

Postal stamps to celebrate Centennial Anniversary of Astronomical Society of Japan

Japan Post printed one million sheets!

US-Japan collaborative mission Suzaku and its characteristics

	X-ray Imaging Spectrometer XIS	Hard X-ray Detector HXD				
Instrument type	Soft X-ray Telescopes + CCD Cameras (One Bl.)	Collimated well type Detectors PIN + GSO				
Energy Range	0.2-12 keV	PIN:10-80keV GSO:60-600 keV				
Angular resoluti <mark>o</mark> n	1.8-2.0'					
Field of vie	19 'x 19'	0.56 ° x0.56°				
Energy Resolution	140 eV @ 6 keV	0.35 keV @ 20 keV				

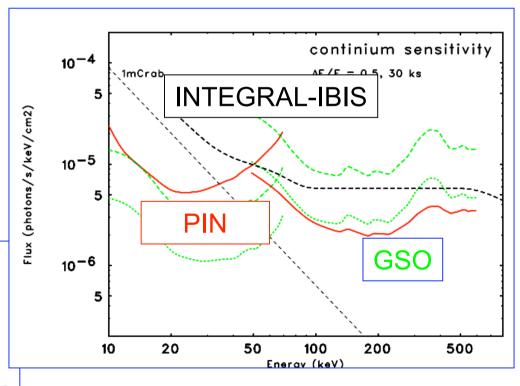
1000 days in orbit on April 5, 2008!

Mission Status Symmary

- 1. Revised background models make HXD the most sensitive detector in the 10-200 keV band
- 2. Charge injection keeps the best energy resolution of the XIS among CCD instruments
- 3. XIS filter contamination is understood and stable

