X-ray Timing in Astrophysics

Paul Ray <<u>Paul.Ray@nrl.navy.mil</u>>

Naval Research Laboratory

Thanks to Mike Nowak, Zaven Arzoumanian, and Tod Strohmayer for useful material!

Time Domain Astronomy

 Astronomy is an observational, not experimental science

 Mostly done by characterizing the electromagnetic field impinging on Earth with a few exceptions (cosmic rays, neutrinos, gravitational waves)

 The EM field can be characterized by intensity a function of: angle, energy (i.e. frequency), polarization, and time.

 Here, we will focus on the time domain, in other words, source variability.

X-ray Timing

• In the X-ray band, detectors are sensitive to *individual* photons, which each carry significant energy (E = hv)

- 1 keV = 1.6x10⁻⁹ erg = 2.24x10¹⁷ Hz = 1.24x10⁻⁷ cm
- Detectors can record the arrival time, energy, and direction of each photon (and perhaps polarization in the future)

2 seconds of raw data from GRS1915+105

Aside on Photon Statistics

 Warning: Because we are counting individual photons, the relevant statistics are *Poisson*, not *Gaussian*.

What Can We Learn From Timing?

- Source variability probes geometry of the emitting region in a way spectra cannot
- Fastest time scales probe the smallest time size scales
 - Accretion dynamics near event horizon of BH or surface of NS, burning fronts propagating around NS, magnetic reconnection bursts on a magnetar
- Coherent pulsations allow extremely precise measurements
 - Orbital period and evolution, accretion torques, rotational glitches

Rotational Periods:

ms - s for NS/WD hr - days for Stars

Orbital Time Scales:

minutes to days for NS/BHC Suber-orbital periods: weeks – months

X-ray Bursts & Superbursts

Accretion Time Scales:

Dynamical, Thermal, & Viscous Time Scales (e.g. QPOs, outburst timescales) ms – days for NS/BHC minutes – years for AGN

Characteristic Time Scales

$\tau \ge R/v, v \le c, R \ge 2GM/c2$

- AGN (10⁸ M_{\odot}) \Rightarrow τ > 1000 s
- Black Hole (10 M $_{\odot}$) \Rightarrow τ > 100 μ s
- Neutron Star (1.4 M $_{\odot}$) $\Rightarrow \tau > 15 \,\mu s$

These are the fastest achievable time scales. In reality, there is variability on a range of time scales.

Software Tools

• HEASoft (FTOOLS)

- Distributed by NASA's HEASARC http://heasarc.gsfc.nasa.gov/docs/software/lheasoft/
- Supports many mission formats (RXTE, Swift, etc...) and generic FITS files
- SITAR <<u>http://space.mit.edu/CXC/analysis/SITAR</u>>
 - Being developed by Mike Nowak
- Or, "roll your own" as many people do
 - O Custom C or FORTRAN code
 - IDL or MATLAB
 - Python + SciPy&Matplotlib

Simplest Tool: A Lightcurve

 Select photons from an energy range of interest and "bin" them into evenly spaced time bins with N_i counts/bin

- Tip: Always choose integer multiple of "natural" time unit for binning
- Don't bin more than you have to save it for subsequent analysis
- O Be careful to normalize by exposure time
- Once you convert from counts/bin to rates or subtract any background or DC component, error is no longer sqrt(N_i)

Length & Binning Determine Limits

• Lowest Frequency: $f_{long} = 1/T$

 ● Highest Frequency: Nyquist Frequency, *f*_{Nyq} = 1/(2∆*t*)

• Basic Question, is the variance: $\sigma^2 = \langle x^2 \rangle - \langle x \rangle^2$ greater than expected from Poisson noise?

σ = Root Mean Square
 Variability

Fourier Transform Methods

 The workhorse of the timing world
 Describes how variability power is distributed as a function of frequency

Fourier Transform Definition

$$X_j \equiv \sum_{k=0}^{N-1} x_k \exp(2\pi i j k/N) \quad , \quad j = [-N/2, \dots, 0, \dots, N/2]$$

 A Fourier Transform decomposes a time series into "sine waves" of different frequencies

- Power Density Spectrum (PDS) is the squared Fourier amplitude, properly normalized
 - Lightcurve with N bins, comprised of counts, x_i, becomes power spectrum, with N/2+1 independent amplitudes
 - Discarding phases throws out information \Rightarrow power spectra are not unique!

