4.4.2.8. Checksum keywords FITSHDU to equal negative 0. There are a vast number of pos-
sible character strings that could satisfy this requiretyimn for
The checksum keywords described here provide an ite sake of consistency and uniformity it is recommendet tha
tegrity check on the information containedMTSHDUSs. The the particular 16-character string generated by the atyorde-
CHECKSUM keyword is defined to have a value that forces the 33ctibed in the appendix be used. A string containing only 1 or
bit 1's complement checksum accumulated over all the 28800ore consecutive ASCII blanks may be used to represent an un-
byte FITSlogical records in the HDU to equal negative 0. (Notélefined or unknown value for tH&ECKSUM keyword.

that 1's complement arithmetic has both positive and negati
zero elements). Verifying that the accumulated checksustilis
equal to -0 provides a fast and fairly reliable way to deteeni
that the HDU has not been modified by subsequent data pro-
cessing operations or corrupted while copying or storimfille

on physical media. The checksum does not guard against orga-
nized transformations or malicious tampering, howeverahse
simple transformations, such as rearranging the order fit32
words in the file, do notféect the computed checksum value.
The checksum also does not provide any information on the
authenticity of the file because tltEECKSUM keyword can al-
ways be updated after making modifications to the file, legvin
no trace that the file is not the same as the original.

Two FITSkeywords are reserved to record the checksum in-
formation in an HDUDATASUM andCHECKSUM. Normally both
keywords will be present in the header if either is preseut, b
this is not required. These keywords apply only to the HDU in
which they are contained. If thR{ECKSUM keywords are written
in one HDU of a multi-HDUFITSfile then it is strongly recom-
mended that they also be written to every other HDU in the file.
In that case the checksum accumulated over the entire file wil
equal -0 as well. Itis recommended that the current dateiamed t
be written into the comment field of both keywords to document
when the checksum was computed (or more precisely, the time
that the checksum computation process was started).

DATASUM Keyword. The value field of theDATASUM keyword
shall consist of a character string containing the unsigned

ger value of the 32-bit 1's complement checksum of the data
records in the HDU (i.e., excluding the header records)lier
purpose, each 2880-byfdTS logical record should be inter-
preted as consisting of 720 32-bit unsigned integers. Thaekb

in each integer must be interpreted in order of decreasipg Si
nificance where the most significant byte is first, and thetleas
significant byte is last. Accumulate the sum of these integer

ing 1's complement arithmetic in which any overflow of the mos
significant bit is propagated back into the least signifitanof

the sum.

The DATASUM value is expressed as a character string (i.e.,
enclosed in single quote characters) because supportsdualth
range of 32-bit unsigned integer keyword values is probtama
in some software systems. This string may be padded with non-
significant leading or trailing blank characters or leadiegos.

A string containing only 1 or more consecutive ASCII blanks
may be used to represent an undefined or unknown value for the
DATASUM keyword. TheDATASUM keyword may be omitted in
HDUs that have no data records, butit is preferable to irethd
keyword with a value of 0. Otherwise, a missiDATASUM key-
word asserts no knowledge of the checksum of the data records

CHECKSUM Keyword. The value field of th&€ HECKSUM keyword
shall consist of an ASCII character string whose value fothe
32-bit 1's complement checksum accumulated over the entire

Appendix A: CHECKSUM Implementation Guidelines 0w 1a 2= 832 4% 55 6% T« 8x 9

. D o <P = > 5 ?a @w Aa B Ca
A.0.1. Recommended CHECKSUM Keyword Implementation D. E. Fr Go He 1e e Ke LM
The recommendetHECKSUM keyword algorithm described here | N» O« P« Qa R2 S Ta Us Vs Wy
generates a 16-character ASCII string that forces the B2i || X« Y Z« [« Ve Ju "« _« ‘w aa
complement checksum accumulated over the efiifeS HDU be cs du s fu gs he e ju ke
to equal negative 0 (all 32 bits equal to 1). In addition, ghigg le Me Ne 0« Ppo dn T=
will only contain alphanumeric characters within the rmgeg, Figure 1. Only ASCII alpha-numerics are used to encode the checksum — punctuation is exgluded.