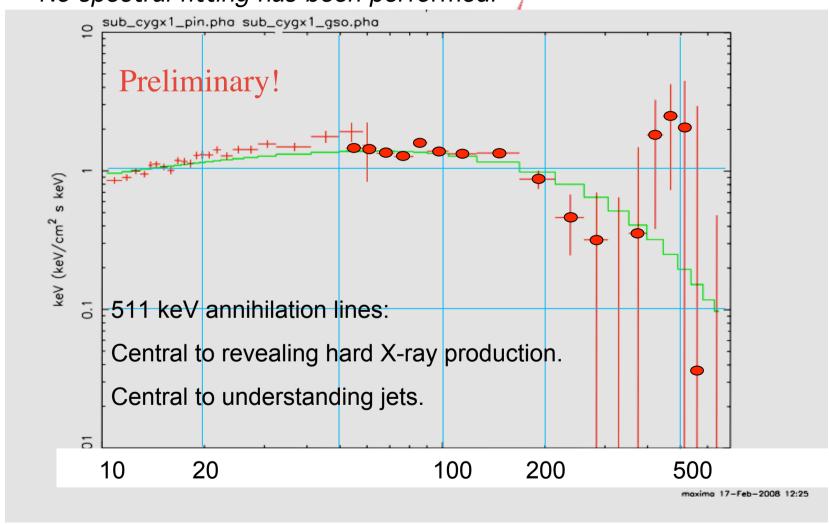
Improved HXD BKGD Models

New PIN detector NXB model has ~1 % systematics

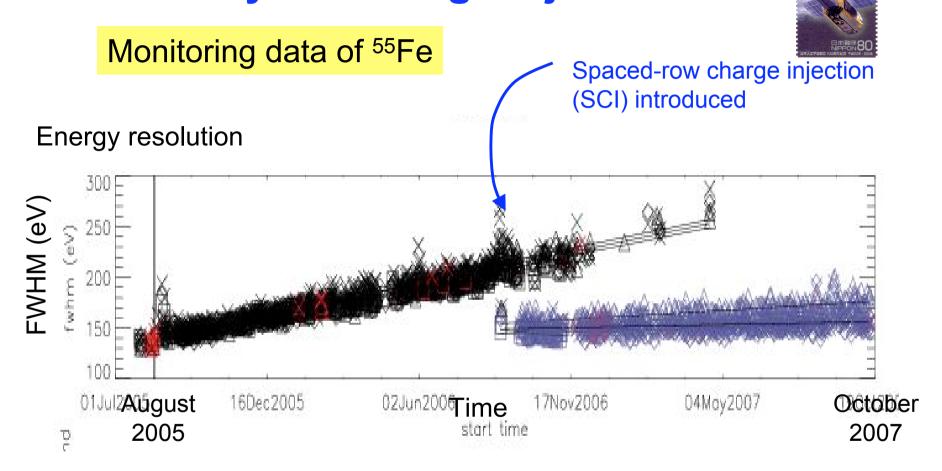

New GSO detector NXB model has ~1% systematics

Calculated Sensitivity for a point source (30 ks exp.)

Highest sensitivity

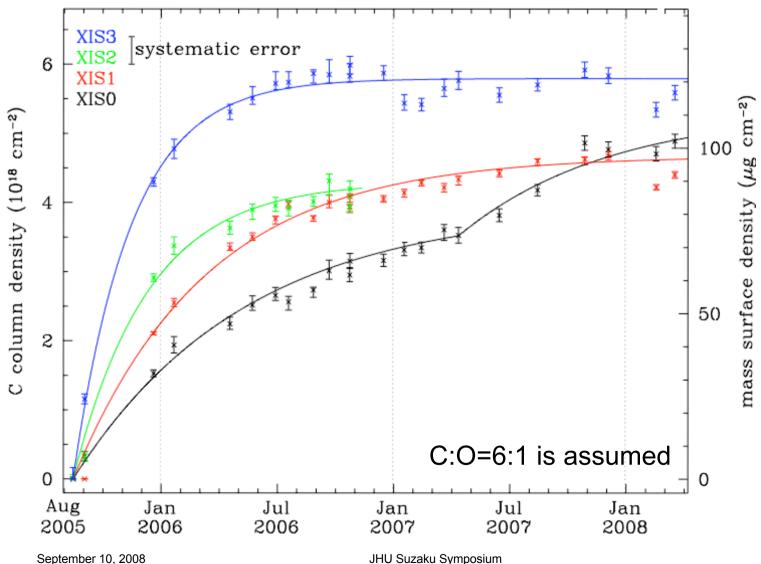

Small fov, guard detectors

Suzaku-HXD is able to detect
Hard X-ray VARIABILITY
of mCrab sources
even with strong absorption.


Extreme sensitivity in hard X-rays: Cygnus X-1

Difference spectrum of Cyg X-1 between high state and low state. *No spectral fitting has been performed!*

S. Yamada, private communication

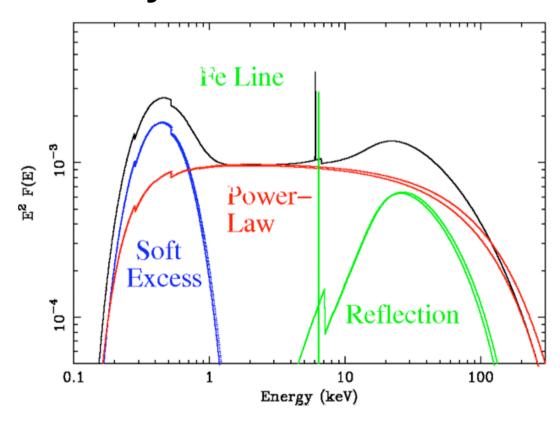

Improvements of XIS energy resolution by the charge injection

XIS has the best spectral resolution of any X-ray CCD detector!

