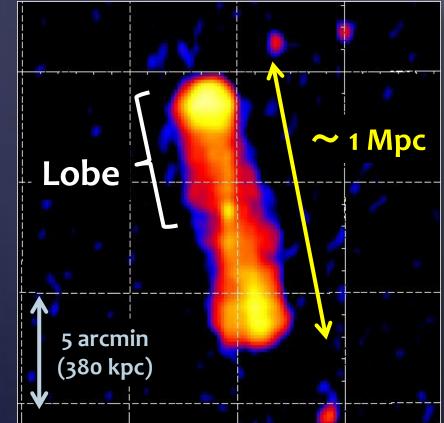
Evolution of the AGN jet energetics revealed with the Suzaku observations of giant radio galaxies

Naoki Isobe (ISAS/JAXA) Hiromi Seta (Saitama U.) Makoto S. Tashiro (Saitama U.) Poshak Gandhi (ISAS/JAXA) Keiko Matsuta (ISAS/JAXA)

Giant Radio Galaxies (GRGs)

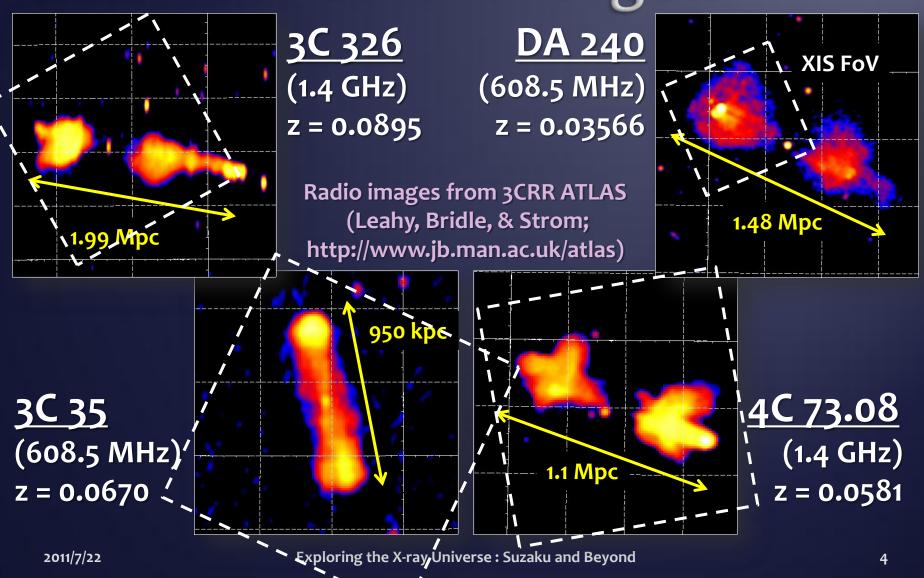

- Giant Radio Galaxies (GRGs)
 - Total linear size $D \gtrsim 1$ Mpc
 - Age τ_{age} ~ 100 Myr

 (Schoenmakers et al. 2000)

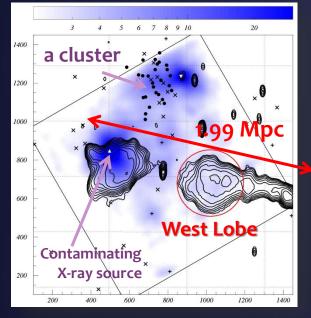
 The late phase in the evolution
 - of jets can be explored from GRGs.

How long does an AGN jet continue to be in an active phase ?