 $P_i = 2|X_i|^2/(N_{ph} \times \langle \text{Rate} \rangle)$

 Know Your Normalization!!! Various FFT Routines Have Different Ones! (FTOOLS routine powspec gives you a choice)

• "One-sided" Leahy (mean power = 2): $P_i = 2|X_i|^2/N_{ph}$

• "One-sided" (RMS/mean)²/Hz:

Useful Theorems

• Fourier Transform is a linear transform $ax(t) \Leftrightarrow aX(f)$

• Real-valued data:

$$x_k \in \Re \Rightarrow X_{N-j} = X_j^*$$
 where $j \in [1, N/2 - 1]$

• Parseval's Theorem

$$\sum_{k=0}^{N-1} |x_k|^2 = \frac{1}{N} \sum_{j=0}^{N-1} |X_j|^2$$

Shift

 $x(t-t_0) \Leftrightarrow X(f)e^{2\pi i f t_0}$

FAST Fourier Transforms

 FFT algorithm (Cooley & Tukey 1965) transformed problem from O[N²] to O[N log₂(N)] which greatly increased the usefulness of Fourier techniques

 Current state-of-the art is the FFTW ("Fastest Fourier Transform in the West") library by Frigo & Johnson (MIT)

 Many FFTs require or strongly prefer N=2ⁿ, but FFTW works well with any small prime factors and still works even with N=prime.

 It is highly portable (Linux/Mac/Windows/...) and is close to the fastest possible FFT on every platform with no special effort.

• Get it! <http://www.fftw.org>

Coherent Signals

- Much analysis involves "coherent" signals, i.e. periodic signals whose phase is constant over the relevant duration
 - Or, equivalently, where a time transformation (sometimes called a "timing model") can be determined that makes the signal coherent
- Examples:
 - Pulses from rotating pulsars
 - Orbital modulation or eclipses
 - Precession periods

Epoch Folding

 Bin photons according to phase with respect to a known period P (or a more complicated timing model)

 Significance of variability at that period can be assessed by doing a χ² test against a null hypothesis of constant rate.

Epoch Folding Searches

- Perform epoch folding at a large number of *trial periods*, and look for trials with large χ^2
- Good for non-sinusoidal variations, and when there are data gaps or complicated window functions
- Can be slow to explore a large range of periods

• Requires N_{ph}*N_{per} operations: fmod(t_ph, P)

FFT Searches

• Pros

• MUCH faster than epoch folding searches in many cases

• Searches all possible frequencies simultaneously

• Cons

• Potentially large memory requirements

• Requires harmonic summing for non-sinusoidal signals

Statistics of Power Spectra

 How do you determine the significance of peaks found in power spectra?

• Distribution of P_k is χ^2/MW with 2*MW* D.O.F., where *MW* is the number of power spectra summed

• So, just compute the probability of a false occurrence: $Pr(P_k > thresh)$

- FFT and simple epoch-folding searches require the single be coherent throughout the interval being considered
- O But, this might not be the case because of:
 - Orbital Doppler shifts from a binary system
 - Intrinsic period derivative of the source
 - Satellite or Earth motion that isn't fully compensated for
- Searching still possible with several techniques

Acceleration Searches

- Attempt to transform the time series into a frame where the signal is coherent
- Stretch the time series according to a set of trial accelerations, or matched filter in the Fourier domain
 - Assumes constant acceleration during observation
- Only works when higher order terms can be ignored (e.g. when T_{obs} < P_{orb}/10)

Wood et al. (1991, ApJ, 379, 295); Vaughan et al. (1994, ApJ, 435, 362)

• Ransom, Eikenberry, & Middleditch (2002, AJ, 124, 1788)

Sideband (Phase-Modulation) Search

 When T_{obs} > P_{orb}, the response to the FFT of a sinusoidal signal is analytically calculable as a Bessel function

• Ransom et al. 2003 ApJ, 589, 911

• Perform matched filter in the Fourier domain

 Recovers substantial fraction of fully coherent search sensitivity at a tiny fraction of the computational cost!

Pulsar Timing

- Coherent timing over long time baselines is very powerful and precise since every cycle is accounted for
- Goal: To determine a *timing model* that accounts for all of the observed pulse arrival times (TOAs)
- Parameters that can be determined:
 - Spin (v, v', ... \Rightarrow torques, magnetic fields, ages)
 - Orbital (P_{orb} , T_0 , e, ω , $a_x \sin i$, GR terms)
 - Positional (α , δ , π , proper motion)

Measuring a TOA

Measure phase shift
 between measured TOA
 and a template profile

 Application of the FFT shift theorem (and linearity)

 $\overline{x(t-t_0)} \Leftrightarrow \overline{X(f)} e^{2\pi i f t_0}$

• TOA = $T_{obs} + \Delta t$

Barycentering TOAs

- Arrival times at Earth or spacecraft must be converted to a nearly inertial frame before attempting to fit a simple timing model
- Remove effects of observer velocity and relativistic clock effects
- Output for the solar System Barycenter

Fitting TOAs to a Timing Model

$$\phi(t) = \phi(0) + \nu t + \frac{1}{2}\dot{\nu}t^2 + \frac{1}{6}\ddot{\nu}t^3 + \dots$$

Full model can include spin, astrometric, binary, and other parameters.

