
A Design for the HEASARC Data Access Systems.
V1.0 November 22, 2008
Contents
1A Design for the HEASARC Data Access Systems.

31. Introduction

42. Abstract Structure.

42.1. Resources and the HEASARC.

52.2. Metadata

62.3. Capabilities.

62.4. Contexts.

72.5. Capabilities of resource types.

103. Operations Overview

124. Detailed Design.

124.1. Standard Library: Data Access Layer

124.1.1. Table access.

154.1.2. Archive and Dataset Access

154.1.3. Survey Access

154.1.4. Toolset and Tool Access

164.1.5. Access to Composite Resources

184.2. Standard Library: Rendering

184.2.1. Headers and Footers

184.2.2. Table Rendering

194.2.3. Archive and Dataset rendering

194.2.4. Survey rendering

194.2.5. Toolset and Tool renderers

194.2.6. Rendering of composite resources

204.3. Servlets

204.3.1. User accounts

204.3.2. Sessions

204.3.3. System tables

204.3.4. Management and cleanup

214.4. Client side capabilities

214.4.1. Table rendering

214.4.2. Style sheets

214.5. CLI Tools

214.6. The Plot Engine

234.7. Database Organization and Metadata

244.8. Tomcat installation

244.9. Postgres installation

245. System Engineering

265.1. Development Elements

265.1.1. Java Classes

275.1.2. XSL Transformations

275.1.3. JavaScript

28Appendix A: Defined Metadata keywords

30Appendix B: Cost Estimates

31Appendix C: Proposed Schedule

32Appendix D: Traceability to requirements

33Appendix E. Initial ideas for Web pages.

1. Introduction

This document describes an overall design for access to the data resources of NASA’s High Energy Science Archive Research Center. This is currently a draft document and may be extensively revised and reorganized. Section 2 describes an abstraction of the elements that make up the HEASARC. Section 3 discusses how pieces of the HEASARC interact and how data flows throughout the system. Section 4 is a more detailed design including the design of custom software and how external software will be used. Section 5 discusses the planned system engineering practices and provides an initial enumeration of all modules needed in the development and their current status.

A set of appendices supplement the design. Appendix A discusses the new metadata table in more detail. Appendix B provides an initial estimate of the costs of various activities in this development. Appendix C suggests an implementation schedule. Appendix D provides a traceability matrix from the combined set of requirements on the current system and proposed functional requirements. Appendix E describes some early ideas on how the Web page design may be simplified and restructured.

2. Abstract Structure.
[image: image1.jpg]<<interface>>
[© Resource

Atributes e

st

‘public Resource['] getBlements()

Operations

" E Theme

e

ElArchiveResearchCenter I Context
Operations _ Literals
Server
L clieiy

<<interface>>
[© Metadata

<<interface>>

EjArchive *+ EToolset E Survey
Operations Operatio Operations
EDocument ElTool
Operations | Operatians
lic Tool

Figure 1. Notional Design for the HEASARC
2.1. Resources and the HEASARC.
Figure 1 is a notional design for the HEASARC. It describes the HEASARC as a hierarchical grouping of resources. A resource is a discrete construct which provides one or more capabilities to users. The HEASARC is itself a compound resource which provides access to its many constituent sub-resources. The HEASARC is an instance of an ArchiveResearchCenter. Other major classes of resources found within the HEASARC include

Missions: Compound resources associated with specific spacecraft (ROSAT, Fermi)

Themes: Compound resources associated with specific science goals (GRBs, Gravitational Wave Astronomy)

Tables: Lists of objects, observations, detections, … (Messier, ASCAMASTER)

Surveys: More or less homogeneous collections of observations that can be accessed through a standardized interface (SkyView surveys but not limited to them)

Toolsets: Groups of tools (HEASoft, Browse)

Archives: A collection of sub-archives and/or datasets

Datasets: A useful set of files.

Tools: Software capabilities that enable users to do queries, analysis or other tasks (FCOPY, WebSpec, Browse Cross-correlation). While tools may be described and linked to from the data access system, this requires no action by the developer of the tool.

Documents: Descriptions of resources or other elements, science papers and other textual information (PDMPs, Abstracts, ADS papers)

Persons: The personnel of the HEASARC and related institutions.
Additional resource types may be added as additional needs are seen.

Any resource has six basic attributes:
· A name by which it may be described and located,
· A description that gives further information about the resource but which may not be dynamically searchable,
· Metadata that can be used to locate this resource from within a larger pool of resources,
· Zero or more constituent resources contained within the current resource. A resource that is essentially a collation of constituent resources is a compound resource,
· Capabilities the resource exposes to the user,
· The contexts in which the resource may be used.
The distinction between a resource and a non-resource is not sharp, but the goal is that a resource represents some complete, useful entity. E.g., the data from a single observation is useful for doing science, so that a single observation dataset is considered a resource. However a single file within that dataset is unlikely to be useful on its own, so each file may not be a resource – though some may be.
2.2. Metadata
Metadata associated with a resource is any information useful in finding the resource that is not considered part of the resource itself. E.g., Metadata might indicate that a table includes Swift observations within a given epoch. A user looking for Swift data would use this metadata to determine that this resource is of interest. If a user needs to invoke the capabilities of the resource itself to discover that the resource is or is not interesting, that is not using metadata but the internal capabilities of the resource. Thus a catalog query for datasets is using metadata – the catalog information – to find the datasets, but if we open up each file in the archive and look at the internal data of each file, then we are using the resource itself, and not its metadata.
The data of one resource may be metadata for another. E.g., a row in that Swift table is data within Swift table resource, but metadata for the observation dataset associated with the row.
Metadata is distinct from documentation in that metadata is normally searchable in some fashion while documentation may not be. In some cases documentation may be part of the metadata for a resource.

For compound resources, typically the basic functionality is to enable users to select from among their component resources by using the metadata for those resources.

Metadata also provide a means for overriding defaults associated with a given type of data. E.g., the system provides a standard class which transforms a table into an HTML document. If a table has special characteristics that we wish to support, a special table transformer can be specified in the settings for that table. The metadata for a table can override default settings (and can in turn be overridden by settings explicitly set by the user or a particular software application).

Metadata for many resources is included in a global metadata table and may be supplemented by other sources for particular classes of resources.
2.3. Capabilities.

The capabilities of a resource are the things a user can do with it. E.g., a document can be viewed, a tool can be run on a given data input, a table can be queried. Capabilities will be discussed in more detail for each of the resource types.
2.4. Contexts.

 The contexts describe where resources may be used. Resources may be accessed in at least five distinct environments

On the web server – Here the access is from the potentially privileged code that runs on HEASARC controlled hardware in response to user requests using standard HTTP or FTP protocols.

On the web client – Here the access is from code (e.g., JavaScript) running within a user browser session.

From the remote command line – Here the access if from a dedicated command running in the user’s home environment.

Within user code – Here the access is from within executable code that the user may have written themselves.

Offline—Access to the resource is through non-electronic means

We denote the on-line contexts as: server, client, CLI and library.

 E.g., in querying a table at the HEASARC our standard CGI scripts will access the table in server mode. We may provide an AJAX library that allows client access from a JavaScript-enabled web page. A user might use a command that runs in a script with CLI access and we might provide a Java library that enables the user to access a table directly from within their own Java code.
Different elements may use one another: the AJAX client code may invoke CGI scripts which in turn use a standard library.

