Highlights of BATSE Non-GRB Observations (1991-2000)

W. Paciesas USRA Science & Technology Institute

Monitoring the Low-Energy Gamma-ray Sky

- CGRO/BATSE in orbit for >9 years
- GRBs were BATSE's main science objective but there were others:
 - Monitoring transient & variable persistent sources
 - SGRs
 - Solar flares
 - Surprises?
- BATSE techniques for non-triggered source monitoring
 - Earth occultation (all sources)
 - Epoch folding (pulsed sources)
 - Power spectra (noisy sources)

Soft Gamma-ray Repeaters

Pre-BATSE: 3 SGR sources

SGR 0525-66, SGR 1806-20, SGR 1900+14

many bursts from 1806–20 and 1900+14

BATSE not optimized for SGRs but detected

SGR 1806-20

Terrestrial Gamma-ray Flashes

- Subset of BATSE triggers with unusual characteristics
 - Very short duration \leq few ms
 - Very hard spectrum
 - Localized to Earth
- Associated with regions of thunderstorm and lightning activity
- Most TGFs are bremsstrahlung gamma-rays from accelerated electrons/positrons
- Longer duration events (> few ms) are actually escaped particles

Transient Pulsed Sources Detected with BATSE

BATSE Earth Occultation: Transient Pulsar Outbursts

Source

BATSE Earth Occultation: Nonpulsed Transient Outbursts

Source

A 0535+262

- Transient X-ray binary pulsar
 - $P_{\text{pulse}} \sim 103 \text{ s}$
 - *P*_{orb} ~ 111 d
 - Be star companion
- "Giant" outburst in Feb/Mar 1994
 - spin-up (~ 10^{-11} Hz s⁻¹)
 - QPO with $v_{\text{QPO}} > v_{\text{pulse}}$
 - ν_{QPO} strongly correlated with spin-up torque & luminosity

GRO J1655–40

- Transient black hole candidate
- Series of strong outbursts beginning in July 1994
- Remarkably fast rise (< 8 hr)

Paciesas+1996

Tavani+ 1996

GRO J1655–40

- Superluminal expansion seen in radio
 - Two-week delay relative to hard X-rays

- Later outburst (1996) started first in optical & soft x-ray
 - Heating wave started in outer disc & moved inward

GRO J1719–24

- Transient black hole candidate discovered by BATSE & GRANAT/Sigma in late 1993
- Low-frequency QPO in time-series analysis
 - remarkable time evolution of $v_{\rm QPO}$ from ~0.04 \div 0.3 Hz
 - v_{QPO} doubled during initial rise
 - large variation not easily explained

Van der Hooft+ 1996

Bursting Pulsar (GRO J1744-28)

- Unique source
- Bursts first detected in raw BATSE data (Dec 1995)
- Later detected as a pulsar & via Earth occultation
- Binary $P_{\rm orb} \sim 11.8$ d
- Two outburst episodes, spaced ~1 year apart

Bursting Pulsar (GRO J1744-28)

• Type II bursts: accretion instability

- Not BB spectrum
- No spectral softening during burst
- Persistent flux to burst flux ratio $\alpha < 20$ ($\alpha < 4$ on first day)
- Pulsations persist during bursts
 - Larger amplitude
 - Time lag
 - "Accretion curtain" model (Miller 1996)

Kouveliotou & van Paradijs 1997

Summary

- The hard X-ray/low-energy gamma-ray sky can be monitored with relatively simple detectors
- In addition to detecting known transient and highly variable sources, BATSE discovered:
 - Six new X-ray pulsars, incl the bursting pulsar GRO J1744–28
 - Three new BH candidates, incl the microquasar GRO J1655–40
 - One new SGR source
 - Terrestrial Gamma-ray Flashes from thunderstorms
- Determined or refined orbits of >14 X-ray binaries
- Monitored long-term variability of source fluxes, energy spectra, power spectra, pulsar period derivatives, etc.