 Goal: Find parameter values that minimize the residuals between the data and the model

Tools for Fitting Timing Models

Tempo < <u>http://pulsar.princeton.edu/tempo/</u>

- O Developed by Princeton and ATNF over 30+ years
- Well tested and heavily used
- O Based on TDB time system
- O But, nearly undocumented, archaic FORTRAN code
- Tempo2 < <u>http://www.atnf.csiro.au/research/pulsar/tempo2/</u>
 - O Developed at ATNF recently (still in beta test)
 - Based on TCB time system (coordinate time based on SI second)
 - O Well documented, modern C code, uses long double (128 bit) throughout
 - **O** Easy plug-in architecture to extend capabilities
 - O But, not well tested, still in development

Time Systems

TAI = Atomic time based on the SI second
UT1 = Time based on rotation of the Earth
UTC = TAI + "leap seconds" to stay close to UT1
TT = TAI + 32.184 s
TDB = TT + periodic terms to be uniform at SSB
TCB = Coordinate time at SSB, based on SI second

Aperiodic Variability

- The broadband power spectrum can characterize:
 - Total (excess) variability
 - Power spectral slopes and breaks (special time scales)
 - Quasiperiodic oscillations (QPOs)
 - Random walks in phase or frequency
 - Finite lifetime of processes
 - Amplitude modulation

"Quality factor" $Q = f_0/\Delta f$

Rebinning and Averaging

- Single FFT bin is a terrible estimator of the PSD, because of the huge variance
- Making FFT longer doesn't help; just samples frequencies more finely

• Solutions:

- Average adjacent frequency bins (often done logarithmically)
- Average PSDs of multiple data segments

"Twin" kHz QPOs

"Band-Limited Noise"

PSD Model Fitting

After subtracting Poisson level, you can fit models

$$P'_j = (P_j - P_{\text{noise}}) \pm P_j / \sqrt{N_{\text{avg}}}$$

 Popular choice currently is a sum of Lorentzians

 See Belloni, Psaltis, & van der Klis (2002, ApJ, 572, 392)

$$L(x) = \frac{1}{2\pi \left((x - x_0)^2 + \frac{\Gamma^2}{4} \right)}$$

Dead Time Effects

- Detector "Deadtime" is when the detector can't detect events, either:
 - For a period of time after an event
 - Paralyzable (event during deadtime extends deadtime)
 - Non-paralyzable (events during deadtime have no effect)
 - Or, for a detector reason, such as readout intervals
- Deadtime modifies the power spectrum of Poisson noise from the expected P_{Leahy} = 2 (usually to something < 2)
 - See: Zhang et al. (1995, ApJ, 449, 930); Morgan et al. (1997, ApJ, 482, 993), Nowak et al.(1999, ApJ, 510, 874)

Advanced Topic: Unevenly Sampled Data

- Lomb Periodigram
- Bayesian Methods
- Wavelets

Review/Tips

- Coherent pulsation (e.g. pulsar) best done with no rebinning
- Pulsar timing is a powerful and precise tool
- QPO searches need to be done with *multiple* rebinning scales
- Beware of spurious signals introduced by:
 - Instrument (read times, clock periods, ...)
 - Dead time
 - Spacecraft orbit (background rate variations)
 - O Diurnal/Annual effects

Proposal Estimates

• Detecting broad band noise (or QPO) at the n_{σ} confidence level

 For broad band timing, you win more with rate than time

$$\mathrm{RMS}_{\mathrm{limit}}^2 \approx 2n_\sigma \sqrt{\Delta f} / \sqrt{\mathrm{Rate}^2 \times T_{\mathrm{total}}}$$

Detecting coherent pulsations

 $f_p^{\text{limit}} = 4n_\sigma / (\text{Rate} \times \text{Time})$

References for Further Reading

 van der Klis, M. 1989, "Fourier Techinques in X-ray Timing", in *Timing Neutron Stars*, NATO ASI 282, eds. Ögelman & van den Heuvel, Kluwer
 Superb overview of spectral techniques!

- Press et al., "Numerical Recipes"
 Clear, brief discussions of many numerical topics
- Leahy et al. 1983, ApJ, 266, p. 160
 FFT & PSD Statistics
- Leahy et al. 1983, ApJ, 272, p. 256
 Epoch Folding
- Davies 1990, MNRAS, 244, p. 93
 Epoch Folding Statistics
- Vaughan et al. 1994, ApJ, 435, p. 362
 Noise Statistics
- Nowak et al. 1999, ApJ, 510, 874
 Timing tutorial + coherence techniques

Get a computer with HEASoft installed
 Linux/Mac/Sun/OSF etc... (Windows only under Cygwin)
 Measure the pulsations from Sco X-1
 Find the 0.1 Hz QPO in XTE J1118+480