Although offline resources will – by definition- not be accessible through software we include them since they may be described and linked to from other resources and they may be associated with on-line resources, e.g., a person will have an associated E-mail.

[image: image5.png]Server
JavaWeb sessions
Short Perl initiation scripts

Client
StaticHTML
JavaScriptlibraries

Legacy URLs

XSLtransforms i:ft fo
Standard plotting utility ransforms
Local Databases

cu Library

Standalone Perl
StandaloneJava

JavaJARfiles
Legacy interfaces

Offline
HEASARC Staff
HUG

EPO Posters
AAS Booths

2.5. Capabilities of resource types.

The following paragraphs briefly describe the various types of resources are used.

ArchiveResearchCenter:

An archive research center is a compound resource that may directly index any of the other types of resources but (at least for the HEASARC) is primarily a collection of missions, themes, toolsets and a variety of off-line resources (e.g., people). In figure 1 we have only shown the predominant hierarchical links for an archive data center but there might be direct links from tables, tools and datasets directly to the research center object.
Missions and Themes:
These are compound resources. Generally they should provide a link to overall documentation and lists of tables, archives and toolsets associated with the mission and/or theme. Normally there will be some small number of primary tables/archives/toolsets. There will typically be few if any direct links to specific datasets and possibly a few mission/theme specific tools outside of any general toolsets. Missions and themes will differ in the kinds of metadata present. E.g., the PI, spectral regime and epoch are typical metadata for a mission. Metadata for a theme usually involve characteristics of sources or events linked to the theme.
Tables:

Tables may have links to documentation and archive resources. The primary capability for tables is the ability to return a list of results that meet user specified constraints. A query transforms one (or possibly several) tables into a result table.
Archives:

An archive is a group of associated datasets. It may consist of sub-archives (e.g., the HEASARC archive includes many mission archives). Capabilities for archives are the ability to identify and extract specific datasets.
Datasets:

A dataset is a collection of files. Key capabilities include the ability to be downloaded to the user and to be used within tools.

Documentation:

Documentation can be rendered for human browsing.

Survey:

A survey will often have links to an archive of information. A survey also includes some capability for systematic processing of the underlying datasets to perform tasks for the user. [A survey can usefully be considered as an association of a task and an archive, e.g., the SkyView task and the its image archive datasets]

Toolset:

A toolset provides a framework in which individual tools can be used and session information can be preserved. E.g., the current Browse comprises a toolset. A few toolsets (e.g., Hera and Browse) may be actively integrated into this system, but the most we would typically expect is to initiate a session in the toolkit.
Tool:

A tool can be invoked using information provided by the user (possibly including one or more datasets) to perform some requisite task. As with toolsets, it is anticipated that in most cases the data access system and tool will be very loosely coupled.
3. [image: image6.png]HEASARC Data Access:
Information flows Browser
JavaScript, CSS, XSL

Standalone
tools
Servlet Engine (TOMCAT)
HEASARC Servlets, user and
session management
Standard Library
i Plot engine
Renderinglaver —
(STILTS, QDP, Fplot)
DataAccess Layer

Local ocal
Tables rchive,

emote(VO) emote(VO) User Session
ables Datasets Tables) management

Operations Overview
The figure illustrates the basic data flows between the various elements of the HEASARC. Elements that are part of the data access software framework are in red, elements which exist independently of the framework are in black.

A user’s browser session may make use of JavaScript and other resources that will run locally. Queries may be sent from a Browser or from a standalone tool to the servlet engine which manages the request and sends back the results.

The servlet engine uses a standard library to access the remote services.

 The library comprises two major elements, the data access layer which gets information from available resources, and the rendering layer which presents the results to the user in some desired fashion. This library may also be used by a standalone task (or by user crafted code). The Data Access Layer knows nothing of the context of a given use of the system. Code which depends upon the context is restricted to the rendering layer.
A plot engine – using an existing plotting tool – provides capabilities for rendering tabular information into graphics. This may be called directly by the servlets in simple circumstances or through the rendering layer.

Six different classes of data sources are described: The local tables and archives are the standard tables and archive datasets. Users can also access remote tables and datasets primarily (though no exclusively) through VO protocols. For all of these resources information flows only from the resource into the DAL layer. Additional boxes could be drawn to represent local and remote surveys, local and remote calibration data sets, local and remote toolsets and so forth.
The user table box represents tables that the user generates and queries in the same fashion as local and remote tables. User tables may be generated automatically when a user attempts an operation on a remote table that requires localization of a remote table (e.g., a cross-correlation).
The session management tables are used by the servlet engine to manage user accounts, preferences and session persistence.
Data flows to and from user tables and the management tables.

4. Detailed Design.
4.1. Standard Library: Data Access Layer

This section describes the elements of the system in more detail. It is broken based upon the components identified in section 3.
4.1.1. Table access.
Table queries are central to the functioning of the data access system. A set of interfaces delineates the features of tables and queries. [image: image2.jpg]<<interface>>
9 Query

<<interface>>
[Tabre

<<interface>>
|© QueryBuilder

Operatians
public String getName()
public String getDescription()

public Cc

public int getRowCount(boolean estimate)

Operations
package void addTable(Table tab)
public void addConstraint(Constraint con }

EIDirections
Literals

<<interface>>
[© Row

<<interface>>
[cotumn

DAL Interfaces used in accessing Table
resources

<<interface>>

Operatians
public String getName()

1o sorter

<<interface>>
[Constraint

Operations

The Table class itself (which is distinct from the Table resource discussed earlier) represents a specific instantiation of a table, i.e., a particular set of rows and columns. A Column object can represent a simple field within a table or a synthetic field generated as an expression of simple fields. A Row object provides access to the data within a single row (where the data in each column is available as an object of the appropriate type).

The basic Query object is very simple. Its only method is to be executed to give a new Table. The QueryBuilder is the workhorse object. It is where we can add a series of constraints and set the output columns and order of a query. The query builder is responsible for joining tables when a user makes a query that requires multiple tables. Thus the query builder is the only object that needs to worry about issues as to how to prefix table and columns fields and the like.

The Constraint class represents a constraint against the table. There are many kinds of constraints. The getColumns method returns the fields that are used within the constraint.

The Sorter class represents the SORT BY field in the query. It references the enumeration Directions which denotes the directions in which the sort can occur. Sorters can support multiple sort criteria.
No classes currently represent the GROUP BY or HAVING clauses of an SQL query.

A query may be implemented by mechanisms other than a query builder. E.g., queries may also be created by allowing the user to enter an SQL statement directly and submitting this directly to the database, presumably after checking that the query is safe.
The Table interface is implemented by a number of different classes.

[image: image3.jpg][Tabre

<<interface>>

/iFlleTahle

ublic

Operations

public Dataset["] getDatasets(Row input }

mn[] getindexColumns|

This interface is implemented for tables that are used to index archive resources

[EluserTable —{[E]JDBCTable E QueryResult EIXMLTable
EstandardTable| | systemTable [i BTARTshle
E ConeSearch
ElsIATable
<<interface>> %
|9 DataSetindex [ElssATable

The two classes that directly implement Table are the JDBCTable class and XMLTable. JDBCTable represents tables that are instantiated in a RDBMS system accessible through theJava JDBC interfaces. This includes all the standard tables, persistent user tables and system tables. The XMLTable represents tables that are accessible as a VOTable (we do not use the name VOTable for the class to minimize confusion between the format and the class). This need not be limited to remote resources. The FileTable class represents a VOTable that the user has available as a file or URL. The ConeSearch, TAPTable, SIATable and SSATable classes represent access to implementations of the appropriate VO protocol.

