

Recent Results from RXTE Monitoring of Seyferts

Alex Markowitz (UCSD-CASS)

I: Linking X-ray/Optical Variability in Seyferts

Summary of talk by Ian McHardy (Univ of Southampton) @ Bologna, 09/2009

II: Broadband PCA + HEXTE Spectral Survey of Bright AGN

Elizabeth Rivers, Alex Markowitz & Rick Rothschild (UCSD-CASS)

III: New Direction for PSD Monitoring?

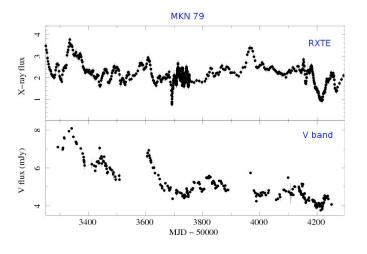
IV: Fe K α Line Variability: Tracing the Line-Emitting Gas

I: X/Opt Variability in Seyferts: Overview

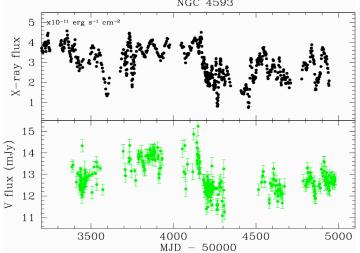
From I.M. McHardy with E. Breedt, P. Arevalo, D. Cameron, P. Uttley, T. Dwelly, P. Lira, + collaborations with the Japanese Magnum & Crimean AGN monitoring groups

•Quantify X-ray (corona) + optical (thermal disk) continuum variability:

Constrain geometry via lags


•Determine variability mechanism: is there $X \rightarrow O$ reprocessing and/or intrinsic disk variability?

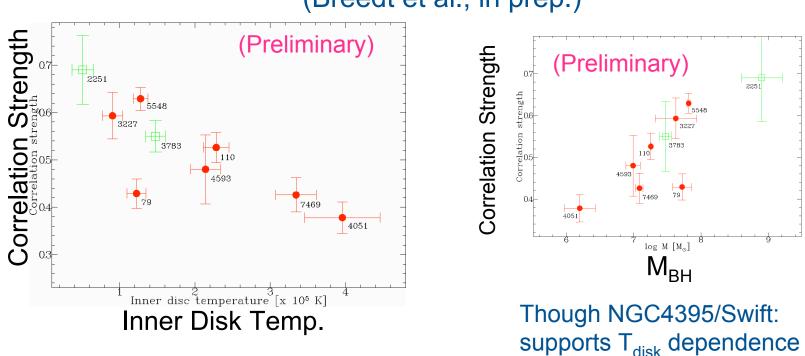
•How do AGN system properties (M_{BH}) or disk properties (Temp.) govern X/O variability?


•Long-term (years), continuous, contemporaneous RXTE + recent ground-based monitoring (e.g., Liverpool robotic telescope, SMARTS)

I: X/Opt Variability in Seyferts: sample light curves

Mkn 79, Breedt+ (2009)

NGC 4593 (Southampton group., in prep.)



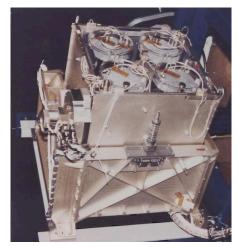
•Now: papers on individual Seyferts coming out (e.g., Breedt+ '09, Arevalo+'08,'09); number of good correlations has more than tripled!

•Short-term correlations with $X \rightarrow O$ lags of ~1-2 days (reprocessing), but differing long-term trends

•Optical is a bit more variable than X-rays on long time scales in some targets; $X \rightarrow O$ reprocessing is not sole source of optical variability. Intrinsic m-dot fluctuations in the disc likely important on long time scales

I: X/Opt Variability in Seyferts: Cross-Correlation Peaks vs Inner Disk Temp. & M_{BH}

(Breedt et al., in prep.)


Picture emerging: X \rightarrow O reprocessing is important source of short-tem optical variability; reprocessed component depends on T_{disk} (angle subtended by X-ray source).

II: Broadband PCA+HEXTE Spectral Survey of Bright AGN

Elizabeth Rivers, Alex Markowitz, Rick Rothschild (UCSD-CASS), in prep.