A-Z, and a—z to promote human readability and transcription
This CHECKSUM keyword value must be expressed in fixed for-

mat, with the starting single quote character in column 1d anl. Begin with the 1’'s complement (replace Os with 1s and 1s

the ending single quote character in column 28 offhES key-
word record, because the relative placement of the valuegstr
within the keyword recordféects the computed HDU checksum.

with 0s) of the 32-bit checksum accumulated over all the
FITS recordsin the HDU after first initializing t@ECKSUM
keyword with a fixed-format string consisting of 16 ASCII

zeros (0000000000000000°).

2. Interpret this complemented 32-bit value as a sequence of
4 unsigned 8-bit integers, A, B, C and D, where A is the
most significant byte and D is the least significant. Generate
asequence of 4 integers, A1, A2, A3, A4, that are all equal to
A divided by 4 (truncated to an integer if necessary). If A is
not evenly divisible by 4, add the remainder to Al. The key

rithm described in Sem2 The final comment field of the properw to note here is that the sum of the 4 new integers is

keyword, if any, must also be written at this time. It is rec- equal to the original byte value (e.g.,/AAL1 + A2 + A3 +

ommended that the current date and time be recorded in the A4). Perform a similar operation on B, C, and D, resulting in

comment field to document when the checksum was com- 3 total of 16 integer values, 4 from each of the original bytes

puted.] which should be rearranged in the following order:
. Accumulate the 32-bit 1's complement checksum over the

FITS logical records that make up the HDU header in the
same manner as was done for the data records by interpret-
ing each 2880-byte logical record as 720 32-bit unsigned in-
tegers.

. Calculate the checksum for the entire HDU by adding (us-
ing 1's complement arithmetic) the checksum accumulateg
over the header records to the checksum accumulated oveér
the data records (i.e., the previously compma™ASUM key-
word value).

. Compute the bit-wise complement of the 32-bit total HDU
\(I:Vri]t?lclasum value by replacing all 0 bits with 1 and all 1 bits CHECKSUM keyword value string of 16 ASCII Os is replaced

. with the final encoded checksum value.
- Encode the complement of the HDU checksum into a 191'. To improve human readability and transcription of thangtr

%CterASC” string using the algorithm described intSec eliminate any non-alphanumeric characters by considering
I . . the bytes a pair at a time (e.g., AAA2, A3 + A4, B1 +
(?hi\e?gtirtzt;}\clgzjtfggltir(i:lfsl{rghk:)é\;]vgéis\a?‘!]u?omgg tet]rllfiréGADU B2, etc.) and repeatedly increment the first byte in the_ pair
will now be equal to nega.tive 0 by 1 and decrement the 2nd byte by 1 as necessary until they
: both correspond to the ASCII value of the allowed alphanu-
meric characters 0-9, A-Z, and a—z shown in Figure 1. Note
that this operation conserves the value of the sum of the 4
equivalent 32-bit integers, which is required for use irs thi
checksum application.
5. Cyclically shift all 16 characters in the string one plazéhe
right, rotating the last characte¥4) to the beginning of the
string. This rotation compensates for the fact that the fixed
formatFITScharacter string values are not aligned on 4-byte
word boundaries in th&ITSfile. (The first character of the
string starts in column 12 of the header card image, rather

The steps in the algorithm are as follows:

1. Write the CHECKSUM keyword into the HDU header
with an initial value consisting of 16 ASCIl zeros
(' 0000000000000000 ") where the first single quote char-
acter is in column 11 of theITSkeyword record. This spe-

cific initialization string is required by the encoding algo

Al B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4

Each of these integers represents one of the 16 characters
in the final CHECKSUM keyword value. Note that if this byte
stream is interpreted as 4 32-bit integers, the sum of tiee int
gers is equal to the original complemented checksum value.
Add 48 (hex 30), which is the value of an ASCII zero char-
acter, to each of the 16 integers generated in the previous
step. This places the values in the range of ASCII alphanu-
meric characters '0’ (ASCII zero) to 'r'. Thisftset is éfec-

tively subtracted back out of the checksum when the initial

6.

A.0.2. Recommended ASCII Encoding Algorithm

The algorithm described here is used to generate an AS@igjstr
which, when substituted for the value of ttiEECKSUM keyword,
will force the checksum for the entire HDU to equal negativi O
is based on a fundamental property of 1's complement aritieme
that the sum of an integer and the negation of that integetie
bitwise complement formed by replacing all 0 bits with 1s and
all 1 bits with 0s) will equal negative O (all bits set to 1).i3h
principle is applied here by constructing a 16-charactengst than column 13).

which, when interpreted as a byte stream of 4 32-bitinte@@$ 6 \yrite this string of 16 characters to the value of the

a sum that is equal to the c_omplement of the sum accumulated ~ygrcrsum keyword, replacing the initial string of 16 ASCII
over the rest of the HDU. This algorithm also ensures thatthe ,¢/0s.

bytes that make up the 4 integers all have values that camesp
to ASCII alpha-numeric characters in the range 0-9, A-Z, and To invert the ASCII encoding, cyclically shift the 16 charac
a—z. ters in the encoded string one place to the left, subtradchéxe

30 ofset from each character, and calculate the checksum bymecessing steps. Byalculatingather tharaccumulatinghe in-
terpreting the string as 4 32-bit unsigned integers. Thiskma termediate checksums, the original checksum test is peipdg
used, for instance, to read the valueCHECKSUM into the soft- through to the final data file. On the other hand, if a new check-
ware when verifying or updating a file. sum is accumulated with each change to the file, no informatio
is preserved about the file’s original state.

The recipe for updating theHECKSUM keyword following
some change to the file i€’ = C - m+ m', whereC and

This example illustrates the encoding algorithm given intSe C’ represent the file's checksum (that is, the complement of
E02 Consider aFITS HDU whose 1's complement check-the CHECKSUM keyword) before and after the modification and
sum is 868229149, which is equivalent to 83€0201D. This M andnv are the corresponding checksums for the modified
number was obtained by accumulating the 32-bit checksumhl'S records or keywords only. Since tIGEECKSUM keyword
over the header and data records using 1's complement arfgntains the complement of the checksum, the correspolyding
metic after first initializing theCHECKSUM keyword value to complemented form of the recipe is more directly usefd: =
’9000000000000000°. The complement of the accumulated(C + M+ nv), where ” (tilde) denotes the (1's) complement op-
checksum is 3426738146, which is equivalent to 6exFDFE2. eration. (See ref. 5-7.) Note that the tilde on the right hside

The steps needed to encode this hex value into ASCII are shoWrihe equation cannot be distributed over the contents ®f th
schematically below: parentheses due to the dual nature of zero in 1's complement

arithmetic (ref. 7).

A.0.3. Encoding Example

Byte Preserve byte alignment
A B CD Al B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4

A.0.5. Example C Code for Accumulating the Checksum
CC 3F DF E2 -> 33 OF 37 38 33 OF 37 38 33 OF 37 38 33 OF 37 38

+ remainder 0 3 3 2 The 1's complement checksum is simple and fast to com-
— hex 33 12 3A 3A 33 OF 37 38 33 GF 37 38 33 OF 37 38 pute. This routine assumes that the input records are a-multi
+ 0 offset 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 ple of 4 bytes long (as is the case fBITS logical records

but it is not dificult to allow for odd length records if neces-

= hex 63 42 6A 6A 63 3F 67 68 63 3F 67 68 63 3F 67 68 . . L I
ASCIT ¢ B j j ¢ ? gh ¢ ? gh < ?gh sary. To use this routine, first initialize tt@ECKSUM keyword
o _ to '0000000000000000° and initializesum32 = 0, then step
initial values ¢ B j 5 e g bptuaton s h through all theFITSlogical records in the FITS HDU.
c C j j c >g h c¢c @ g h ¢ > gh
¢ D jj c¢c=9gh c¢cAgh c¢c=gh void checksum (
c E j j c < gh ¢ B gh ¢ < gh unsigned char *buf, /* Input array of bytes to be checksummed */
c F jj c¢cj; gh c¢c Cgh ¢ ; gh /* (interpret as 4-byte unsigned ints) /
. c G j i c g h ¢ Dgh < g h int length, /* Length of buf array, in bytes */
final values c Hj j ¢ 9 gh ¢ Egh ¢ 9 gh /* (must be multiple of 4) */
unsigned int *sum32) /* 32-bit checksum /
final string "hcHjjc9ghcEghc9g" (rotate 1 place to the right) {

