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Abstract. We formulate and solve the diffusion problem of line photon propagation in a bulk outflow from a compact object
(black hole or neutron star) using a generic assumption regarding the distribution of line photons within the outflow. Thomson
scattering of the line photons within the expanding flow leads to a decrease of their energy which is of first order in v

�
c, where

v is the outflow velocity and c the speed of light. We demonstrate that the emergent line profile is closely related to the time
distribution of photons diffusing through the flow (the light curve) and consists of a broad redshifted feature. We analyzed the
line profiles for the general case of outflow density distribution. We emphasize that the redshifted lines are intrinsic properties
of the powerful outflow that are supposed to be in many compact objects.

INTRODUCTION

The problem of photon propagation in an optically thick
fluid in bulk motion has been studied in detail in a num-
ber of papers. The idea that photons may change their en-
ergy in repeated scatterings with cold electrons in a mov-
ing fluid was suggested more than 20 years ago [1, 2, 3].
This process, often referred to as dynamical or bulk flow
Comptonization, is similar in many ways to Comptoniza-
tion by hot electrons once the thermal velocity is replaced
by bulk velocity v; there is however a qualitative differ-
ence, in that their energy gain is linear in the velocity v,
rather than quadratic as is in the case of Compton scat-
tering in a medium at rest. Photons diffusing and scatter-
ing in a medium with bulk flow can gain or lose energy
to the flow depending on the divergence of its velocity
field: they gain energy for ∇ � v � 0, while they lose en-
ergy in the opposite case. The case of a converging ra-
dial inflow, where ∇ � v � 0, has been treated in (among
others) [2, 5, 4, 6, 7]. These investigations showed that,
when monochromatic radiation with ν � ν � is injected at
large Thomson depth in a spherical inflow, the emergent
spectrum develops a broad, power-law tail at ν 	 ν � . The
power law index is related to a combination of the flow
Thomson depth and its velocity gradient, and this has
been invoked to explain the high energy spectra of ac-
creting BH candidate sources in their “high" state [8, 9].

In this note we outline the treatment of the problem
of an outflow and show that a similar broad spectrum
is formed but now at energies ν � ν � , with the power
law index dependent on the velocity gradient (and the
boundary conditions). This problem was first treated in
[5] who found a particular solution of the equations of

[2] for diverging flow using Fourier transformation to
find that adiabatic expansion produces a drift of injected
monochromatic photons towards lower frequencies and
the formation of a power-law, low energy tail with spec-
tral index 3.

This problem is relevant observationally because of
the well known presence of red wings in the fluorescent
Fe Kα line profiles observed in the AGN and galactic BH
spectra [10]. These have been interpreted as due to the
kinematic broadening of these transitions by motions ap-
propriate to the vicinity of a black hole. As shown by [11]
this arrangment could produce lines of the desired width
and asymmetry provided that the disk extended to its in-
nermost stable orbit ( 
 3 Schwarzschild radii or less).
Broadening by Thomson scattering on cold electrons was
dismissed, as it would also introduce a (non-observed)
break in the spectrum at energy E � mec2 � τ2

0 � 20 keV.
However plausible, this interpretation is not entirely

without problems; for instance, the (occasionally) ex-
ceedingly broad red wing of the line observed requires
(in such cases) that the disk illumination be concentrated
very close to its inner edge (Fx ∝ r 
 8; [12]), more than
most models would allow; in addition, as indicated by
[13], the ionization of such a disk by the intense X-ray
radiation might invalidate some of basic assumptions as-
sociated with this interpretation. Of additional interest is
also the fact that there is a marked absence of a blue-
shifted wing in the line, a feature expected for a random
orientation of accretion disks and the observers’ lines of
sight.

Motivated by the above facts and the importance of the
Fe Kα � line in probing the strong field limit gravity we
believe it is important that all potential alternatives to line



broadening be considered in detail. To this end we exam-
ine under what conditions these broad Feα � line profiles
could be also attributed to the effects of an outflow rather
than solely to accretion disk kinematics. The details of
this treatment can be found in [14]. Herein we present
only the final results and some conclusions.

RADIATIVE TRANSFER IN AN
OUTFLOW: FORMULATION

Let N � r � � N0 � r0
� r � β be the radial number density pro-

file of an outflow and let its radial outward speed be

vb
� c ��� Ṁout

� 4πcN0r2
0 ��� r0

� r � 2 
 β � ṁout � r0
� r � 2 
 β (1)

obtained from mass conservation in a spherical geometry
(here Ṁout � 4πr2vbN). The Thomson optical depth of
the flow from some radius r to infinity is given by

τ �
� ∞

r
Ne � r � σT dr � σTN0r0 � r0

� r � β 
 1 � � β � 1 ��� (2)

where Ne � r � � N � r � is the electron density, σT is the
Thomson cross section, r0 is a radius at the base of the
outflow (this definition of optical depth makes the tacit
assumption that β 	 1) and τT � 0 � τ � r0 � � σTN0r0

� � β �
1 � .