A key class is the QueryResult which, naturally enough, represents the table of results that one gets from running a query on some other table in the database. The query may include many constituent tables, but the query result table is itself just a simple table.

When a user requires a constraint that cannot be satisfied by the specific type of table (e.g., a non-positional constraint on a ConeSearch), then the system may download the table and convert it into a JDBCTable dynamically. Similarly a user may wish to save a copy of a table or query as a user table for further manipulation. The IngestTable converts any table type into a user table.
The interface DataSetIndex is implemented on a few of the table classes. This interface is used to link tables to datasets. If a table implements this interface, then the user can get DataSets associated with rows of the table. The getIndexColumns method is needed to ensure that a query of the table returns all of the fields that are necessary in creating data products. If these fields are not requested in the user query, they should be hidden from the user but available to the system.
FilteredTables (not shown) are used when a transformation is required on a table that can be most conveniently done while the information is still instantiated as a table object rather than being done later in the rendering process. Filters are used primarily in the transformation of coordinates and times. When tables are filtered conventionally we retain the original column and add new columns when it would be difficult for the user to get the original values from the converted information. Columns may be replaced when the transformation is a straightforward reformatting of the data. E.g., if we convert from equatorial to galactic coordinates we will retain the original column. If we simply render the equatorial coordinates in sexagesimal format we may replace the original column.
A FilteredTable has a set of Filters (not shown) that it applies on the input table to create the output table. The coordinate transformation classes in SkyView will be reused.

Constraints.
[image: image4.jpg][EldsimpleConstraint

<<interface>>
[© Constraint

Attibutes
EListConstraint

ElExpressionConstraint

public String getSQL()
public String getType()

EinConstraint

Operations la

ElPositional Constraint E crossPositionConstraint

Constraints limit the results of query. The following kinds of constraints are supported.

SimpleConstraint’s are triplets of the form field, operator, expression, where the field is a simple field in the table, the operator is one of >, =, >=, <, <=, != or LIKE, and the expression is a valid expression (it need not be a constant). An expression constraint uses a single logical valued SQL expression. A positional constraint is a request for data within a radius of a given sky position. A CrossPositionConstraint is used for positional cross-correlations and normally is an expression on the distance between two sets of position fields within a query.

A list constraint represents a parametrized set of homogeneous constraints, e.g., a set of simple constraints on the same column or a set of position constraints. The InConstraint is a specialization of that which allows the use of the In construct. Where there are only a small (<100) sets of constraints in a list the ListConstraint will normally be realized in the SQL expression, but if the number of requests is large, then a list constraint may use a temporary table.

Additional composite constraints may be useful (OrConstraint, AndConstraint) and will be added if needed. Generally constraints are ‘ANDed’ together except that the constraints in list are ORed.

Different kinds of Tables can support different kinds of constraints, so that the Table object includes a supportsConstraint method. When a user wishes to place a constraint on a table that cannot support that type of constraint, the table can be ‘localized’, copied into a local table that can support the constraint. This may not be feasible if the table is larger than a few thousand rows.
4.1.2. Archive and Dataset Access
The archive interface is implemented the MetadataArchive and by custom archive classes for missions where the extraction of datasets cannot be defined simply. The MetadataArchive class uses metadata parameters associated with the archive to enable the class to find the root directory of a observation given an observation ID, and then to define the files within that root directory that form the elements fo the datasets associated with that observation ID. Custom classes can be used when the relationship between observations, archives and datasets is complex. The implementing class for a given archive is specified in the ArchiveClass metadata associated with the archive.
The DataSet object simply instantiates a container giving the name and type of the dataset and the enclosed files (including their types). DataSet objects are used by servlet components when data is being downloaded. These objects may be included in a users shopping cart.
4.1.3. Survey Access
Surveys are similar to tools with the difference that a Survey object normally generates a DataSet when the tool is invoked. A survey object can normally realize a control panel which allows users to override the default parameters for the survey request.
4.1.4. Toolset and Tool Access

In this initial implementation is Toolset is little more than a grouping of tools. The Toolset can be used to give common metadata to all of the tools. A Tool can be initiated with a set of default parameters. The tool object can be passed to other objects. E.g., a Tool object can be passed to a table rendering object where the renderer can customize an invocations to a given row.
4.1.5. Access to Composite Resource[image: image7.jpg]<<interface>>
[© Resource

<<interface>>
[© Compositeservice

Atributes

Operations
getEl

public Serin o

public Capability[*]

[EMetadataConstraint

Atiributes

s
Simple Composite resources (including ArchiveScienceCenters, Missions and Themes) primary function is to provide an interface to the resources of which they are composed. Users can either get the full list of the resources included, or get a list filtered by matching with appropriate metadata. The list of metadata constraints is matched against the metadata associated with the resource. If both the keys and values match, then the resource matches. When multiple keys are set either an AND or an OR of the matching will be supported.
The text matching may include with simple wild-card matching (e.g., * matches anything), or full regular expression matching. Matches should normally be done in a case-insensitive fashion. A match against all metadata regardless of the keyword may be made simply by using a * (or .* if full regular expressions are being used) as the keyword.
 The ResourceMetadata table stores the metadata associated with compositeresources. This includes the resources that are included within the composite resource.

 The ResourceMetadata table comprises five columns: The resource type, the resource name, the metadata keyword/relationship, the metadata value and the resource order. The first four have string values while the last is an integer. In cases where the order of metadata matters it gives the default ordering of metadata. The metadata for a resource comprises those rows of the table which match the resource name and type. [All resource names within a given resource type must be unique.] By convention resources may reference another resource by using a value that is the resource name and type separated by a colon. The resource types in the metadata table can include types that are not exposed as distinct resources.
For a given resource type, the meaning of the resource keywords is fixed. An initial set of resource types and keywords is included in appendix A.

A given keyword may be repeated any number of times for a given resource. E.g., the Swift mission resource includes three instruments which may themselves be described (in the metadata table as resources). E.g. the following might be a few rows in the metadata table.
	Type
	Name
	Relation
	Value
	Order

	ArchiveResCenter
	HEASARC
	Started
	1990
	0

	Mission
	Swift
	Contains
	Instrument:Swift.BAT
	1

	Mission
	Swift
	Contains
	Instrument:Swift.UVOT
	2

	Mission
	Swift
	Contains
	Instrument:Swift.XRT
	3

	Instrument
	Swift.BAT
	Regime
	X-ray
	1

	Instrument
	Swift.BAT
	Regime
	Gamma-ray
	2

	Instrument
	Swift.UVOT
	Regime
	Ultraviolet
	0

	Instrument
	Swift.UVOT
	Regime
	Optical
	0

	Instrument
	Swift.XRT
	Regime
	X-ray
	0

	Mission
	Swift
	Started
	2005
	0

This indicates that the start and stop dates for the mission as a whole and also indicates that there are three instruments for the mission whose metadata can supplement the overall mission metadata. E.g., we can find the Swift has Gamma-ray, X-ray, UV and optical observations. Note that the order need not be specified when there are multiple entries it just provides a standard way of generating an ordering. Note that we have a Type ‘Instrument’ even though these are not resource types.
An alternative design would be to use specialized tables for each resource type. This would be more efficient and we may need to consider this if the scheme described above does not work. However it strongly couples the metadata design to the database implementation. The current Browse system uses a hybrid approach for table resources: ZZGEN is a fixed table with standard fields while ZZEXT allows for arbitrary columns. Our experience is that much of the interesting metadata for tables is included in the ZZEXT table and suggests that efficiency should not be a real issue. This is an area that we will want to revisit when we have more experience. Note that the Servlet environment will likely keep a copy of the entire metadata table in memory accessible to all user sessions. This table will only need to reread when the database is refreshed.
Ths schema for metadata mirrors the subject-verb-object structure of ontology systems.