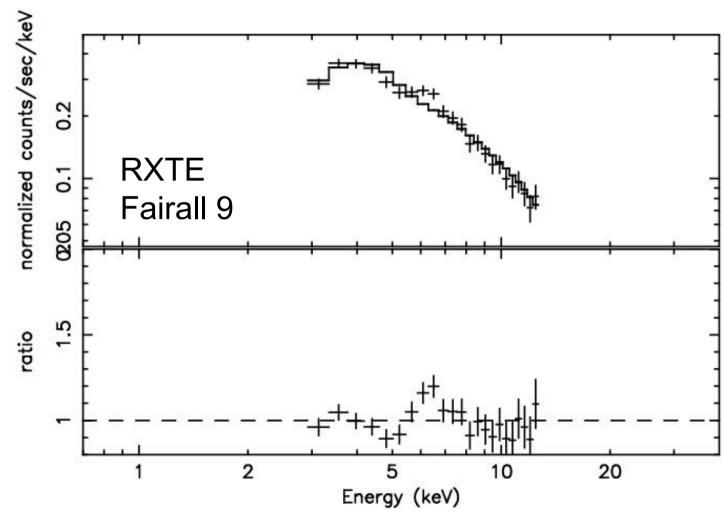
History of contamination layer thickness

Unique Science enabled by Suzaku

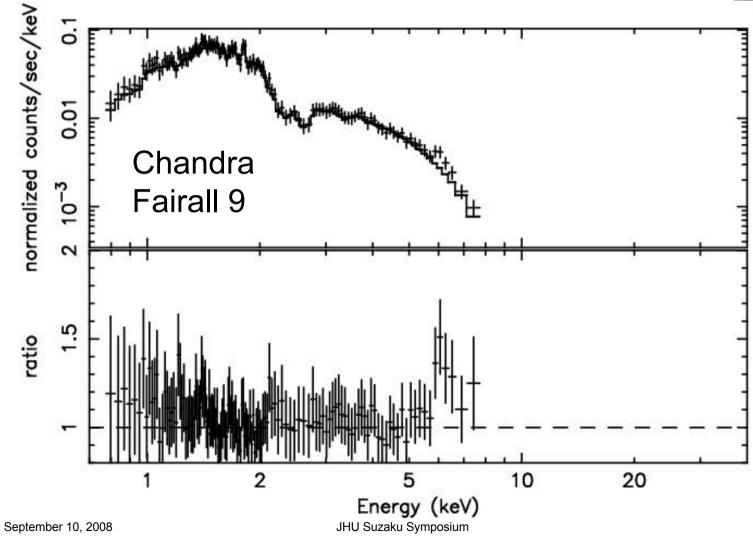
Attribute	Unique Science Enabled (examples)					
Simultaneous broad band energy coverage (0.2-600 keV)	Simultaneous measurement of disk emission, warm absorber composition and velocity, reflection hump, and broad Fe lines in X-ray binaries and supermassive black holes					
Spectral resolution in the 0.2-10.0 keV band	Measurement of C, N, O abundances in ISM and SNRs Determination of properties of geocoronal and heliospheric soft X-ray charge exchange emission					
Spectral resolution and sensitivity in the 6-10 keV band	Detection and separation of Fe band features in cataclysmic variables, X-ray binaries, AGN and the Galactic Plane and Ridge Modeling of relativistic effects in broad Fe lines in neutron star binaries and stellar and supermassive black holes					
Low background in the 0.2-10 keV band	Measurement of cluster temperatures and abundances to the virial radius Mapping of low surface brightness sources (e.g., extended HESS Galactic sources)					
High sensitivity in the 10-50 keV band	Spectroscopy of all AGN detected by Swift determination of the contribution of absorbed AGN to the CXRB Measurement of the magnetic field strength in XRBs and AXPs through detection of cyclotron features Search for nonthermal emission from clusters and SNRs					

