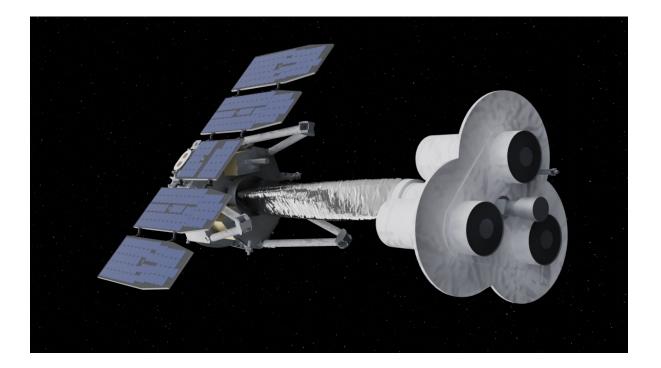


Introduction to the IXPE On-line Proposal Tools

Douglas Swartz USRA/MSFC


The goal of this presentation is to help the User Community assess <u>Technical Feasibility</u> of potential IXPE observations using basic online tools for the purpose of responding to the IXPE Cycle 1 Call for Proposals

IXPE essential features:

- Three, nearly identical, co-aligned telescopes
 3 sets of spectro-polarmetric data
 2-8 keV polarization sensitivity
 D=10' effective FOV, 30'' HPD
- LEO at almost 0⁰ inclination, fixed solar panels oriented +/- 25⁰ of the Sun, (+dither) point & stare for large portion of orbit (longer towards the ecliptic poles), ~50 day visibility (x2/year)
- Photon counting —> E, t, x, y, Stokes I,Q,U spectral, timing, imaging, and polarization
- All IXPE baseline mission data are publicly-available as calibrated "Level 2" FITS event files

Artist's impression of IXPE showing 3 co-aligned mirror assemblies (right). The 3 detector units and S/C hardware and all electronics are hidden behind the 5 solar panels (left).

HEASARC's Viewing Tool

Viewing Results

Input equatorial coordinates: mrk 501, resolved by SIMBAD (local cache) to [253.4676°, 39.7602°], equinox J2000.0

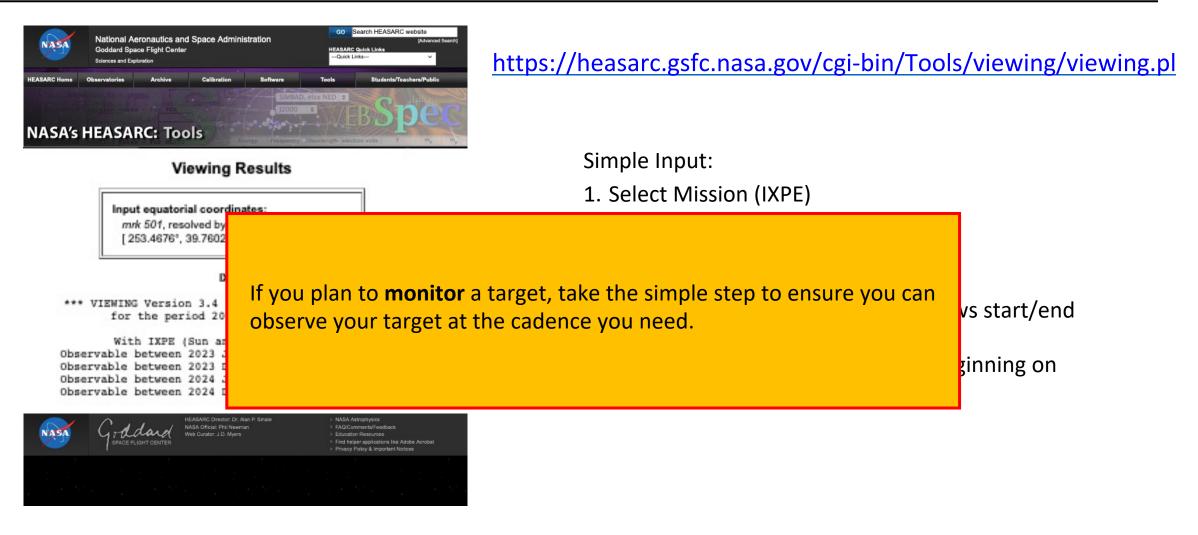
IXPE

*** VIEWING Version 3.4 run on 2023 May 24 *** for the period 2023 May 24 to 2025 May 24

Wit	th IXPE	(Sun	angle	e range	=	65-115)):		
Observable	between	2023	Jun	21		and	2023	Oct	29
Observable	between	2023	Dec	22		and	2024	Apr	25
Observable	between	2024	Jun	20		and	2024	Oct	28
Observable	between	2024	Dec	21		and	2025	Apr	25
								-	

https://heasarc.gsfc.nasa.gov/cgi-bin/Tools/viewing/viewing.pl

Simple Input:


- 1. Select Mission (IXPE)
- 2. Select Object Name or Coordinates

Output:

- 1. Returns list of all observable windows start/end dates (year, month, day)
- 2. Returns results for 1 year period beginning on day of query

HEASARC's Viewing Tool

As-Run Target List

https://ixpe.msfc.nasa.gov/for_scientists/asrun.html

Stop Time OBSID Start Time Name 01001301 2022-01-11T11:23 2022-01-29T12:39 Cas A 01006501 2022-01-29T12:39 2022-01-31T06:58 Cen X-3 01003299 2022-01-31T07:23 2022-02-27T19:14 4U 0142+61 01004301 2022-02-15T00:13 2022-02-17T13:52 Cen A 01001899 2022-02-17T13:52 2022-02-24T19:36 Her X-1 01001099 2022-02-21T16:12 2022-03-08T02:38 Crab 01003499 2022-02-27T19:14 2022-03-24T01:51 Sgr A complex 01004501 2022-03-08T02:38 2022-03-10T08:19 Mrk 501 01002701 2022-03-24T01:51 2022-03-27T05:39 4U 1626-67 01004601 2022-03-27T05:39 2022-03-29T07:14 Mrk 501 01002801 2022-03-29T07:14 2022-03-31T09:20 GS 1826-238 01005301 2022-03-31T09:20 2022-04-05T19:50 S5 0716+714 01001299 2022-04-05T19:50 2022-04-30T10:33 Vela Pulsar

https://ixpe.msfc.nasa.gov/for_scientists/ltp.html

Long-Term Plan

S	Name	RA	Dec	Start	buffer
1	RX J1713.7-3	257.967	-39.579	2023-08-25T12	522.2
1	Sco X-1	244.979	-15.640	2023-08-28T12	3076.9
2	RX J1713.7-3	257.967	-39.579	2023-08-29T00	1759.8
1	Sgr A cloud	266.570	-28.890	2023-09-03T00	435.4
0	Swift J1727.	261.931	-16.205	2023-09-07T18	3464.2
2	Sgr A cloud	266.570	-28.890	2023-09-08T06	1160.9
0	Swift J1727.	261.931	-16.205	2023-09-16T12	3140.6
3	RX J1713.7-3	257.967	-39.579	2023-09-17T00	137.7
0	Swift J1727.	261.931	-16.205	2023-09-28T00	1592.8
3	Sgr A cloud	266.570	-28.890	2023-09-28T12	498.8
0	Swift J1727.	261.931	-16.205	2023-10-02T06	1429.4
	~ · · · ·	000 570		0000 10 00T10	

IXPE Baseline Mission

As-Run Targe			
https://ixpe.msfc.nasa.gov/forOBSIDStart TimeStop T010013012022-01-11T11:232022-0010065012022-01-29T12:392022-0010032992022-01-31T07:232022-0010043012022-02-15T00:132022-0010018992022-02-21T16:122022-0010010992022-02-27T19:142022-0010045012022-03-08T02:382022-0010027012022-03-24T01:512022-0010046012022-03-27T05:392022-0010028012022-03-29T07:142022-0010053012022-03-31T09:202022-0010012992022-04-05T19:502022-0	 Purpose of target lists is two-fold: Ensure your favorite source hasn't already been observed Find a source similar to yours and see what was observed See also: HEASARC's IXPE Master List https://heasarc.gsfc.nasa.gov/db-perl/W3Browse/w3table.pl?tablehead=name=ixmaster&Action=More +Options HEASARC's IXPE-related publications list https://heasarc.gsfc.nasa.gov/docs/heasarc/biblio/pubs/ixpe.html 	s/ltp. 5T12 8T12 9T00 3T00 7T18 8T06 6T12 7T00 8T00 8T12	html buffer 522.2 3076.9 1759.8 435.4 3464.2 1160.9 3140.6 137.7 1592.8 498.8 1429.4
		2T06	1423.4

Convert From:		Into:	
Flux	0	IXPE	
8	Examples of Common FLUX Input/Output Ranges	٢	
In such En annu D		okeV	Unite
Input Energy R	ange (low-high): 2-8	 Angstroms 	Units
		💿 keV	Unite
Output Energy	Range (low-high): 2-8	Angstroms	Units

(erg/cm²/s) (counts/s)	2.1e-11	Rate:	ount R	lux / C	ce Fl	Sourc
Intrinsic nH	Redshift	F	nH	lactic r	Gal	
(cm ⁻²)	one	no	n ⁻²)	(cm		2e21

Model of Source:	Model Parameters				
Power Law	Photon Index: 2.05				
Black Body	keV:				
OTherm. Bremss.	kT:				
APEC	1.0 Solar Abundance ