## The First All-Sky Map of Electron-Positron Annihilation

Georg Weidenspointner CESR, Toulouse, France

on behalf of the SPI team

#### **Antimatter**

- For every particle there exists an antiparticle
- Particle and antiparticle share properties such as mass, but particle and antiparticle have opposite electrical charge
- Even antiatoms, consisting of antielectrons and antiprotons, can
- Antimatter and matter cannot coexist, when a particle meets its antiparticle they mutually annihilate
- The energy released in this annihilation can be calculated applying Einstein's most famous equation

$$E = mc^2 + mc^2 = 2mc^2$$

## **Electron-Positron Annihilation**

- The antiparticle of an electron is a positron
- When a positron meets an electron, they both annihilate into pure energy (here  $\gamma$ -radiation)
- The hallmark of the electron-positron with an energy of 511 keV (which corresponds to the rest mass energy of electrons/positrons):  $e^+ + e^- \longrightarrow \gamma_{511} + \gamma_{511}$ annihilation is the production of photons



G. Weidenspointner

### The Positron Mystery

- Surprisingly, we do see 511 keV gamma rays, showing that annihilating positrons are being produced somewhere in the Galaxy, and are
- Although the line was discovered as early as the 1970s, the longstanding mystery origin of positrons, and their annihilation sites, have remained a
- Investigating this mystery is one of the prime scientific objectives of the spectrometer SPI onboard the European Space Agency's INTEGRAL observatory
- We do not yet have a final solution, but we have found a valuable

# The First All-Sky Map of 511 keV Line Emission



- The emission appears to be surprisingly concentrated around the center of the Galaxy, it is "bulge dominated"!
- The detailed origin of the emission is still unclear

## What are the Implications of this Clue?

- there is no significant emission outside the GC region The annihilation radiation from our Galaxy is bulge dominated,
- tic disk (disk population) The young stellar populations are concentrated along the Galac-
- The old stellar populations of our Galaxy (bulge and halo) are concentrated around the GC
- Dark Matter is concentrated around the GC
- $\Longrightarrow$  The origin of positrons appears to be connected with an old stellar population and/or dark matter
- $\Longrightarrow$  The young stellar population appears to be ruled out

# What are the Positron Sources in Our Galaxy?

- Young, massive stars cannot be the source of the positrons
- Candidate old population sources include or Novae Low-Mass X-Ray Binaries, Type la Supernovae,
- (Light) Dark Matter is another intriguing possibility

# **Electron-Positron Annihilation Flux and Rate**

and the electron-positron annihilation rate in, our Galaxy. We have been able to measure: Our results provide new constraints on the 511 keV line flux from,

- Flux:  $(1.3 3.4) \times 10^{-3} \text{ ph cm}^{-2} \text{ s}^{-1}$ strument sees one 511 keV  $\gamma$ -ray photon every 5–13 minutes This means that on average each square centimeter of our in-
- Annihilation Rate:  $(1.8-3.7) \times 10^{43} \ \mathrm{s}^{-1}$ of our Galaxy every second Assuming steady state, this means that  $(2-4) imes 10^{10}$  tons (the mass of a mountain) of positrons annihilate in the central region

### **Summary and Conclusions**

- Using observations during the first year of the INTEGRAL mis-511 keV line arising from electron-positron annihilation sion has allowed us to produce the first-ever all-sky map in the
- 511 keV line emission is bulge/halo dominated, no significant emission outside GC region
- The origin of positrons seems to be associated with an old stellar population (and not with the disk of the Milky Way) Candidate origins: Low-Mass X-Ray Binaries, Novae, or Type la SNe
- (Light) Dark Matter is another possibility

The origins of positrons are still shrouded in mystery, but we are beginning to lift the veil!

#### **Prospects**

This is just the start of the new science of positron astronomy

Analysis methods are still improving; we expect at least 6 times more data...

and obtaining many more interesting results – We anticipate making significant progress over the coming years!