parameter Unit Value
par par comp
1 1 1 addext E_or_l 0.000 frozen
2 2 1 addext redshift 0.000 frozen
3 3 1 addext v km/s 0.000 frozen
4 4 1 addext norm 1.000 +/- 0.000
---------------------------------------------------------------------------
---------------------------------------------------------------------------
1: E_or_l - =0 implies external file "addext.qdp" is in energy units [keV], =1 implies external file "addext.qdp" is in wavelength units [Angstrom].2: redshift - for redshifting external spectrum. 3: v - Velocity shift.
MULEXT:Here's an example of a set of model parameters for MULEXT. MULEXT allows the user to multiply any spectrum by an external "opacity" spectrum located in file "mulext.qdp". (See below for a description of the parameters)
---------------------------------------------------------------------------
---------------------------------------------------------------------------
Model: mulext[1]( powerlaw[2] )
Model Fit Model Component Parameter Unit Value
par par comp
1 1 1 mulext E_or_l 0.000 frozen
2 2 1 mulext redshift 0.000 frozen
3 3 1 mulext v km/s 0.000 frozen
4 4 2 powerlaw PhoIndex 2.000 +/- 0.000
5 5 2 powerlaw norm 1.000 +/- 0.000
---------------------------------------------------------------------------
---------------------------------------------------------------------------
1: E_or_l - =0 implies external file "mulext.qdp" is in energy units
[keV], =1 implies external file "mulext.qdp" is in wavelength units [Angstrom].2: redshift - For redshifting external spectrum. 3: v - Velocity shift.
TAUEXT:Here's an example of a set of model parameters for TAUEXT. TAUEXT allows the user to multiply any spectrum by an external "optical depth" spectrum located in file "tauext.qdp". (See below for a description of the parameters)
---------------------------------------------------------------------------
---------------------------------------------------------------------------
Model: tauext[1]( powerlaw[2] )
Model Fit Model Component Parameter Unit Value
par par comp
1 1 1 tauext E_or_l 0.000 frozen
2 2 1 tauext redshift 0.000 frozen
3 3 1 tauext v km/s 0.000 frozen
4 4 1 tauext tau_norm 1.000 frozen
5 5 2 powerlaw PhoIndex 2.000 +/- 0.000
6 6 2 powerlaw norm 1.000 +/- 0.000
---------------------------------------------------------------------------
---------------------------------------------------------------------------
1: E_or_l - =0 implies external file "tauext.qdp" is in energy units
[keV], =1 implies external file "tauext.qdp" is in wavelength units [Angstrom].2: redshift - For redshifting external spectrum. 3: v - Velocity shift. 4: tau_norm - Factor to multiply "tauext.qdp" values by.
Keith Arnaud, Lab. for High Energy Astrophysics, NASA/Goddard Space Flight Center HEASARC Home | Observatories | Archive | Calibration | Software | Tools | Students/Teachers/Public Last modified: Tuesday, 07-Nov-2006 16:47:40 EST |