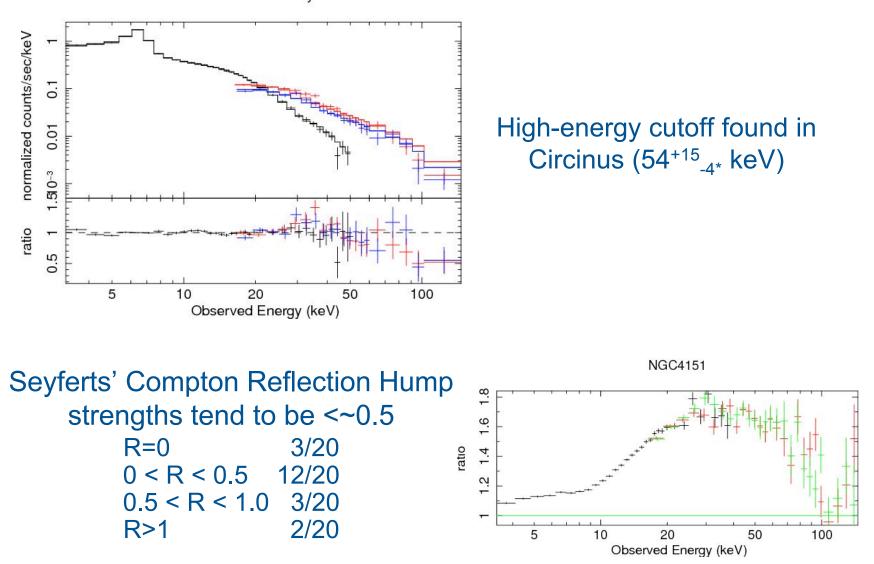
•*Maximize AGN science return from HEXTE* with 3 to >100 keV summed, broadband spectra from 13 years of archival data

•Reference for long-term average spectral properties for 23 X-raybright AGN in the only-recently-well-explored ~20 to ~200 keV sky

II: PCA+HEXTE AGN Spectral Survey: Overview

•Summed spectra from archival data (PCA was usually primary instr.)

•Complementary to other X-ray missions' surveys of bright AGN, though with HEXTE, we get higher energy resolution than Swift-BAT, longer exposures than SAX in many cases, higher energy than Suzaku-PIN, lower background than INTEGRAL-ISGRI


•Source selection: detection out to at least 100 keV in HEXTE: combination of being bright plus sufficiently long good exposure time (down to 0.8% of HEXTE bkgd in the best case)

•Sample consists of 9 RQ Sy 1-1.5s, 1 RQ QSO, 2 RL Sy1s, 3 Comptonthin Sy2s, 3 Compton-thick Sy2s, 1 NLRG, 2 FSRQs, 2 BLLACs

Avg. PCA good-time exposure per object: 774 ksec

Avg. HEXTE good time exposure per cluster per object: 219 ksec

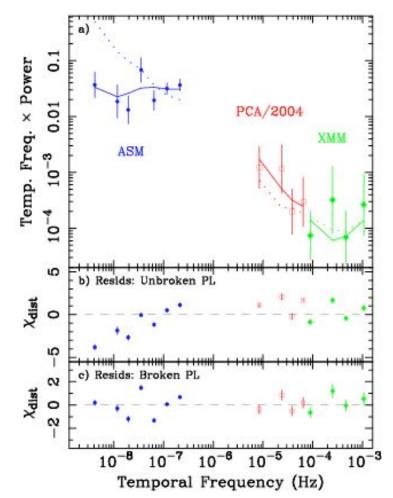
II: PCA+HEXTE AGN Spectral Survey: Preliminary Results

Circinus Galaxy

III: Cen A PSD (Preliminary)

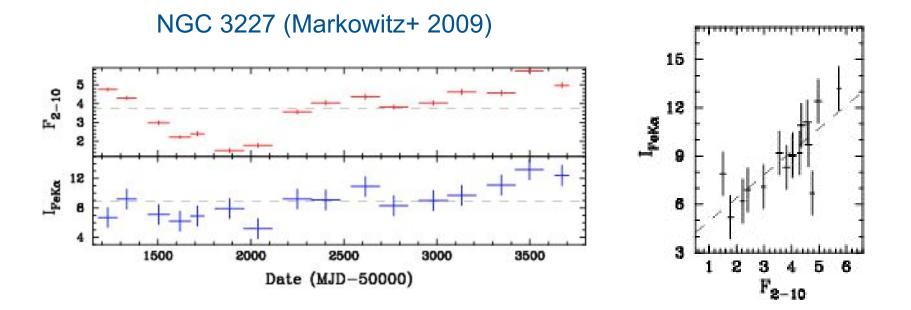
Rothschild et al. (in prep.)

•One of RXTE's legacies: Measurement of PSD "breaks" at temp freqs $f_{\rm b} \sim 10^{-(5-6)}$ Hz in Seyferts


 $f_{\rm b}$ depends on both M_{BH} and L_{bol}/L_{Edd} (summarized by McHardy+ 2006)

•Cen A: high M_{BH} (2e8 M_{sun}), low L_{bol}/L_{Edd} (0.002)

Cen A PSD from ASM + PCA + XMM light curves: $f_b = 6.3^{+3.7}_{-3.1} e-7 Hz$


Factor of 35⁺²¹-17 higher than predicted from the McHardy+ (2006) relation, which was derived for a sample of mainly RQ Seyferts.

•Perhaps RL and/or low- L_{bol}/L_{Edd} srcs do not follow the relation...Need PSDs for more RL AGN and more low- L_{bol}/L_{Edd} sources!