Included resources are indicated in the metadata with the ‘Contains’ keyword.

	Type
tYType
	Name
	Relation
	Value
	Order

	ArchiveResCent
	HEASARC
	Contains
	Mission:Swift
	1

	ArchiveResCent
	HEASARC
	Contains
	Mission:ROSAT
	2

	ArchiveResCent
	HEASARC
	Contains
	Theme:GRB
	1

	ArchiveResCent
	HEASARC
	Contains
	Theme:GravWave
	2

	Mission
	Swift
	Contains
	Table:SwiftMaster
	1

	Mission
	Swift
	Contains
	Table:SwiftBat
	2

	Mission
	ROSAT
	Contains
	Table:RosatMaster
	1

	Mission
	ROSAT
	Contains
	Table:WGACAT
	2

	ArchiveResCent
	HEASARC
	Contains
	Toolset:HEASoft
	1

When a composite resource is acted on, the result is a set of selected resources described by their associated metadata.
 The metadata can comprise a nested structure when one element of metadata references another resource.
4.2. Standard Library: Rendering

4.2.1. Headers and Footers

A set of standard headers and footers is provided for rendering in all contexts. For Web pages these headers and footers meet NASA style and section 508 constraints. All contexts enable users to send comments and feedback to the HEASARC.
4.2.2. Table Rendering

Tables are normally rendered in two stages. The Java Table object is transformed into a VOTable. This VOTable may then be transformed into a format appropriate for the context or the VOTable may be sent directly to the requestor. Two classes are provided. The VOTabGen.generate utility takes a Table object and returns a VOTable. The generic XSLTrans object may be used to transform a VOTable to another format based upon a given XSL file. The XSL file may be specified explicitly by the code creating the object, taken from the user specified settings, taken from the Table metadata or defaulted. A default XSL transformation, which provides full functionality for the table is provided.
Note that the XSLTrans object is used throughout for the purpose of transforming XML. Thus rather than using custom Java libraries to render code, we use XSLT. XSLT transformations are supported by many libraries in many languages and this enables us to defer translation in the CLI or client contexts. XSLT strongly focuses on the appearance of the resulting text and provides an excellent separation from the functional requirements that are typically implemented in Java. A few limited functions may be more effectively performed in Java (or JavaScript) notably coordinate and time transformation and rendering.

Multiple table queries.

The current browse system supports multiple table queries including rendering of the results from all tables as the result of a single user action. In the new system multiple table queries will not be supported directly. Users can request temporal and positional constraints (and possibly some small number of additional clearly defined fields like exposure) for sets of tables, but the initial result will be a table that gives the number of rows returned from each table. Only when the user specifically requests a table is that table rendered. Users can request that tables be rendered in a separate tab or window if they wish to compare the results of multiple tables. The initial query will be of a possibly enhanced version of the ZZMASTER table. Parameter queries of multiple tables will be restricted to the parameters included in this table.

This approach allows a major simplification of the Browse framework. In most cases we believe that this will be more efficient for users who will not need to wait till a query of a large number of tables finishes and the ability to compare results from multiple tables will not be compromised. The internal support for multiple table queries dramatically increases the complexity of Browse code.

Multiple table queries may still be supported in the CLI context where the multiple tables may simply be queried sequentially with little or no coupling between the results. Problems arise in the library and server contexts where checking of the inputs must be done against multiple tables and where the results must be organized in some hierarchy.
4.2.3. Archive and Dataset rendering
Archives are generally rendered through master tables which index them. We do not provide independent methods of rendering the archive but this is available through standard FTP and HTTP directory handling protocols.

DataSets are generally rendered by transforming XML descriptions of the contents of the datasets. Datasets are most commonly ‘seen’ as users process the shopping cart of selected observations and datasets. Datasets may also be rendered in the CLI environment as WGET commands to extract the specified filesets.
4.2.4. Survey rendering
Surveys generally provide a rendering script associated with the survey.
4.2.5. Toolset and Tool renderers
Toolsets are generally rendered as lists of tools.

Tools are rendered sets of keyword value pairs, where the value may be null or some default value. Parameter files should be used where appropriate to specify the characteristics of tool inputs.
4.2.6. Rendering of composite resources
Composite resources are normally rendered in a two stage process. For each resource selected, the associated resources are serialized into a standard XML representation. An XSL transformation converts the XML document into a form appropriate to the context in which it has been invoked. E.g., when the user begins a standard Web session at the HEASARC archive, the HEASARC resource itself is selected to start with. The system gets the list of all resources contained within the HEASARC and generates an XML document in a standardized format. This contains the missions, themes, and other resources that are to be exposed on this archive home page. The system then looks at the metadata associated with the HEASARC resource and sees if there is a special renderer for the Servlet context. If not there should be a default renderer for this type of resource in this context. For most composite objects a standard XSLTTrans object is the rendering class. It uses a XSL transformation. A default XSL transformation is set for each composite class for each supported context but this may be overridden for a given resource.
4.3. Servlets

A set of servlet classes provide the primary active (i.e., excluding static FTP and HTTP pages) interfaces to the HEASARC archive. These servlet objects serve the role of the top level interfaces of the existing CGI interface. The servlets generally do the processing and querying of the databases in Java, but much of the rendering of the results in HTML or other formats is done by first transforming a set Java result objects into a standard XML representation and then using XSL transformations to convert this XML to the requested formats. Corresponding to the Browse render code we have XSLT documents in the current system.

In addition to running user queries, servlets maintain new User and Session objects. Each Browser session supports a unique user (though the user can log out and back in). A session can be anonymous or a user can log into a user account. User accounts allow the user to upload files and set persistent preferences. Session cookies may be used to preserve user account information within a Browser session. Users can also use bookmarks to conveniently access the system.
4.3.1. User accounts

The User object retains information about the user notably any preferences the user might have. Preferences are saved as settings. User preferences have higher priority and the system and resource defaults, but lower priority than explicitly set settings. Users can manage their preferences in a user support page.
4.3.2. Sessions

A session contains information since the user last logged in or since a user started an anonymous browse session. Sessions may time out after a TBD period. Each session contains a number of objects that reflect the history of the session, notably a shopping cart specifying resources that the user has selected for download, session specific settings (e.g., selected tables within a mission), a history of the users actions, and a copy of the results of the last query (assuming the query is not too large).
4.3.3. System tables
4.3.4. Management and cleanup

Some cleanup is performed automatically by the TOMCAT session management. Session objects are discarded after a TBD timeout.

Users objects are persistent and are reflected in the user database.

User tables are normally left for at least 30 days, but a daily process checks the size and age of all user created resources. If external resources exceed age or size constraints they will be deleted. A daily report on deleted resources is appended to a processing log.