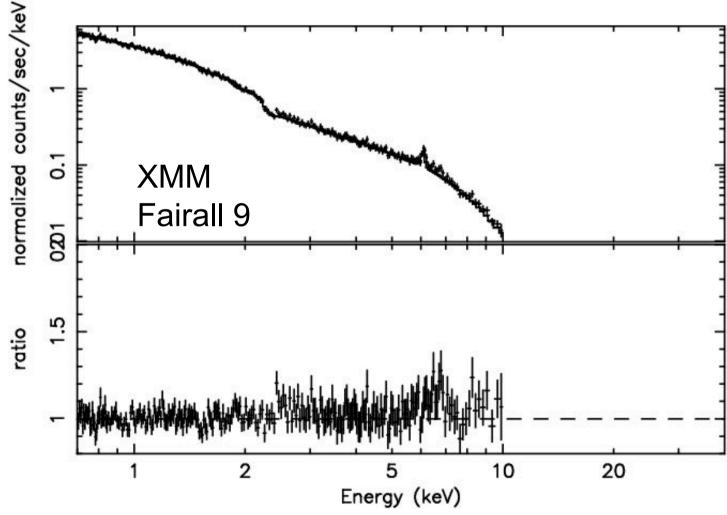

Suzaku Addresses Thematic Questions:

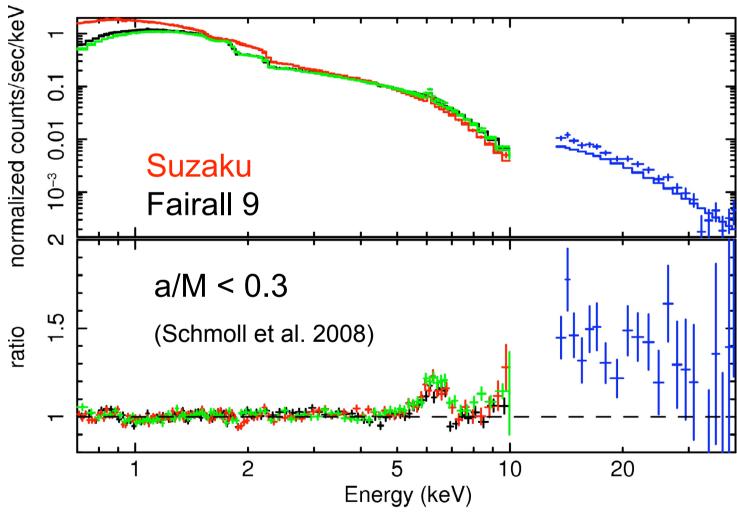
- The nature of space and time near to black holes?
- The nature of dark energy?
- How do cosmic accelerators work?

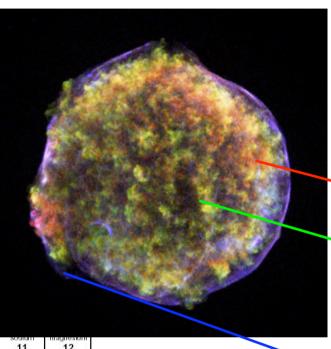

Understanding accretion in strong gravity--> broad-band spectra of *many* sources.

Only Suzaku can do that.



