Supplementary Material for Leadership and Participation in NASA's Astrophysics Explorer-Class Missions

Astro2020 State of the Profession Considerations White Paper

Joan Centrella ${ }^{1,2}$, Michael New 3, and Meagan Thompson ${ }^{3}$

This is supplementary material in support of the Astro2020 State of the Profession Considerations White Paper Leadership and Participation in NASA's Astrophysics Explorer-Class Missions..

[^0]Table S-1. Astrophysics Explorer-class Missions 2008-2016

A0 Category	Year	PI-Managed Mission Cost Cap
SMEX	2008	$\$ 105 \mathrm{M}$, not including Expendable Launch Vehicle (ELV) (FY08 \$)
M0	2008	$\$ 70 \mathrm{M}$ (FY08 \$)
EX	2011	$\$ 200 \mathrm{M}$, not including ELV (FY11 \$)
M0	2011	$\$ 55 \mathrm{M}$ (FY11 \$)
M0	2012	$\$ 60 \mathrm{M} ;$ \$30 M for balloons excluding launch (FY13 \$)
SMEX	2014	$\$ 125 \mathrm{M}$ not including ELV, or \$175M with Pl-provided access to space (FY15 \$)
M0	2014	$\$ 65 \mathrm{M} ; \$ 35 \mathrm{M}$ for suborbital class, including CubeSats (FY15 \$)
MIDEX	2016	$\$ 250 \mathrm{M}$, not including ELV (FY17 \$)
M0	2016	$\$ 70 \mathrm{M} ; \$ 35$ for suborbital class, including CubeSats (FY17 \$)

Table S-2. Submitted Astrophysics Ex/MO proposals 2008-2016, shown with PI gender. This data is displayed in graphical form in Figure 1 in the white paper [1].

Opportunity	Number of Proposals		Total number of Proposals
	F PI	M PI	
2008 M0	1	10	18
2008 SMEX	1	17	15
2011 EX	0	15	11
2011 M0	1	10	9
2012 M0	1	8	7
2014 M0	0	7	13
2014 SMEX	0	13	9
2016 MIDEX	0	9	9
2016 M0	0	9	$\mathbf{1 0 2}$
Grand Total	$\mathbf{4}$	$\mathbf{9 8}$	

Table S-3. Number and gender of Pls for submitted Astrophysics Ex/MO proposals 2008-2016

	Total Pls	Unique Pls
Female	4	3
Male	98	58
Total	$\mathbf{1 0 2}$	$\mathbf{6 1}$

Table S-4. Science team size for Ex/MO proposals

Proposal Type	\#Sci Team Members			
	Min	Max	Median	Mean
M0	6	42	15	17
SMEX	9	45	22	23
MIDEX (includes EX)	11	77	22	26

Table S-5. Submitted and selected proposals in three Astrophysics ROSES elements, shown by PI gender. This data was compiled by D. Evans. Some of this data is displayed graphically in Figure 7 in the white paper [1].

ROSES Element	Submitted Proposals			Selected Proposals		
	Total	$\%$ M PI	$\%$ F PI	Total	$\%$ M PI	$\%$ F PI
ADAP 2013-2015	832	78%	22%	163	79%	21%
APRA 2012-2014	515	91%	9%	140	95%	5%
ATP 2012-2014	586	82%	18%	84	87%	13%
Overall	1933	83%	17%	387	86%	14%

Table S-6. Submitted and selected proposals for the initial RTF program, shown by PI gender. This table was composed by N. Barghouty.

Roman Technology Fellowship	Submitted Phase 1 Proposals			Selected Phase 1 Proposals			Selected Phase 2 Proposals		
	Total \#	\# M Pl	\# F Pl	Total \#	\# M P	\# F PI	Total \#	\# M P	\# F PI
2011	19	17	2	3	3	0	2	2	0
2012	12	10	2	2	2	0	1	1	0
2013	RTF Program not offered								
2014	8	7	1	3	3	0	2	2	0
2015	5	1	4	3	1	2	2	1	1
Total	44	35	9	11	9	2	7	6	1

Table S-7. Submitted and selected proposals for the restructured RTF program, shown by PI gender. This table was composed by N. Barghouty.

Roman Technology Fellowship	APRA Submitted \& RTF Qualified			APRA Selected \& RTF Qualified			RTF Selected		
	Total \#	\# M PI	\# F PI	Total \#	\#M PI	\# F PI	Total \#	\# M PI	\# F PI
2016	11	9	2	3	2	1	2	1	1
2017	7	5	2	3	3	0	3	3	0
Total	18	14	4	6	5	1	5	4	1

Number and Percentage of Proposals by Opportunity and Org Type

Figure S-1. Number and percentage of Astro Ex/MO proposals 2008-2016 by opportunity and organization type. The column shown for each opportunity reaches to the 100% level to encompass all proposals submitted. Within each bar, the percentage of proposals submitted by each organization type is shown in the color-coded segments relative to the y-axis, and the number of proposals from each type is printed within the segments.

Total Distribution of Science Roles

All Ex/MO Proposals 2008-2016

Figure S-2. Total distribution of science roles (with both genders combined) for all Ex/MO proposals 2008-2016. This is a graphical representation of the data shown in the fourth column of Table 1 in the white paper [1]. The total distribution of science roles among female participants and male participants taken separately (data in columns 2 and 3, respectively, in Table 1 in [1]) do not show large scale differences from this plot.

Number and Percentage of Females and Males in Sci Roles

Figure S-3. Overall number and percentage of participants in science roles is shown for Ex/MO opportunities. The column shown for each opportunity reaches to the 100% level to encompass all science participants. Within each bar, the percentage of participants by gender is shown in the color-coded segments relative to the y-axis, and the number of participants by gender is printed in each segment. The total participation by gender (rightmost column) is recapitulated in the pie chart.

Figure S-4. Number and percentage of Astro Ex/MO proposals having zero females in science roles submitted to AOs during 20082016. The column shown for each opportunity reaches to the 100% level to encompass all proposals submitted. Within each bar, the percentage of proposals submitted with either zero females or at least one female in a science role is shown in the color-coded segments relative to the y-axis, and the number of proposals in each of these cases is printed in the segments.

Figure S-5. Number and percentage of Astro Ex/M0 proposals having zero females in science roles. The column shown for each organization type reaches to the 100% level to encompass all proposals submitted. Within each bar, the percentage of proposals submitted with either zero females or at least one female in a science role is shown in the color-coded segments relative to the y-axis, and the number of proposals in each of these cases is printed in the segments.

Overall APRA/SAT Roles 2006-2017 for All Ex/MO Pls

Figure S-6. Bar chart showing all APRA/SAT roles held by the 61 unique Ex/MO Pls during 2006-2017.

References

1 J. Centrella, M. New, and M. Thompson. Leadership and Participation in NASA’s Astrophysics Explorer-Class Missions: Astro2020 State of the Profession Considerations White Paper, July 2019

[^0]: 1 Astrophysics Division, Science Mission Directorate, NASA Headquarters
 2 Astrophysics Science Division, NASA’s Goddard Space Flight Center; contact email: joan.centrella@nasa.gov
 3 Science Mission Directorate, NASA Headquarters