JVM usage of the servlet servers is monitored to ensure that orphaned classes do not form a memory leak. Normally session processing will explicitly allocate and deallocate resources and the number of active sessions and the on-line resources they are using will be monitorable by HEASARC archive managers.
4.4. Client side capabilities

4.4.1. Table rendering

One rendering of tables allows client-side applications to extract the XML directly from the server and to render these tables using browser capabilities. This involves a combination of JavaScript and XSLT programming (where the XSLT will be similar to that used on the server side). The client side rendering will allow users to:

· sort tables by any field in any direction

· filter by simple constraints

· change the order of columns and the number of columns displayed

· change between decimal and sexagesimal representations of positions.

· change between MJD and ISO representations of dates

· page through results

This rendering may include links to tools and data retrieval capabilities.
4.4.2. Style sheets
A set of standard style sheets will enable users to change the fonts of rendered information easily.
4.5. CLI Tools

CLI interfaces will support querying of one or more tables using positional and simple query criteria. The CLI tools also allow users to extract graphical results. Table information may be extracted in text, FITS, or VOTable (and possible other formats). Graphical results may be extracted as GIF, JPEG, PNG or encapsulated PostScript. Users may choose to get either the tabular or graphic outputs or both. Either of these outputs can be set to be the standard output of the script.
The command syntax supported by the browse_extract.pl tool will be supported, but many other options will also be available.
4.6. The Plot Engine

While the current Browse system has a limited plot capability it is limited and slow to start since it uses a Java Applet. A plot engine which allows the user to specify one or more tables as input as well as a specification for the plotting function shall be provided based upon the STILTS plotting library using its PLOT2D, PLOT3D and PLOTHIST commands. This library is already designed for user in a Servlet environment and takes one or more VOTables as input.

The STILTS library supports arbitrary number of samples, handles very large number of points, allows for synthetic columns using quite sophisticated functions for two dimensional and three dimensional plotting.
A thin wrapper for the plot engine will be provided which enables users to extract the plot parameters from the server environment and generate the plot. When used in servlet mode, the output plot shall be placed in a separate IFRAME on the HTML page so that the control and display are visible simultaneously.

The plot engine shall be accessible from the CLI context where the user can add the plot parameters to the typical fields used in a standard query. This will run the query and generate the graphics. Users will be able to suppress the table output and request that the graphic output be put on standard out.

To optimize use of the plot engine, the last query executed in a session will normally be retained until the session terminates or another query is run. Thus users will not need to re-run queries when they wish to plot. For very large queries this may not be feasible.

Help links describing the 2D and 3D plotting capabilities shall be provided but simple plots shall be feasible with just a few clicks.
To suggest the power of this interface the command line arguments for the STILTS plot2d command are listed here. There are described in detail at http://www.star.bris.ac.uk/~mbt/stilts/sun256.pdf. The arguments for the other plotting command are similar. Note that the <cmdN> argument can include arbitrary filtering of a dataset.

stilts <stilts-flags> plot2d
xpix=<int-value>
ypix=<int-value>

font=dialog|serif|...

fontsize=<int-value>

fontstyle=plain|bold|italic|bold-italic

title=<value>
omode=swing|out|cgi|discard|auto

out=<out-file>
ofmt=png|gif|jpeg|eps|eps-gzip

inN=<table>
ifmtN=<in-format>

istreamN=true|false
cmdN=<cmds>
xdataN=<expr>

ydataN=<expr>
auxdataN=<expr>

xlo=<float-value>
ylo=<float-value>

auxlo=<float-value>
xhi=<float-value>

yhi=<float-value>
auxhi=<float-value>

xlog=true|false
ylog=true|false

auxlog=true|false
xflip=true|false

yflip=true|false
auxflip=true|false

xlabel=<value>
ylabel=<value>
auxlabel=<value>

xerrorN=<expr>|[<lo-expr>],[<hi-expr>]

yerrorN=<expr>|[<lo-expr>],[<hi-expr>]

auxshader=rainbow|pastel|...
txtlabelN=<value>

subsetNS=<expr>
nameNS=<value>

colourNS=<rrggbb>|red|blue|...

shapeNS=filled_circle|open_circle|...

sizeNS=<int-value>
transparencyNS=<int-value>

lineNS=DotToDot|LinearRegression

hideNS=true|false

errstyleNS=lines|capped_lines|...

grid=true|false
antialias=true|false

sequence=<suffix>,<suffix>,...

4.7. Database Organization and Metadata
The underlying RDBMS shall include three databases to support the data access services. The Tables database includes the permanent science tables of the HEASARC. Only HEASARC system personnel shall have write access to these tables, but any user shall be able to read these tables.
The Metadata database shall include all of the metadata tables which are used in the system.

The User database is used to store persistent user tables (it may also be used for temporary user tables as well). User tables shall be stored using names which include the time in milliseconds from some fiducial time concatenated with some rotating value. All users have read/write access to all user tables.
In addition to the user tables a set of permanent tables is included in the User database. The UserTableNames database has three fields: a user identifier, the name the user has given to one of their tables, and the name used in the database. Thus the actual name of a database is normally never seen. However users will be allowed to get the actual name of their tables in the user database. They may share these with other users who may then access other users tables.
The UserInfo and UserPreferences table include information about the users and information about how they have asked to customize the service.

Access to the three user information tables is restricted to processes that require user authentication These processes shall only return information of the tables owned by the user.

Metadata for Datasets is not maintained as a separate table in the Metadata database. Dataset metadata is typically given by the rows of a table that point to the dataset.
4.8. Tomcat installation

A servlet environment is needed to support the persistent session. A TOMCAT HTTP server shall be run on the HEASARC machines collaborating with the existing Apache server. This is a fairly standard configuration.
4.9. Postgres installation
In order to investigate the feasibility of using a free database implementation, we shall explore using Postgres as the underlying database. One of the advantages of this approach is that it allows us to distribute queries over an arbitrary number of servers.

At least in the initial phase of this transition we will not be changing the basic ingest mechanisms for the HEASARC. Updates will be made first to the Sybase database and propogated to Postgres copies. Several transition services will be required.
· Metadata tools. Tools are needed to translate the old HEASARC metadata tables on the Sybase systems into the format of the new HEASARC . This will take information in the existing ZZGEN, ZZPAR, ZZEXT, ZZLINK and ZZDPSETS database can create comparable information in the new metadata table. Not all data will necessarily be transferred (e.g., we may not use the parameter minimum and maximum information in the new database). Information from the ZZDPSETS table with be augments by the control files of the zzdp_ingest.pl procedure to produce dataset information .
· Table copying tools. Tools are needed to copy static tables from the Sybase to the Postgres database (and probably the other direction as well). These will be used for initial population of the Postgres database and may be superseded in operations.

· A version of the HDBingest tool that will import data into the tables. This is needed before the new database can be updated dynamically (e.g., as is required for Swift).

· Database mirroring facilities to synchronize independent implementations of the Postgres database. For user tables this synchronization must be accomplished rapidly (i.e., in a time shorter than the session persistence limits for our user sessions).

The mission specific ingest procedures will not be modified (at least in our initial effort).
5. System Engineering
This data archive system shall includes a set of requirements, a system design with design elements traceable to requirements, unit tests for each substantive module, a configuration management system and a test plan to ensure that the system meets the requirements.

