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How do we compare the two 
different models?

Steps in the X-ray Data Analysis:

1/ Obtain the data (observe or archive) 

2/ Reduce Data => standard processing or reprocessed,
     extract an image or a spectrum

3/ Analysis – fit the data

4/ Conclude – Hypothesis Testing!

5/ Reflect
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Steps in Hypothesis Testing

1/ Set up 2 possible exclusive hypotheses:

M0 – null hypothesis – formulated to be rejected

M1 – an alternative hypothesis, research hypothesis

each has associated terminal action

2/ Specify a priori the significance level α

choose a test which:
    - approximates the conditions
    - finds what is needed to obtain the sampling 
distribution and the region of rejection, whose area is a 
fraction of the total area in the sampling distribution

3/ Run test: reject M0 if the test yields a value of the 
statistics whose probability of occurance under M0 is <α 

4/ Carry on terminal action
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A model M has been fit to dataset D : 

» the maximum of the likelihood function Lmax, 

» the minimum of the χ2 statistic χ2
m in , 

» or the mode of the posterior distribution           
    

)|ˆ( Dp θ

 Model Comparison. The determination of which of a 
suite of models (e.g., blackbody, power-law, etc.) best 
represents the data.

Parameter Estimation. The characterization of the 
sampling distribution for each best-fit model 
parameter (e.g., blackbody temperature and 
normalization), which allows the errors (i.e., standard 
deviations) of each parameter to be determined.
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Two models, M0 and M1 , have been fit to D. M0 , the “simpler” of the two 
models (generally speaking, the model with fewer free parameters) is the 

null hypothesis.

A frequentist would compare these models by:

 constructing a test statistic T from the best-fit statistics of each fit 
(e.g.,                     );

 determining each sampling distributions for T ,  p (T  |  M0) an d  p (T |  M1);
 determining the significance, or Type I error, the probability of selecting M1 

when M0 is correct:

and determing the power, or Type II error, which is related to the probability β 
of selecting M0 when M1 is correct:

⇒  If α is smaller than a pre-defined threshold (≤ 0.05, or ≤ 10-4, etc., with 
smaller thresholds used for more controversial alternative models), then the 
frequentist rejects the null hypothesis.

⇒ If there are several model comparison tests to choose from, the 
frequentist uses the most powerful one!
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Comparison of distributions p(T | M0) (from which one determines the significance α) and 
p(T | M1) (from which one determines the power of the model comparison test 1 – β) 
(Eadie et al. 1971, p.217)

α- significance

1- β – power of test
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Standard frequentist model comparison tests include:

The χ2 Goodness-of-Fit (GoF) test:

The Maximum Likelihood Ratio (MLR) test:

where ΔP is the number of additional freely varying model parameters in model 
M1

The F-test:                                           

where P1 is the total number of thawed parameters in model M1

These are standard tests because they allow estimation of the 
significance without time-consuming simulations!
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Model Comparison Tests:

Notes and caveats regarding these standard tests:

The GoF test is an “alternative-free” test, as it does not take 
into account the alternative model M1.  It is consequently a 
weak (i.e.,  not powerful) model comparison test and should 
not be used!

Only the version of F-test which generally has the greatest 
power is shown above: in principle, one can construct three F 
statistics out of             an d  ∆χ  

2

The MLR ratio test is generally the most powerful for 
detecting emission and absorption lines in spectra.

But the most important caveat of all is that…

2 2
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The F and MLR tests are commonly misused by astronomers! 
There are two important conditions that must be met so that an 
estimated derived value α is actually correct, i.e., so that it is an 

accurate approximation of the tail integral of the sampling 
distribution (Protassov et al. 2001):

M0  must be nested within M1, i.e., one can obtain M0  by 
setting the extra ΔP parameters of M1 to default values, often 
zero; and

those default values may not be on a parameter space 
boundary.

The second condition may not be met, e.g., when one is attempting 
to detect an emission line, whose default amplitude is zero and 
whose minimum amplitude is zero. Protassov et al.  recommend 
Bayesian posterior predictive probability values as an alternative, 

If the conditions for using these tests are not met, then they can 
still be used, but the significance must be computed via Monte 
Carlo simulations.
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Bayesian Model Comparison

we showed how Bayes’ theorem is applied in model fits.  It can also be 
applied to model comparison:

p(M) is the prior probability for M;

p(D) is an ignorable normalization constant; and

p(D | M) is the average, or global, likelihood:

In other words, it is the (normalized) integral of the posterior distribution 
over all parameter space.  Note that this integral may be computed 
numerically, by brute force, or if the likelihood surface is approximately a 
multi-dimensional Gaussian  (i.e.  if L  α  exp [- χ2/ 2]), by the Laplace 
approximation:

where C is the covariance matrix (estimated numerically at the mode).
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Bayesian Model Comparison

To compare two models, a Bayesian computes the odds, or odd ratio:

where B10  is the Bayes factor. When there is no a priori  preference 
for either model, B10 = 1 of one indicates that each model is equally 
likely to be correct, while B10  ≥ 10 may be considered sufficient to 
accept the alternative model (although that number should be 
greater if the alternative model is controversial).
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