
4.4.2.8. Checksum keywords

The checksum keywords described here provide an in-
tegrity check on the information contained inFITS HDUs. The
CHECKSUM keyword is defined to have a value that forces the 32-
bit 1’s complement checksum accumulated over all the 2880-
byteFITS logical records in the HDU to equal negative 0. (Note
that 1’s complement arithmetic has both positive and negative
zero elements). Verifying that the accumulated checksum isstill
equal to -0 provides a fast and fairly reliable way to determine
that the HDU has not been modified by subsequent data pro-
cessing operations or corrupted while copying or storing the file
on physical media. The checksum does not guard against orga-
nized transformations or malicious tampering, however, because
simple transformations, such as rearranging the order of 32-bit
words in the file, do not affect the computed checksum value.
The checksum also does not provide any information on the
authenticity of the file because theCHECKSUM keyword can al-
ways be updated after making modifications to the file, leaving
no trace that the file is not the same as the original.

Two FITSkeywords are reserved to record the checksum in-
formation in an HDU:DATASUM andCHECKSUM. Normally both
keywords will be present in the header if either is present, but
this is not required. These keywords apply only to the HDU in
which they are contained. If theCHECKSUM keywords are written
in one HDU of a multi-HDUFITSfile then it is strongly recom-
mended that they also be written to every other HDU in the file.
In that case the checksum accumulated over the entire file will
equal -0 as well. It is recommended that the current date and time
be written into the comment field of both keywords to document
when the checksum was computed (or more precisely, the time
that the checksum computation process was started).

DATASUM Keyword. The value field of theDATASUM keyword
shall consist of a character string containing the unsignedinte-
ger value of the 32-bit 1’s complement checksum of the data
records in the HDU (i.e., excluding the header records). Forthis
purpose, each 2880-byteFITS logical record should be inter-
preted as consisting of 720 32-bit unsigned integers. The 4 bytes
in each integer must be interpreted in order of decreasing sig-
nificance where the most significant byte is first, and the least
significant byte is last. Accumulate the sum of these integers us-
ing 1’s complement arithmetic in which any overflow of the most
significant bit is propagated back into the least significantbit of
the sum.

The DATASUM value is expressed as a character string (i.e.,
enclosed in single quote characters) because support for the full
range of 32-bit unsigned integer keyword values is problematic
in some software systems. This string may be padded with non-
significant leading or trailing blank characters or leadingzeros.
A string containing only 1 or more consecutive ASCII blanks
may be used to represent an undefined or unknown value for the
DATASUM keyword. TheDATASUM keyword may be omitted in
HDUs that have no data records, but it is preferable to include the
keyword with a value of 0. Otherwise, a missingDATASUM key-
word asserts no knowledge of the checksum of the data records.

CHECKSUM Keyword. The value field of theCHECKSUM keyword
shall consist of an ASCII character string whose value forces the
32-bit 1’s complement checksum accumulated over the entire

FITS HDU to equal negative 0. There are a vast number of pos-
sible character strings that could satisfy this requirement, but for
the sake of consistency and uniformity it is recommended that
the particular 16-character string generated by the algorithm de-
scribed in the appendix be used. A string containing only 1 or
more consecutive ASCII blanks may be used to represent an un-
defined or unknown value for theCHECKSUM keyword.

1



Appendix A: CHECKSUM Implementation Guidelines

A.0.1. Recommended CHECKSUM Keyword Implementation

The recommendedCHECKSUM keyword algorithm described here
generates a 16-character ASCII string that forces the 32-bit 1’s
complement checksum accumulated over the entireFITS HDU
to equal negative 0 (all 32 bits equal to 1). In addition, thisstring
will only contain alphanumeric characters within the ranges 0–9,
A–Z, and a–z to promote human readability and transcription.
This CHECKSUM keyword value must be expressed in fixed for-
mat, with the starting single quote character in column 11 and
the ending single quote character in column 28 of theFITSkey-
word record, because the relative placement of the value string
within the keyword record affects the computed HDU checksum.
The steps in the algorithm are as follows:

1. Write the CHECKSUM keyword into the HDU header
with an initial value consisting of 16 ASCII zeros
(’0000000000000000’) where the first single quote char-
acter is in column 11 of theFITS keyword record. This spe-
cific initialization string is required by the encoding algo-
rithm described in Sect. A.0.2 The final comment field of the
keyword, if any, must also be written at this time. It is rec-
ommended that the current date and time be recorded in the
comment field to document when the checksum was com-
puted.