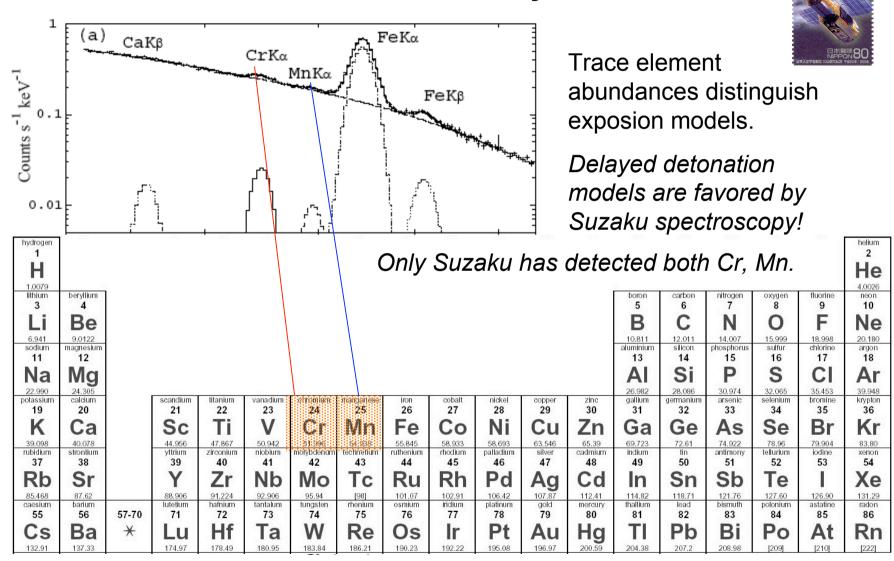



13



Low abundance metals in Tycho's SNR

He

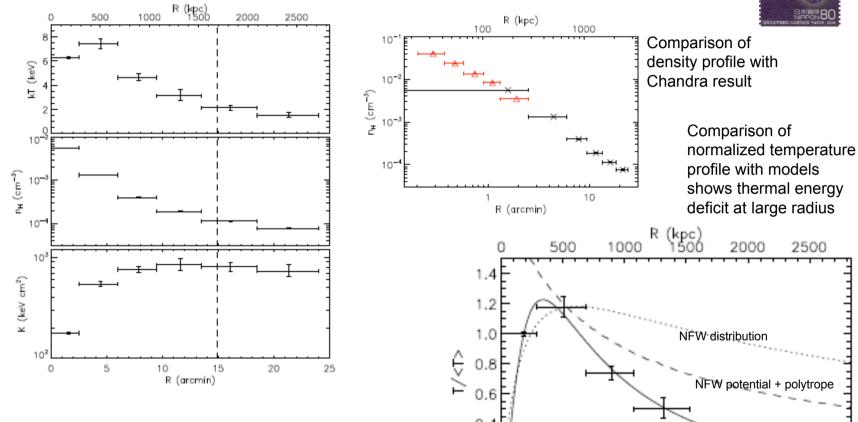


Common elements are easily detected in supernova remnants.

But better spectra are needed to fully reveal the explosion.

			W 840		200													4.0026
				1									boron	carbon	nitrogen	oxygen	fluorine	neon
			20-886										5	6	7	8 : :	9	10
													В	C	N	0	F	Ne
													10.811	. 12.011.	14.007	15.999	18.998	20.180
sodium	magnesium												aluminium.	silicon	phosphorus	sulfur	chlorine	argon 18
11	12												13	14	15	16	17	18
Na	Mg												AI:	Si	Р	S	CI	Ar
22.990	24.305		100000000000000000000000000000000000000		5000 00 0	9,0 92			-8.5	- Marie 2004			26.982	28.086	30.974	32.065	35.453	39.948
potassium	calcium		scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
rubidium	strontium		yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- 1	Xe
85.468	87.62	-	88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
caesium	barium		lutetium	hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33		174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]

Low abundance metals in Tycho's SNR



Suzaku is the best observatory for low surface brightness studies

2000

2500

First measurement of cluster properties beyond virial radius - PKS0745-191 (George et al. 2008; MNRAS in press)

Suzaku Lifetime projection

ASCA

Launch Feb. 1993 Loss of control July 2000 Re-entry Mar. 2001

Suzaku

Launch July 2005 XIS-2 Damage Nov. 2006

Orbital life ~2015

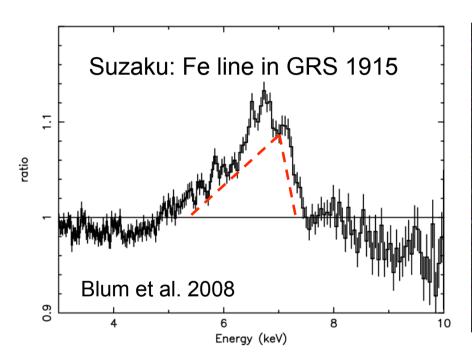
Suzaku is one of a series of US-Japan collaborations, that started with ASCA and will be followed by Astro-H (2013)