All software elements of the system – including any external elements – shall be managed within an SVN configuration management repository. The SVN repository shall have the following structure:

project
root

trunk

The main development version

build.xml

An Ant script that will build and install the system

src

Source code organized by language

java

Java code

javascript
JavaScript code

xsl

XSLT files

cgi

CGI/servlet scripts

css

CSS elements

…

Other languages as needed.

docs

Documentation and static HTML

images

static images

foreign

software imported into the system

builds

A tagged version of each build of the system

1.0

Same structure as under trunk

1.1

…

branch

Other branches as desired

Every Java class with significant functionality shall have an associated test class which includes a suite of Junit compatible unit tests for the class.

An automated regression tester shall run a suite of regression tests that validate an installation against previous versions. The regression tester tests all major requirements of the system. An Ant script shall be provided as the file build.xml in the SVN repository structure. This script shall include targets to compile the software, run the unit tests, run the regression tester, and install the new system in either a development or operational environment.
A bug tracking system will be included. Either TRAC or Bugzilla will likely be used. The existing bugzilla tracker is an acceptable fallback.

Much of the rendering of results is performed using XSL transformation from standard XML formats. A header for each XSLT file shall be included which describes all parameters of that file, and the major templates included. A regression test suite for all XSLT files includes a set of source XML files and a set of anticipated outputs. Since the outputs are likely to change at least slightly as we modify the XSL content, regression tests may not always return exactly the same result. However the regression suite does note when the content has changed and checks that essential features of the output document are present. The regression tests typically include checks using simple Perl regular expression tests. XSLT files are included in the SVN repository along with the suite of standardized inputs and the test outputs for each version of the XSLT files.

5.1. Development Elements

This section includes tables with the status for each of the modules to be built in this effort.

5.1.1. Java Classes

	Name
	Description
	Code
	Test

	heasarc.db
	Basic database interfaces
	Code
	Test

	Table
	Definition of a table
	V1.0
	NA-Interface

	Query
	Basic query operation
	V1.0
	NA

	QueryBuilder
	How queries are built
	TBD
	NA

	Column
	Definition of a column
	V1.0
	NA

	Row
	Access to row information
	V1.0
	NA

	Sorter
	Defines row order
	TBD
	NA

	Directions
	Possible orders
	TBD
	NA-Enum

	DataSetIndex
	Access related archive information
	TBD
	NA-Interface

	heasarc.db.impl
	
	
	

	JDBCTable
	Basic local table
	V1.0
	V1.0

	SimpleConstraint
	Constraint triplet
	V1.0
	V1.0

	PositionalConstraint
	Near single position
	TBD
	TBD

	CrossPosConstraint
	Cross-correlate tables
	TBD
	TBD

	ExpressionConstraint
	Logical valued expression
	TBD
	TBD

	SimpleColumn
	Basic column definition
	V1.0
	V1.0

	XMLTable
	VOTable based table
	Proto
	TBD

	QueryTable
	Query result
	TBD
	TBD

	ConeSearch
	VO protocol
	Proto
	TBD

	SIATable
	VO protocol
	TBD
	TBD

	SSATable
	VO protocol
	TBD
	TBD

	FileTable
	Table based on file
	Proto
	TBD

	LocalTable
	Table with HEASARC metadata
	Proto
	TBD

	StandardQuery
	Query of local single table
	Proto
	TBD

	CrossQuery
	Query of multiple tables
	Proto
	TBD

	Heasarc.render
	Classes that render results
	
	

	CompositeRenderer
	Render a composite resource
	TBD
	TBD

	XSLTrans
	Transform an XML document
	Proto
	TBD

	ProductXML
	Create standardized rep. of products
	
	

	
	
	
	

	Heasarc.ops
	General operations classes
	
	

	Resource
	Usable capability
	TBD
	NA-Interface

	CompositeResource
	Concatenation of capabilities
	TBD
	NA-Interface

	Metadata
	Get and search metadata
	TDB
	TBD

	ResourceObject
	Resource with no special capabilities
	TBD
	TBD

	Settings
	Manage program settings
	Proto
	Proto

	Heasarc.servlet
	Main classes for servlets
	
	

	Home
	Generate home page
	TBD
	

	Mission
	Generate mission page
	TBD
	

	RunQuery
	Initiate a query
	TBD
	

	Plot
	Plot results
	TBD
	

	DataProducts
	Select data products
	TBD
	

	ShoppingCart
	Show and manage selected products
	TBD
	

	Checkout
	Download information
	TBD
	

	User
	Manage user information
	TBD
	

	Preferences
	Manage user preferences
	TBD
	

	Session
	Manage session information
	TBD
	

	UploadTable
	Upload user table
	Proto
	

	Heasarc.transform
	Classes that manipulate data
	
	

	Coordinates
	Handle coordinate transformations
	SkyView
	

	Time
	Handle time transformation
	TBD
	

	CoordFormatter
	Format coordinates
	SkyVew
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

5.1.2. XSL Transformations

	To
	Context
	Status

	HTML
	Server
	TBD

	Text
	Server
	TBD

	HTML
	Client
	Proto

	Text
	Client
	Proto

	HTML
	Server
	TBD

	HTML
	Client
	TBD

	Text
	CLI
	TBD (same as Server?)

	HTML
	Server
	TBD

	HTML
	Server
	TBD

	Text
	CLI
	TBD

	WGET
	CLI
	TBD

5.1.3. JavaScript

	Dynamic VOTable rendering
	Available in VO

	Dynamic data product rendering
	TBD

	Local plotting
	Is this necessary?

	Interactive graphics
	TBD

Appendix A: Defined Metadata keywords
This table describes an initial set of keywords/relations that may be present in the ResourceMetadata table. Many keywords may be present for a number of different kinds of resources while others are used for only a specific class of resource.
	Type
	Key
	Meaning

	All
	ResponsibleParty
	Organization responsible for this resource

	
	StartedAt
	Epoch (in ISO format) at which a resourcebegan

	
	EndedAt
	Epoch (in ISO format) at which a esource ended

	
	DocumentURL
	A URL documenting the resource

	
	Regime
	The spectral regime for the resource

	
	Frequency
	The frequency of the resource

	
	PI
	The PI of the associated resource

	
	Description
	A description field for the resource

	
	Status
	The status of the resource (Active, Test, Superceded,Disabled)

	
	SupercededBy
	The name of a resource that has superseded this resource

	
	Contact
	Person associated with the resource

	
	ServerRenderingClass
	The class used in rendering this resource in the server context

	
	ServerRenderingXSLT
	The XSLT file used in rendering this resource in the server context

	
	ClientRenderingClass
	The class used in rendering this resource in the client context

	
	ClientRenderingXSLT
	The XSLT file used in rendering this resource in the client context

	
	CLIRenderingClass
	The class used in rendering this resource in the CLI context

	
	CLIRenderingXSLT
	The XSLT file used in rendering this resource in the CLI context

	
	RenderingClass
	The class used in rendering this resource (overridable)

	
	RenderingXSLT
	The XSLT file used in rendering this resource in the CLI context

	
	Contains
	A resource contained within the current resource

	
	ContainedBy
	A resource that contains the current resource

	
	LinksTo
	A resource associated with the current resource

	
	DisplayName
	A name/identifier displayed to indicate this resource

	
	MasterTable
	Master table associated with mission/theme/instrument/…

	
	
	

	Center
	HomeURL
	The URL for the home page of the center

	
	
	

	
	Agency
	The funding agency associated with the resource

	
	Director
	Director of the center

	
	EPOLink
	Link to basic EPO effort

	
	Feedback
	A link or E-mail to a feedback page

	
	
	

	TableLink
	LinkedBy
	The SQL constraint that links the tables

	
	LinkedWhen
	An SQL constraint that should be satisfied to enable the link

	
	