2. Accumulate the 32-bit 1’s complement checksum over the
FITS logical records that make up the HDU header in the
same manner as was done for the data records by interpret-
ing each 2880-byte logical record as 720 32-bit unsigned in-
tegers.

3. Calculate the checksum for the entire HDU by adding (us-
ing 1’s complement arithmetic) the checksum accumulated
over the header records to the checksum accumulated over
the data records (i.e., the previously computedDATASUM key-
word value).

4. Compute the bit-wise complement of the 32-bit total HDU
checksum value by replacing all 0 bits with 1 and all 1 bits
with 0.

5. Encode the complement of the HDU checksum into a 16-
character ASCII string using the algorithm described in Sect.
A.0.2

6. Replace the initialCHECKSUM keyword value with this 16-
character encoded string. The checksum for the entire HDU
will now be equal to negative 0.

A.0.2. Recommended ASCII Encoding Algorithm

The algorithm described here is used to generate an ASCII string
which, when substituted for the value of theCHECKSUM keyword,
will force the checksum for the entire HDU to equal negative 0. It
is based on a fundamental property of 1’s complement arithmetic
that the sum of an integer and the negation of that integer (i.e, the
bitwise complement formed by replacing all 0 bits with 1s and
all 1 bits with 0s) will equal negative 0 (all bits set to 1). This
principle is applied here by constructing a 16-character string
which, when interpreted as a byte stream of 4 32-bit integers, has
a sum that is equal to the complement of the sum accumulated
over the rest of the HDU. This algorithm also ensures that the16
bytes that make up the 4 integers all have values that correspond
to ASCII alpha-numeric characters in the range 0–9, A–Z, and
a–z.

222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222

0 30 1 31 2 32 3 33 4 34 5 35 6 36 7 37 8 38 9 39

: 3a ; 3b < 3c = 3d > 3e ? 3f @ 40 A 41 B 42 C 43

D 44 E 45 F 46 G 47 H 48 I 49 J 4a K 4b L 4c M 4d

N 4e O 4f P 50 Q 51 R 52 S 53 T 54 U 55 V 56 W 57

X 58 Y 59 Z 5a [ 5b \ 5c ] 5d ^ 5e _ 5f ‘ 60 a 61

b 62 c 63 d 64 e 65 f 66 g 67 h 68 i 69 j 6a k 6b

l 6c m 6d n 6e o 6f p 70 q 71 r 72

Figure 1. Only ASCII alpha-numerics are used to encode the checksum — punctuation is excluded.2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1

1. Begin with the 1’s complement (replace 0s with 1s and 1s
with 0s) of the 32-bit checksum accumulated over all the
FITS records in the HDU after first initializing theCHECKSUM
keyword with a fixed-format string consisting of 16 ASCII
zeros (’0000000000000000’).

2. Interpret this complemented 32-bit value as a sequence of
4 unsigned 8-bit integers, A, B, C and D, where A is the
most significant byte and D is the least significant. Generate
a sequence of 4 integers, A1, A2, A3, A4, that are all equal to
A divided by 4 (truncated to an integer if necessary). If A is
not evenly divisible by 4, add the remainder to A1. The key
property to note here is that the sum of the 4 new integers is
equal to the original byte value (e.g., A= A1 + A2 + A3 +
A4). Perform a similar operation on B, C, and D, resulting in
a total of 16 integer values, 4 from each of the original bytes,
which should be rearranged in the following order:

A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4

Each of these integers represents one of the 16 characters
in the finalCHECKSUM keyword value. Note that if this byte
stream is interpreted as 4 32-bit integers, the sum of the inte-
gers is equal to the original complemented checksum value.

3. Add 48 (hex 30), which is the value of an ASCII zero char-
acter, to each of the 16 integers generated in the previous
step. This places the values in the range of ASCII alphanu-
meric characters ’0’ (ASCII zero) to ’r’. This offset is effec-
tively subtracted back out of the checksum when the initial
CHECKSUM keyword value string of 16 ASCII 0s is replaced
with the final encoded checksum value.