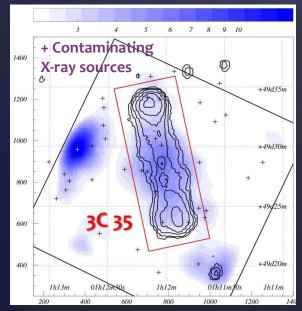
- Lobes of FR II radio galaxies
 - The bulk jet power is integrated, in the forms of non-thermalparticle and magnetic-field energies.
 - An important indicator of the past jet activity

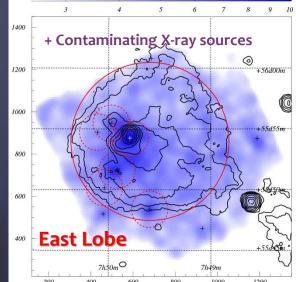


3C 35 @ 608.5 MHz (http://www.hj.man.ac.uk/atlas/)


IC/CMB technique

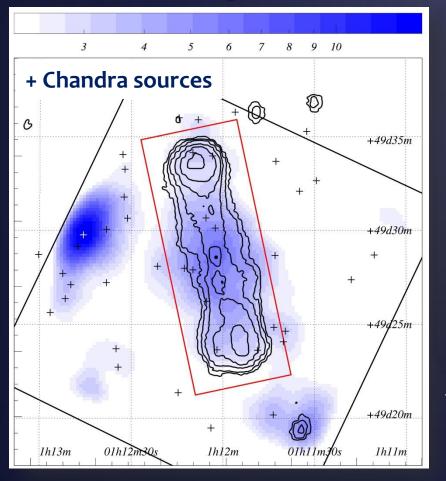
- Evaluation of the electron and magnetic energy densities (Ue and Um) in lobes
 - Synchrotron radio flux ∝ Ue Um
 - CMB-boosted Inverse-Compton (IC/CMB) X-ray flux ∝ Ue U_{CMB}
- Previous Studies
 - ASCA (e.g., Kaneda et al. 1995)
 - Chandra (e.g., Isobe et al. 2002, Croston et al. 2005)
 - XMM-Newton (e.g., Isobe et al. 2005, 2006)
 - Limited to radio galaxies with $D \lesssim 500$ kpc
- Advantages of Suzaku XIS
 - Low and stable instrumental background (Tawa et al. 2008)
 - Well-calibrated response (rmf and arf), even for diffuse X-ray sources
 - Reasonable field of view (17'.8 x 17'.8)

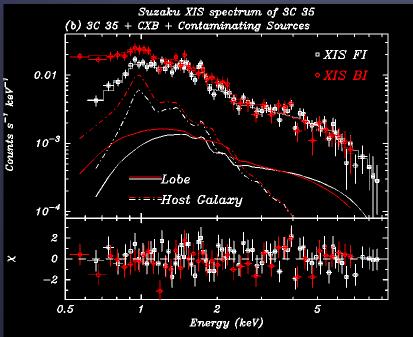

Our Suzaku targets



Suzaku XIS Images

<u>3C 326</u> (Isobe et al. 2009, ApJ, 706, 454) • XIS 0.5 – 5 keV (blue) • 1.4 GHz (contours) Largest "IC/CMB-X-ray" lobe <u>3C 35</u> (Isobe et al. 2011a, ApJ, 727, 82) • XIS 0.5 – 5.5 keV (blue) • 608.5 MHz (contours)

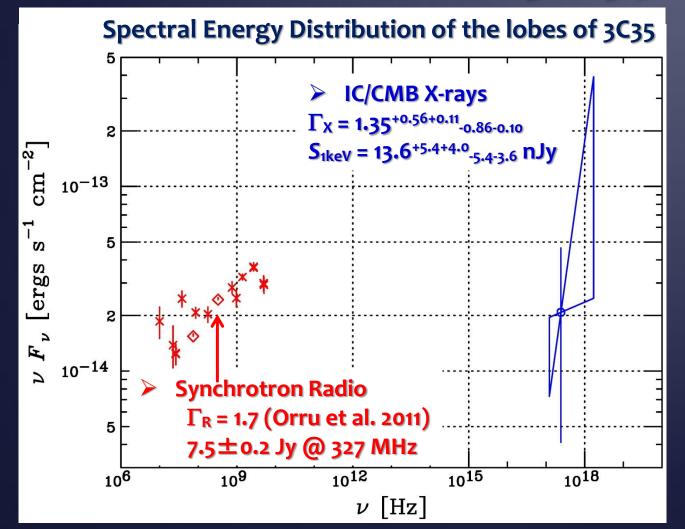

DA 240 (Isobe et al. 2011b, arXiv:1105.3473, PASJ 4th Suzaku issue) • XIS 0.5 – 10 keV (blue) • 608.5 MHz (contours)