	

	Parameter
	UCD
	UCD for parameter

	
	Unit
	Unit string for parameter

	
	DisplayFormat
	Display format for parameter

	
	Options
	A comma delimited set of valid values

	
	
	Note thatwe shall JDBC information for many values currently obtained in the ZZPAR metatqion

	
	
	

	Mission
	Instrument
	Instrument associated with the mission (often a reference)

	
	Agency
	Agency associated with the misson

	
	Toolset
	Toolset associated with the misson (reference)

	
	Tool
	Tool associated with the mission (reference)

	Theme
	ObjectClass
	Types of objects associated with the theme

	
	
	

	
	
	

	Instrument
	ScienceType
	Image, Spectral,Time series, Event

	
	Toolset
	Associated toolset

	
	Tool
	Associated tool

	File
	Format
	FITS/GIF/…

	
	Template
	A template giving the name of the file relative to the observations root directory

	Symbol
	Name
	A string which which is replaced by {$Name} in other metadata

	Table
	EqPositionPair
	Pair of comma separated columns with the RA and Dec in decimal J2000 coordinates

	
	GalPositionPair
	Pair of comma-separated columns with decimal L and B values

	
	TimeField
	A field containing times in MJD format

	
	Key
	Comma delimted parameter list which uniquely specifies a row

	
	Equinox
	Equinox of equatorial coordinates (do we support?)

	
	TableType
	The type of the table (i.e., object, observation,…)

	
	NameColumn
	A field that contains the main target name.

	
	ObserverColumn
	A field the contains the observer name

	
	IdColumn
	A field that contains the ID of the observation or object

	
	
	

	Caveat
	LevelOfConcern
	How serious is the issue?

	
	
	

	
	
	

	
	
	

	
	
	

This table describes the resource types that may be present in the ResourceMetadata table

	Resource type
	Description

	ArchiveResCenter
	A facility the provides support for science archiving and research

	Mission
	Resources associated with a given mission (or other grouping)

	Theme
	Resources associated with a given science theme

	TableSet
	A group of associated tables.

	Dataset
	A description of a group of related data files.

	File
	A single file (or URL)

	Toolset
	A group of related tools

	Tool
	An invokable tool

	Instrument
	A component instrument ina mission

	Person
	Information about personnel

	Table
	A single local or remote table

	Ca veat
	A warning of some issue associated with a resource

	TableLink
	A link between two tables

	Symbol
	A common string used in defining metadata.

Italics: Virtual elements describe how the elements are built rather than describing a discrete element.
Appendix B: Cost Estimates
	Item
	Cost
	Comments

	Conversion to Postgres
	1 MM-

5 MM
	The 1 MM assumes we continue to use Sybase for all mission ingest operations and that all we need is the ability to copy tables from Sybase to Postgres. We will need much longer If and as we replace Sybase throughout our operations.

	Java Query Framework
	3 MM
	Much of this software exists in preliminary form (see

/software/jira/software/source/heasarc). About half the work is in building unit and regression tests as we move this software into something intended for production.

	Java code handling of composite resources
	2 MM
	This is the code to handle the concepts of missions and themes (and archive data centers). Supports metadata queries.

	XSL Transforms
	3 MM
	These take VOTables and other XML standard formats and translates them to HTML. This may be the squishiest of the estimates since on the one hand we have a lot of freedom in how many of these we create, but on the other hand we have limited experience with XSL and it is not an easy language. We do have several examples of this deployed in VO services.

	Java VOTable generation software
	.5 MM
	Reusing external library. Most time spent comparing STILTS and CDS Java libraries.

	Plotting integration
	1.5 MM
	Installing Web interface to STILTS plotting library

	User tables
	1 MM
	Much of this is done in prototype (see above)

	Session management
	1 MM
	Some experience with this from 2nd Heaven project

	JSP and Servlets
	2 MM
	Some experience with this from 2nd Heaven project

	Cross-correlations
	1 MM
	Much of this is done in prototype (see above)

	CLI interfaces
	1 MM
	This is just packaging stuff developed elsewhere.

	Ensuring compatibility for existing Browse users
	1 MM
	If this is to ever replace the existing Browse system we need to insure that all URL’s used in external services are supported in the new system. Probably involves building some specialized scripts.

	Metadata population
	2 MM
	Defining the new metadata needed by this

	VO Integration
	3 MM
	Adding in new VO protocols. A bit of this is done in the prototype, but less than other places we’ve said this. Supporting the VO TAP protocol will be much easier than existing protocols.

	Table formatters
	1 MM
	Use existing software libraries to support FITS and Excel formats on output.

Appendix C: Proposed Schedule
	Quarter
	Focus
	Milestones

	2008-Q4
	Setting up development framework
	Postgres DB

SVN Repository

Design document

	2009-Q1
	Basic query Library, Plotting, VOTable formatting
	TOMCAT installation on web site

Bug tracking system

Simple Sybase-Postgres copiers

JavaDocs for public interfaces

Test suite definition

	2009-Q2
	Plotting, user accounts and tables
	New plotting pages available (using existing VOTable output capabilities of Browse)

	2009-Q3
	Sessions, XSLT
	Test CLI interfaces

	2009-Q4
	Cross-correlations
	Web alpha release

	2010-Q1
	Metadata population and query
	Beta release (first public release – static databases)

	2010-Q2
	Management software, VO integration (TAP)
	Attach to database update pipelines

Management tools release

	2010-Q3
	VO integration (SIA and SSA)
	Production release

	2010-Q4
	Contingency
	Promoted to primary interface

Appendix D: Traceability to requirements

The following table discusses where and how requirements on the current Browse system and suggested enhancements are satisfied by this design. For each requirement in the existing and proposed requirements the location where the requirement is satisfied in this design is noted. The location is prefixed by an S if the design at the current level of detail specifically addresses the requirement or by an I if the requirement will be satisfied as part of the design element noted. If a requirement is not addressed by any element of the current design an O is given. If the requirement is explicitly dropped by the current design an X is shown. If the requirement will be satisfied by software beyond the scope of this document a B is used.
	Requirement[s]
	Satisfied by
	Comments