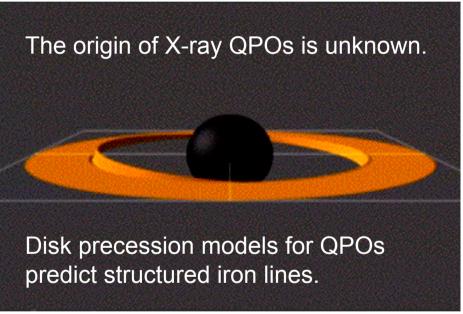
AO4 plans

- AO4 released on Monday, September 8
- National time division for AO4 remains 37.5% US, 50% Japan, 12.5% joint
- US Long project time allocation will remain ~1 Ms
- Introducing Key Programs
 - 1-2 at any given time; > 1 Ms per program
 - Time dedicated to answering specific questions uniquely suited for Suzaku
 - Driven by community input

- Survey of LMXB Lines to Constrain Neutron Star Parameters
- Solving the Mystery of the 30 keV X-ray Background by measuring spectra of absorbed AGN discovered by Swift and INTEGRAL
- Survey of Unidentified Extended Galactic TeV Sources
- Investigating Dark Energy using a snapshot survey of ~500 Clusters of Galaxies
- Galactic SNR survey to identify low Abundance Nucleosynthesis Products

- Ranked 4th of 9 missions in 2008 senior review
 - Supported Key Project concept
 - Recommended closer coordination with Swift, Fermi, etc.
- US program is funded through FY 2010
- GO support funds for AO4+ are modest
 - ~\$500k \$700k available for AO4,5
 - We plan to ask NASA HQ for funding augmentation
- JAXA seems inclined to continue data sharing arrangement indefinitely
- For future, coordinated programs with Chandra, Swift, possibly others




Galactic black holes and neutron stars are nearby General Relativity laboratories.

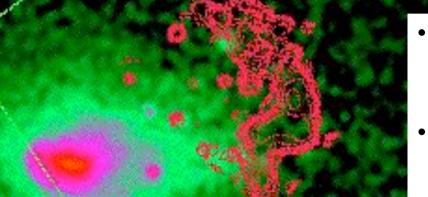
Suzaku is making unique strides.

Combining Spectra and Timing: Microquasar GRS 1915+105

- Bright source figure of merit: Collecting Area * Livetime.
- Suzaku opens a discovery space.

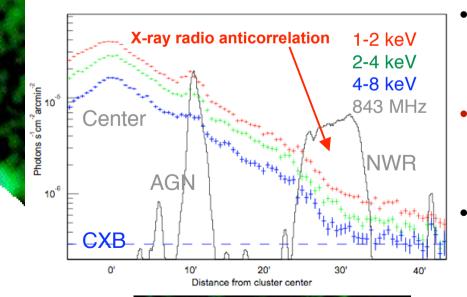
Understanding Type Ia SNe explosions requires the detection of rare elements.

Suzaku is making unique strides.



Hard X-ray emission in clusters can reveal important, elusive physics.

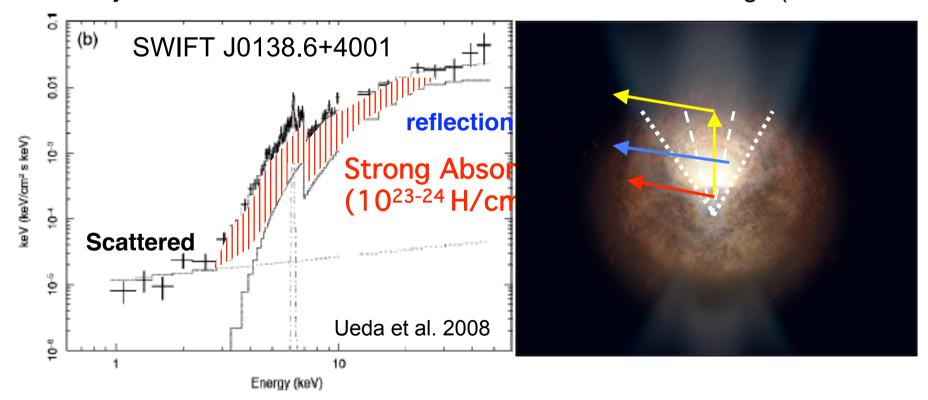
The Suzaku HXD enables new studies.