Exploring the X-ray Universe : Suzaku and Beyond

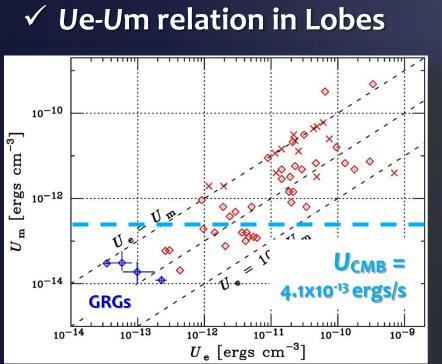
Suzaku Results on 3C 35

✓ Suzaku XIS image in 0.5 – 5.5 keV

✓ NXB-subtracted XIS spectrum

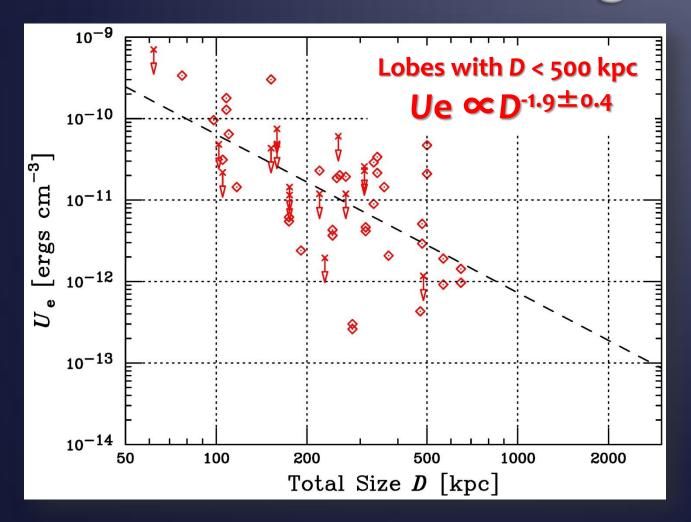


Lobe Component • Photon Index $\Gamma = 1.35^{+0.56+0.11}_{-0.86-0.10}$

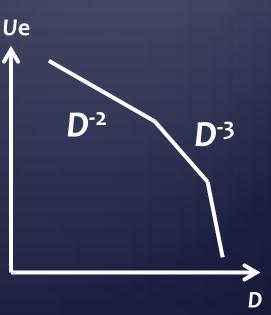

• Flux density S_{1keV} = 13.6^{+5.4+4.0}-5.4-3.6 nJy

Suzaku Results on 3C 35

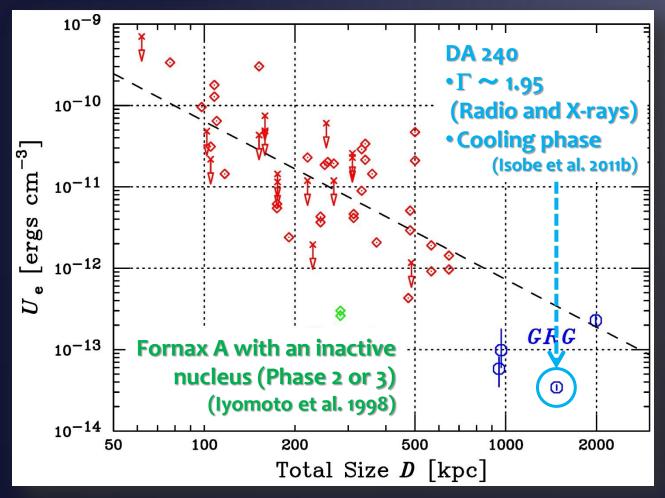
Exploring the X-ray Universe : Suzaku and Beyond