	1.1,1.2
	S 4.2.1
	

	1.3,1.4
	I 4.2
	

	1.5
	I 4.2,I4.3.2
	

	2
	S 2.1
	

	3
	S 2.1, 2.2, 4.1.1, 4.9
	Specific catalog requirements noted below

	3.7
	X
	Longer limit for name TBD

	3.5-6,3.8-9,3.14
	I 2.2
	

	3.10-11,3.13
	O
	Design of documentation not yet addressed

	3.15-18
	B
	Table design/ingest, not data access issue

	3.19-20
	I 2.2
	

	3.21-22
	B
	Table design/ingest

	3.23-25
	I 2.2, 4.2.3, 4.2.2
	In mission/theme design

	3.26-28
	I 4.2.2
	

	3.29
	I 2.2, 4.2.3
	

	3.30
	I 2.2, 4.7
	Links need significant metadata

	3.31-32
	I 2.2, 4.7
	

	3.33
	X
	Vizier catalogs shall be accessed through VO protocols

	4
	I 4.3, 4.2.6
	Detailed implementation will not match existing system

	4.4
	S 4.4
	

	4.5
	X
	Never used in existing system.

	4.6-7
	B
	

	4.8-9
	I 4.3.1,4.3.4
	

	5.1-3
	I 2.2, 4.2.6
	

	5.4
	I 4.2.6
	

	5.5
	O
	This is probably best handled as a specific tools/table

	6
	X
	Vizier access requirements replaced by VO access

	6.5
	O
	If this is not available through VO will want special tool to do it.

	7.1
	I 4.3,4.1.1
	

	7.1 (part),7,9
	X
	Multiple table queries not directly supported see 4.2.2

	7.2
	X
	Vizier requirement replaced by VO requirement

	7.3
	E 4.1.1
	(Constraints not showing up as section for some reason)

	7.4
	E 4.3,4.1.1
	Column definitions

	7.5
	I 4.3.1,4.3.4
	

	7.6
	X
	Not in first release

	7.7
	I 4.1.1
	

	7.8-7.12
	I 4.1.1, 4.9
	

	8
	I 4.3
	XSLT supplemented by Java for Excel and FITS formats

	8.6-7
	E 4.1.1
	

	8.8
	I 4.2
	

	8.9
	I 4.1.1
	

	8.10
	I 4.2
	

	9
	O
	Documentation not designed yet

	10.
	E 4.3.1,4.3.2
	

	11.
	I 4.3, 4.2
	

	11.10
	O
	Probably link to a tool

	12
	I 1.2, 2.2.1
	

	13
	I 1.2, 4.2.3
	Details of implementation may change

	14
	I 4.2.5
	

	15
	I 4.1.1, 4.2, 4.3
	

	16
	4.6, 4.3
	

	16.7
	X
	Aitoff projections not directly supported (but can do Cartesian)

	17
	E 1.1, 4.1.5, 4.2.6
	

	18
	E 4.3.1, 4.7
	

	19
	E 4.1.1
	

	20
	E 4.1.1
	Filter tables

	21
	E 4.3.2
	

	22
	I 4.1.1
	

	23
	I 4.1.1
	Metadata for remote tables still an issue

	24
	E 5
	

	25.1-2
	E 4.9
	

	25.3
	I 4.1.1
	

	
	
	

Appendix E. Initial ideas for Web pages.
This appendix gives some initial thoughts on what the query interfaces might look like in the Web environment. Note that whatever we choose we anticipate that it will be customizable to user specifications. In these descriptions a [text] implies an entry box where text indicates the kind of text entered. Bold text indicates an active element of the page (a URL or button). An x is a checkbox.
Intial Query page:
HEASARC Resources

+ x Missions
[text to filter missions]

+ x Themes
[text to filter themes]

+ x Regimes
[text to filter regimes]

+ x Tables
[text to filter tables]

Position:
[Position entry]

Time:

[Time entry]

Submit

Reset

Save
Clear

+ Other options

In this page the user can click on the +’s to expand those sections of the text and see all of the missions, themes, … that are available. These will have checkboxes in front of them so that a user can select missions. When a + is expanded the new entries will typically have + and checkboxes too so a user can select information in several hierarchical trees. To get something similar to the current Browse main query page the user would click on the + before Missions. To get the equivalent of the index page they would click on the + before Tables. ‘Other options’ would be hidden unless the user requested them (see the SkyView query page for example).
The Save option would save the current state for the next time the user returned to this page. Initially we may only support a single saved version, but there is no reason why the user can’t have multiple profiles.

Clear is used to clear the form to this initial state (Reset would return it to the last Saved state).

The filter text is used to constrain the associated fields. E.g., a user could ask for Chandra data by checking missions and entering Chandra in the text, or clicking on the + next to Missions and checking the Chandra box that appears. The filter text is used to search the metadata associated with the given resources and their sub-resources. [We can also search documentation if we want to do that.]
If we wish we can add a few Missions/Tables directly to this page.

Multitable display
This is the page one gets when one submits a query of multiple tables.
Results summary

	Table Name
	Table Description
	Hits
	Mission
	Products

	Chanmaster
	Master table of Chandra observations (info)
	42
	Chandra
	Y

	Chanhricfa
	Chandra HRI Observation CFA catalog (info)
	23
	Chandra
	N

The only active elements of the page are the links to the actual data results. Click on this to get the results you wish to see. The actual query of the table takes place when the link is pressed unless the results for this query are already being displayed in which case those results are given focus. The info links link to the help document for the table. [Should we display the tables that have no hits?]
Table Result:
This is the page of results for a query (which is always of a single table). Users can have as many queries as they like showing using different Browser panes. If a user makes a request that only matches a single table, they go directly to this page, they do not get a Multitable display page.
File
View
Help

TableName: Table description
	x
	Observer
	RA
	Dec
	ObsID
	Exposure

	x
	Nakumura
	10 10 10.1
	20 20 20.2
	09478876
	200000

	x
	Sakimoto
	20 20 20.1
	30 30 30.2
	09980899
	300000

Add to shopping cart
Checkout
Reset
Save
In this interface a small menu is shown up top. The File menu has options like ‘Save as FITS, Save as VOTable,…’. This would also given an option to save the result as a table in the users area if the user is logged in. The view menu controls whether things like Table links, SkyView, NED and SIMBAD tools will be displayed. The Help menu gives links to table, mission and general help.

The Add to shopping cart button adds the selected rows to the list in the users shopping cart. [Maybe a Add to shopping cart key click on each row would be better than separate checkboxes with a submit button]
Checkout page:

The checkout page is used when the user wishes to download data associated with or otherwise use selected rows of tables.
Checkout

Table: Table description (info)

+ Products

	
	Observer
	RA
	Dec
	ObsID
	Exposure

	+ x
	Nakumura
	10 10 10.1
	20 20 20.2
	09478876
	200000

	
	Observer
	RA
	Dec
	ObsID
	Exposure

	+ x
	Sakimoto
	10 10 10.1
	20 20 20.2
	09478877
	200000

Total size of currently requested data: 4016 MB

Create and Save Tar
Create and Save Download Script
In this page the selected observations are listed individually. The + next to products can be clicked on to show the list of data products available for that table. By default the user would be selecting all data products but this allows users to check only some. The + on each row can be expanded to show the list of datasets for that row. The user can pick particular data products for a given row. The datasets will have +’s which can expand to the individual files (or sub-datasets since the framework allows for an arbitrary hierarchy of datasets).

The buttons at the bottom create files that the user can download.

Query builder:

This page would be used by users who wish to build complex queries including cross-correlations or queries using synthetic columns.
Query Builder

Add

+ Table

+ Field

Synthetic field [name for field][text defining synthetic field] Add

Constraint

Position constraint [target]

Time constraint [time/interval]

x Cross-correlate by Position

x Cross-correlate by Time

Other Constraint [text defining constraint] +
Submit

Reset
Save
Clear
This form would be used to build up a query of arbitrary complexity. Users could expand Table and click on the tables they want to add to the query. The can expand Field to select and reorder the display fields from the wish to display from among the list. If fields are already selected they may be dragged to the desired location. The synthetic field entry allows the user to define a field as an expression of the fields in the existing table.
The constraints section allows the user to add positional and temporal constraints and also to specify a positional or temporal cross-correlation. A generic constraint – including cross-correlations on other fields – may be added in the Other Constraint box. A + is put next to that to allow the user to have more than one generic constraint. The cross-correlation options would only appear if the user has added tables that would support such correlations to the query.

The Submit button starts the query (the results should be the same as for any table query). Reset clears the form and Save and Clear have the same meaning as above.

HEASARC Contexts

�

�

	27
	