4. To improve human readability and transcription of the string,
eliminate any non-alphanumeric characters by considering
the bytes a pair at a time (e.g., A1+ A2, A3 + A4, B1 +
B2, etc.) and repeatedly increment the first byte in the pair
by 1 and decrement the 2nd byte by 1 as necessary until they
both correspond to the ASCII value of the allowed alphanu-
meric characters 0–9, A–Z, and a–z shown in Figure 1. Note
that this operation conserves the value of the sum of the 4
equivalent 32-bit integers, which is required for use in this
checksum application.

5. Cyclically shift all 16 characters in the string one placeto the
right, rotating the last character (D4) to the beginning of the
string. This rotation compensates for the fact that the fixed
formatFITScharacter string values are not aligned on 4-byte
word boundaries in theFITS file. (The first character of the
string starts in column 12 of the header card image, rather
than column 13).

6. Write this string of 16 characters to the value of the
CHECKSUM keyword, replacing the initial string of 16 ASCII
zeros.

To invert the ASCII encoding, cyclically shift the 16 charac-
ters in the encoded string one place to the left, subtract thehex

2



30 offset from each character, and calculate the checksum by in-
terpreting the string as 4 32-bit unsigned integers. This can be
used, for instance, to read the value ofCHECKSUM into the soft-
ware when verifying or updating a file.

A.0.3. Encoding Example

This example illustrates the encoding algorithm given in Sect.
A.0.2 Consider aFITS HDU whose 1’s complement check-
sum is 868229149, which is equivalent to hex33C0201D. This
number was obtained by accumulating the 32-bit checksum
over the header and data records using 1’s complement arith-
metic after first initializing theCHECKSUM keyword value to
’0000000000000000’. The complement of the accumulated
checksum is 3426738146, which is equivalent to hexCC3FDFE2.
The steps needed to encode this hex value into ASCII are shown
schematically below:

Byte Preserve byte alignment

A B C D A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4

CC 3F DF E2 -> 33 0F 37 38 33 0F 37 38 33 0F 37 38 33 0F 37 38

+ remainder 0 3 3 2

= hex 33 12 3A 3A 33 0F 37 38 33 0F 37 38 33 0F 37 38

+ 0 offset 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

= hex 63 42 6A 6A 63 3F 67 68 63 3F 67 68 63 3F 67 68

ASCII c B j j c ? g h c ? g h c ? g h

Eliminate punctuation characters

initial values c B j j c ? g h c ? g h c ? g h

. c C j j c > g h c @ g h c > g h

. c D j j c = g h c A g h c = g h

. c E j j c < g h c B g h c < g h

. c F j j c ; g h c C g h c ; g h

. c G j j c : g h c D g h c : g h

final values c H j j c 9 g h c E g h c 9 g h

final string "hcHjjc9ghcEghc9g" (rotate 1 place to the right)

In this example byte B1 (originally ASCIIB) is shifted higher
(to ASCII H) to balance byte B2 (originally ASCII?) being
shifted lower (to ASCII9). Similarly, bytes B3 and B4 are
shifted by opposing amounts. This is possible because the two
sequences of ASCII punctuation characters that can occur in
encoded checksums are both preceded and followed by longer
sequences of ASCII alphanumeric characters. This operation is
purely for cosmetic reasons to improve readability of the final
string.

This is how theseCHECKSUM andDATASUM keywords would
appear in aFITS header (with the optional time stamp in the
comment field).:

DATASUM = ’2503531142’ / 2015-06-28T18:30:45

CHECKSUM= ’hcHjjc9ghcEghc9g’ / 2015-06-28T18:30:45

A.0.4. Incremental Updating of the Checksum

The symmetry of 1’s complement arithmetic also means that af-
ter modifying aFITS HDU, the checksum may be incremen-
tally updated using simple arithmetic without accumulating the
checksum for portions of the file that have not changed. The
new checksum is equal to the old total checksum plus the check-
sum accumulated over the modified records, minus the original
checksum for the modified records.

An incremental update provides the mechanism for end-to-
end checksum verification through any number of intermediate

processing steps. Bycalculatingrather thanaccumulatingthe in-
termediate checksums, the original checksum test is propagated
through to the final data file. On the other hand, if a new check-
sum is accumulated with each change to the file, no information
is preserved about the file’s original state.