IV: Fe K α line reverberation (sort of)

Long-term PCA monitoring reveals (narrow) Fe K α line flux tracks X-ray continuum: upper limits on radial extent of bulk of narrow Fe K α line emitting gas

X-ray-continuum src \rightarrow Fe line src light travel time < 700 lt.-dys

Conclusions/ Prospects for the Near Future

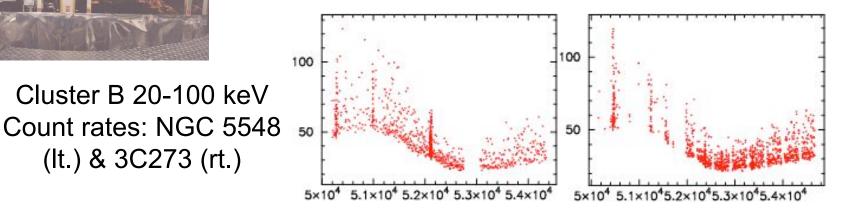
•X-ray/Opt monitoring: Expand the sample to include more objects; critically test correlations as a function of $M_{BH} \& T_{disk}$ (no relation with L_{bol}/L_{Edd} seen...)

Additional monitoring over time scales of years could improve statistics on correlation coeffs; help pin down any long-term optical/X-ray lags and better define importance of intrinsic disk variability

•Broadband spectra: Additional RXTE long-looks of 150-200 ksec good HEXTE exposure time can yield high-quality spectra (out to at least 100 keV) for ~8 additional Seyferts with data currently in the archive

•PSD Monitoring: More low- $L_{\text{bol}}/L_{\text{Edd}}$ accretors and radio-loud targets needed

Source Name	Туре	PCA expo (ksec)	$\begin{array}{c} {\rm HEXTE} \\ {\rm A} + {\rm B} \\ {\rm expo} \ ({\rm ksec}) \end{array}$	F(20-100) observed (10 ⁻¹¹ erg cm ⁻² s ⁻¹)	% of 20-100 keV bkgd	L(20-100) unabsorbee (erg s ⁻¹)
NGC 4151	Sy 1.5	562	165 ± 165	43.03	6.3	1.47e44
IC 4329a	Sy 1.2	582	145 ± 175	19.13	4,3	1.18944
NGC 3783	Sy 1	1297	204 + 365	11.86	2.0	1.52e44
NGC 3516	Sy 1.5	547	293 + 292	8.87	1.1	6.80e42
Mkn 809	Sy 1.2	739	197 ± 225	8.51	1.5	2.16044
NGC 5548	Sy 1.5	927	294 + 312	8.47	1.0	5.48643
NGC 3227	Sy 1.5	1030	283 ± 284	8.19	1.1	3,45642
MR 2251-178	Sy 1 / QSO	380	58 ± 120	7.78	1.3	7.75e44
NGC 4593	Sy 1	960	168 ± 282	6.35	1.4	1.10043
NGC 7469	Sy 1.2	1064	243 + 306	4.63	0.8	1.81 e 43
aC 111	BLRG	808	127 ± 238	8.64	1.6	4.68644
aC 120	BLRG	2102	505 ± 629	8.20	1.4	1.43644
NGC 5506	C-thin Sy2	700	202 + 201	18.12	2.3	1.19e43
MCG-5-23-16	C-thm Sy2	180	55 + 55	14.43	1.8	2.20e43
NGC 4507	C-thin Sy2	14.5	47 ± 47	14.41	1.8	5.77e43
Cen A	NLRG	563	110 ± 198	68.91	11.8	1.45 e 42
Circinus	C-thick Syz	.97	33 + 32	20.60	2.8	2.32641
NGC 7582	C-thick Sy2	139	43 + 43	6.53	1.5	9.56e41
NGC 4945	C-thick Sy2	100	208 + 307	19.41	3.7	4.17e41
3C 273	FSRQ	1843	430 ± 530	19.46	3.2	1.11946
Mku 421	BL Lac	1.662	476 ± 433	10.36	2.5	2.33044
1ES 1959+650	BL Lac	199	65 + 64	8.05	2.1	4.53e44


PCA+HEXTE spectral survey: supplementary info.

Note: — All results are preliminary from Rivers et al., in prep. F(20-100) = exposureweighted average of fluxes determined from HEXTE clusters A and B independently. All luminosities are rest-frame; blazars' luminosities have not been corrected for anisotropic beaming.

(It.) & 3C273 (rt.)

HEXTE background rate over mission lifetime

Can access fainter sources now! (average (for typical AGN monitoring obsns) 20-100 keV bkgd ~ 6e-9 erg/cm2/s)

Can achieve "GOOD" spectra out to at least ~100 keV...

With ~60 ksec expo, get down to 1.8% of background (F20-100 = 1.1e-10 erg/cm2/s) With ~100-150 ksec expo, get down to 1.3% of background (F20-100 = 8e-11 erg/cm2/s) With ~150-200 ksec expo, get down to 1.1% of background (F20-100 = 7e-11 erg/cm2/s) With \sim 250-350 ksec expo, get down to 0.8% of background (F20-100 = 5e-11 erg/cm2/s)

(1 ct/s for cluster B013 = 1.5e-10 erg/cm2/s)

Rough estimate: (1/[%ofbkgd])² * 200 ksec