/%
Increment the input value of sum32 with the 1’s complement sum

In this example byte B1 (originally ASCH) is shifted higher accumulated over the input buf array.
(to ASCII H) to balance byte B2 (originally ASCI?) being */ o ' '
shifted lower (to ASCII9). Similarly, bytes B3 and B4 are unsioned int hi, lo, hicarry, locarry, i;
shifted by opposing amounts. This is possible because the tw ;+ accumilate the sum of the high-order 16 bits and the */
sequences of ASCII punctuation characters that can occur ir* %gw-grder ;6 bits of Each 32-bithw0rd’ Separa;els'- *//
* e first byte in each pair is the most significant. *
encoded checksums are both pr.eceded and folloyved by Igngeff* This algorithm works on both big and little endian machines.*/
sequences of ASCII alphanumeric characters. This opergio
purely for cosmetic reasons to improve readability of thalfin ~ hi = C‘sum3z >> 16;
. lo = *sum32 & OxFFFF;
string. for (i=0; i < length; i+=4) {
This is how thes€HECKSUM andDATASUM keywords would hi += ((buf[i] << 8) + buf[i+1]);
appear in aFITS header (with the optional time stamp in the Lo += (Cbuf[i+2] << 8) + bufli+31);
comment field).: ¥

/* fold carry bits from each 16 bit sum into the other sum */

DATASUM = ’2503531142’ / 2015-06-28T18:30:45 hicarry = hi >> 16;
CHECKSUM= ’hcHjjc9ghcEghc9g’ / 2015-06-28T18:30:45 locarry = lo >> 16;
while Chicarry || locarry) {

hi = (hi & OxFFFF) + locarry;
) lo = (lo & OxFFFF) + hicarry;
A.0.4. Incremental Updating of the Checksum hicarry = hi >> 16;

locarry = lo >> 16;

The symmetry of 1's complement arithmetic also means that af :
ter mOdIfymg aFITS HDU’ th.e Che.CkSlflm may be mcre:men- /* concatenate the full 32-bit value from the 2 halves */
tally updated using simple arithmetic without accumulgtine *sum32 = (hi << 16) + lo;
checksum for portions of the file that have not changed. The
new checksum is equal to the old total checksum plus the eheck
sum accumulated ove.r.the modified records, minus the OhglrE.lO.G. Example C Code for ASCII Encoding
checksum for the modified records.
An incremental update provides the mechanism for end-tdhis routine encodes the complement of the 32-bit HDU check-
end checksum verification through any number of intermediaum value into a 16-character string. The byte alignmentef t

string is permuted one place to the right faiTS to left justify
the string value starting in column 12.

unsigned int exclude[13] = {0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40,
0x5b, 0x5c, 0x5d, Ox5e, 0x5f, 0x60 };

int offset = 0x30; /* ASCII ® (zero) */
unsigned long mask[4] = { 0xff000000, 0xff0000, Oxff00, Oxff };

void char_encode (

unsigned int value, /* 1’s complement of the checksum */
/* value to be encoded */
char *ascii) /* Output l6-character encoded string */
{
int byte, quotient, remainder, ch[4], check, i, j, k;
char asc[32];
for (i=0; i < 4; i++) {
/* each byte becomes four */
byte = (value & mask[i]) >> ((3 - i) * 8);
quotient = byte / 4 + offset;
remainder = byte % 4;
for (3=0; j < 4; j++)
ch[j] = quotient;
ch[0] += remainder;
for (check=1; check;) /* avoid ASCII punctuation */
for (check=0, k=0; k < 13; k++)
for (j=0; j < 4; j+=2)
if (ch[jl==exclude[k] || ch[j+1]==exclude[k]) {
ch[jl++;
ch[j+1]--;
check++;
}
for (j=0; j < 4; j++) /* assign the bytes */
asc[4*j+i] = ch[j];
}
for (i=0; i < 16; i++) /* permute the bytes for FITS */
ascii[i] = asc[(i+15)%16];
ascii[16] = 0; /* terminate the string */
}

	CHECKSUM Implementation Guidelines
	Recommended CHECKSUM Keyword Implementation
	Recommended ASCII Encoding Algorithm
	Encoding Example
	Incremental Updating of the Checksum
	Example C Code for Accumulating the Checksum
	Example C Code for ASCII Encoding