Energetics in Lobes

(Isobe et al. 2009, 2011a, 2011, Croston et al. 2005, and reference therein) Lobes with $D \leq 500$ kpc • $Ue = 2 \times 10^{-13} - 10^{-9} \text{ ergs/cm}^3$ • $Um = 2 \times 10^{-14} - 10^{-9} \text{ ergs/cm}^3$ • Ue/Um ~ 10 (1 - 100) (B/Beq = 0.3 - 1.3)GRGs lobes with $D \gtrsim 1$ Mpc • Ue $\leq 3 \times 10^{-13} \text{ ergs/cm}^3$ • $Um \leq 3 \times 10^{-14} \text{ ergs/cm}^3$ Ue/Um ≤ 10 • $Um < U_{cmb} = 4.1 \times 10^{-13} (1+z)^4$ ergs/cm³


- (equiv. to $B = 3.2 (1+z)^2 \mu G$)
- IC/CMB is the dominant cooling process in the lobes of GRGs

Evolution of Jet/Lobe Energetics



Evolution of Jet/Lobe Energetics

- Phase 1: Lobe expansion with a constant jet power P_{jet}
 - Total Energy in the lobe $E \propto \tau_{age} P_{jet}$
 - Size D ∝ v_{jet} τ_{age} (v_{jet} : jet velocity)
 ⇒Ue + Um = E / V ∝ E / D³ ∝ τ_{age}⁻² P_{jet} ∝ D⁻² P_{jet}
- Phase 2 : Lobe expansion with no input
 - Total energy E is conserved \Rightarrow Ue + Um = E / V $\cong D^{-3}$
- Phase 3 : Cooling dominant
 - Ue and Um should rapidly decrease.

Evolution of Jet/Lobe Energetics

 GRGs tend to exhibit lower Ue in comparison with the trend of the radio galaxies with D ≤ 500 kpc.

This indicates that GRGs reside in Phase 3 (or 2).
A significant decrease in the jet activity typically from D = 500 kpc to 1 Mpc

Other support for the declined jet/nuclear activity in GRGs

- Low nuclear X-ray luminosity
 - L_X < 10⁴¹ ergs s⁻¹ for 3C 35, DA 240 (This work, Evans et al. 2008)
 - L_X < 10⁴² ergs s⁻¹ for 3C 326
- No significant [OIII] line
 - 3C 326 (Saunders et al. 1998)
- No significant jet feature in radio
 3C 35 (Mullin et al. 2008)

Summary and Conclusions

- Suzaku observations of 3 GRGs ($D \gtrsim 1$ Mpc)
 - IC/CMB X-ray emission was significantly detected from their lobes, thanks to the low and stable BGD of the Suzaku XIS
- Ue and Um in the lobes of GRGs, estimated from the IC/CMB technique
 - Ue/Um ≲ 10
 - Ue/Um ~ 10 for radio galaxies with D < 500 kpc
 - Um < U_{CMB}
 - IC/CMB is the dominant cooling process in the lobes of GRGs
- Evolution of Jet/Lobe energetics, examined from the *D*-Ue relation.
 - Ue $\propto D^{-1.9\pm0.4}$ for the radio galaxies with D < 500 kpc.
 - Consistent with expansion with a constant jet power.
 - Ue in the lobes of GRGs is by an order of magnitude lower than the value estimated from the Ue-D relation for the D < 500 kpc sources.
 - A significant reduction in the jet power, as radio galaxies evolve from D = 500 kpc to 1 Mpc
 - Low X-ray luminosity of the GRG nucleus supports this idea.