The recipe for updating theCHECKSUM keyword following
some change to the file is:C′ = C − m + m′, whereC and
C′ represent the file’s checksum (that is, the complement of
the CHECKSUM keyword) before and after the modification and
m and m′ are the corresponding checksums for the modified
FITS records or keywords only. Since theCHECKSUM keyword
contains the complement of the checksum, the correspondingly
complemented form of the recipe is more directly useful: ˜C′ =
˜(C + ˜m + m′), where ˜ (tilde) denotes the (1’s) complement op-
eration. (See ref. 5–7.) Note that the tilde on the right handside
of the equation cannot be distributed over the contents of the
parentheses due to the dual nature of zero in 1’s complement
arithmetic (ref. 7).

A.0.5. Example C Code for Accumulating the Checksum

The 1’s complement checksum is simple and fast to com-
pute. This routine assumes that the input records are a multi-
ple of 4 bytes long (as is the case forFITS logical records),
but it is not difficult to allow for odd length records if neces-
sary. To use this routine, first initialize theCHECKSUM keyword
to ’0000000000000000’ and initializesum32 = 0, then step
through all theFITS logical records in the FITS HDU.

void checksum (

unsigned char *buf, /* Input array of bytes to be checksummed */

/* (interpret as 4-byte unsigned ints) */

int length, /* Length of buf array, in bytes */

/* (must be multiple of 4) */

unsigned int *sum32) /* 32-bit checksum */

{

/*

Increment the input value of sum32 with the 1’s complement sum

accumulated over the input buf array.

*/

unsigned int hi, lo, hicarry, locarry, i;

/* Accumulate the sum of the high-order 16 bits and the */

/* low-order 16 bits of each 32-bit word, separately. */

/* The first byte in each pair is the most significant. */

/* This algorithm works on both big and little endian machines.*/

hi = (*sum32 >> 16);

lo = *sum32 & 0xFFFF;

for (i=0; i < length; i+=4) {

hi += ((buf[i] << 8) + buf[i+1]);

lo += ((buf[i+2] << 8) + buf[i+3]);

}

/* fold carry bits from each 16 bit sum into the other sum */

hicarry = hi >> 16;

locarry = lo >> 16;

while (hicarry || locarry) {

hi = (hi & 0xFFFF) + locarry;

lo = (lo & 0xFFFF) + hicarry;

hicarry = hi >> 16;

locarry = lo >> 16;

}

/* concatenate the full 32-bit value from the 2 halves */

*sum32 = (hi << 16) + lo;

}

A.0.6. Example C Code for ASCII Encoding

This routine encodes the complement of the 32-bit HDU check-
sum value into a 16-character string. The byte alignment of the

3



string is permuted one place to the right forFITS to left justify
the string value starting in column 12.

unsigned int exclude[13] = {0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40,

0x5b, 0x5c, 0x5d, 0x5e, 0x5f, 0x60 };

int offset = 0x30; /* ASCII 0 (zero) */

unsigned long mask[4] = { 0xff000000, 0xff0000, 0xff00, 0xff };

void char_encode (

unsigned int value, /* 1’s complement of the checksum */

/* value to be encoded */

char *ascii) /* Output 16-character encoded string */

{

int byte, quotient, remainder, ch[4], check, i, j, k;

char asc[32];

for (i=0; i < 4; i++) {

/* each byte becomes four */

byte = (value & mask[i]) >> ((3 - i) * 8);

quotient = byte / 4 + offset;

remainder = byte % 4;

for (j=0; j < 4; j++)

ch[j] = quotient;

ch[0] += remainder;

for (check=1; check;) /* avoid ASCII punctuation */

for (check=0, k=0; k < 13; k++)

for (j=0; j < 4; j+=2)

if (ch[j]==exclude[k] || ch[j+1]==exclude[k]) {

ch[j]++;

ch[j+1]--;

check++;

}

for (j=0; j < 4; j++) /* assign the bytes */

asc[4*j+i] = ch[j];

}

for (i=0; i < 16; i++) /* permute the bytes for FITS */

ascii[i] = asc[(i+15)%16];

ascii[16] = 0; /* terminate the string */

}

4


	CHECKSUM Implementation Guidelines
	Recommended CHECKSUM Keyword Implementation
	Recommended ASCII Encoding Algorithm
	Encoding Example
	Incremental Updating of the Checksum
	Example C Code for Accumulating the Checksum
	Example C Code for ASCII Encoding