The transfer of radiation within the flow in space and
energy is governed by the photon kinetic equation ([1],
Eq. 18) for the photon occupation number n � r� ν � , which
in steady state reads

� vb � ∇n � 1
3

∇ ��� c
κ

∇n �	� 1
3

� ∇ � vb � ν
∂n
∂ν

� � j̃ � r� ν �
�
(3)

where κ � Ne � r � σT is the inverse of the scattering mean
free path, vb � vber, is the flow velocity, e r is the radial
unit vector and j̃ � r� ν � is the photon source term.

Because the operator of Eq. (3) is the sum of a space,
Lr, and a frequency, Lν , operators, for a RHS source
j � r� ν � , which is is factorizable, i.e.

Lrn � Lνn � � j � r� ν � � � f � r � ϕ � ν � (4)

the solution of the above problem with boundary condi-
tions independent of the energy ν , i.e.

L � 1 �r n � 0 as r 
 ∞ � L � 2 �r n � 0 for r � r0 � (5)

is given by the convolution of the solutions of the time-
dependent problem of each operator, namely

n � r� ν � �
� ∞

0
P � r� u � X � ν � u � du � (6)

where u � N0σTct is the dimensionless time and P � r� u �
is the solution of the initial value problem of the spatial
operator Lr

∂P
∂u

� LrP� P � r� 0 � � f � r � (7)

with boundary conditions

L � 1 �r P � 0 as r 
 ∞ � L � 2 �r P � 0 at r � r0 � (8)

and X � ν � u � the solution of the initial value problem of
the frequency operator Lν

∂X
∂u

� Lν X � X � ν � 0 � � ϕ � ν � (9)

with boundary conditions

ν3X 
 0 when ν 
 0 � ∞ � (10)

The solution of the frequency problem is (ν � is the
injection frequency)

Jν � � ν � u � � ν3X � ν � u � � e 
 3uδ � νeu � ν ����� (11)

Substitution of Jν � � ν � u � from Eq.(11) into Eq.(6) gives
us the Green’s function

Gν � � ν � � ν3n � rout � ν � � 1
ν ��� ν

ν ��� 3

P � rout � ln � ν � � ν �����
(12)

The time distribution P � rout � u � can be found from the
solution of the time-dependent problem of the space
operator and initial condition. The final result is� � ν � ∝

1
ν � � ν

ν � � 3 � 1 � 1 � β �
exp � � � ν � ν �
� 3 � β ξ �

1 ��� ν � ν ��� 3 � β �(13)

� � 1 � � ν
ν � � 3 � β � 
 � β � 2 � � (14)

where ξ � � 3Cvb
� β � 1 � τ1 � � β 
 1 �� and Cvb

�� Ṁout
� 4πcN0r2

0 � τ � β 
 2 � � � β 
 1 �
0

� ṁout τ � β 
 2 � � � β 
 1 �
0

and
τ � is the depth at which the photons are injected
(we assumed the initial photon distribution to be
f � τ � � δ � τ � τ �
� . One notes that asymptotically the flux
is a power law � ν � ν �
� 3 � 1 � 1 � β � . This is different from the
index α � 3 obtained in [4]. The difference of the two
results can be traced to the different boundary conditions
employed. The present treatment employs an absorptive
boundary (n � τ0 � � 0), while [4] employed a reflective
one. Since the asymptotic slope is determined by the
photons that spend the longest in the scattering flow, it
is apparent that these photons have a greater chance of
being lost (throug the boundary) in our case, leading to
a steeper spectrum.



FIGURE 1. The emergent photon redshifted line spectra
for four spatial monochromatic source distributions, f � τ ���
exp � ηξ � , for η � 0 � 1 � 5 � 2 � 5 and f � τ ��� R1 � τ � the first eigen-
function of the spatial operator. These spectra are produced for
β � 2, ṁout � 0 � 8 and τ0 � 2. The fifth photon spectrum is for
the asymptotic case of τ0 � 1. The monochromatic δ � function
source is located at ξ � ξ � � 2, and β � 2

These spectra are in general agreement with observa-
tions. Differentiation of these models with those of [11]
can be obtained through the time lags of the line wings
relative to the line core expected in the case examined
here, compared to those of the lines are produced by re-
processing on a disk where these lags should have the
opposite sign.
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