Non-thermal pressure in clusters

Stringent upper limits on hard
 X-ray flux in Coma, A 3667, +++

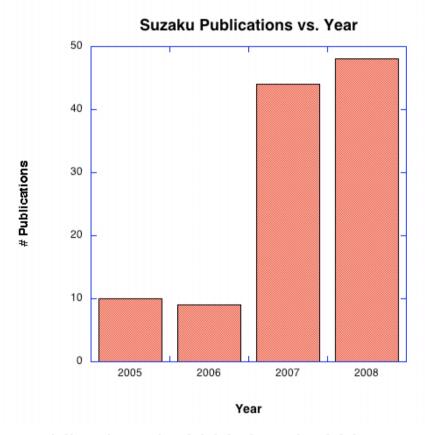
Radio + hard X-rays --> B field.
 XIS/HXD on A 3667: B>2.2µG

- Non-thermal pressure contribution, out to the virial radius.
- Strong implications for S-Z effect. Need to survey more clusters!
- Low background + sensitivity of XIS, HXD made this possible. (Sarazin et al. 08, Wik et al. 08)

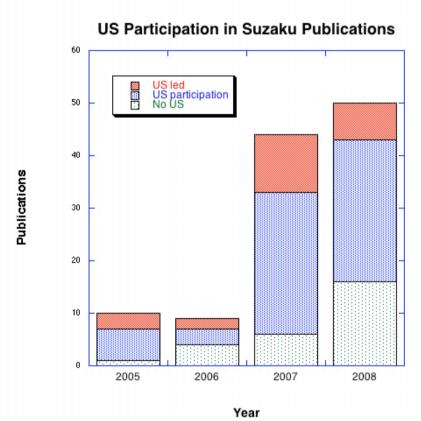

Hard X-ray emission mechanisms remain elusive. So too does jet production.

Suzaku is poised to make real progress.

Suzaku spectroscopy of Swift/BAT AGN is changing our picture of AGN



Not seen in soft X-ray, [O III] surveys. Many more massive black holes! Very week scatter(<0.5%) Small cone angle(<20°)



- Already more publications in 2008 than in 2007
- Special PASJ editions in 2007, 2008; third special edition being planned

- US scientists are involved in the vast majority of Suzaku publications
- Publications by US guest observers just starting to be submitted

US AO3 results

			日本大文子芸訓工100版年記3 平成20年・20
	AO1	AO2	AO3
Proposals submitted	164	156	120
Total time request (Ms)	24.1	25.6	21.2
Oversubscription factor	4.3	4.4	3.5
A/B/C proposals accepted	28/23/21	28/18/26	24/15/20
Long proposals accepted	_	-	3/9
Grant funding	\$1.7M	\$1.7M	\$1.2M-\$1.7M

- Interest in Suzaku remains high within US community
- Comparable program oversubscription in Japan
- AO3 grant funding depends on outcome of overguide request

Long Proposals

- 1 Ms each by US and Japan was set aside in AO3 for long proposals (projects requiring > 300 ks)
- US received 9 proposals; time was awarded to 3
 - Search for eclipse of NGC 3227 nucleus by orbiting clouds
 - Study of variability of warm absorber in nearby Seyfert NGC 4051
 - Determination of spatial distribution of low abundance metals in Tycho's SNR
- Long programs will continue in AO4 at approximately the same level

US Suzaku funding

- In guide Suzaku budget is:
 - \$2.349k in FY2009
 - \$2.428k in FY2010
- This budget funds processing, archiving, guest observer services, proposal review support, E/PO, and guest observer grants
- Amount available for grants is only \$500k; reduced from \$1.7M for AO1 and AO2
- Suzaku grants for AO1-2 were typically \$26k, modest compared with programs of similar power
- The Suzaku project is requesting restoration of grant funding to AO1-2 level, in the form of an overguide request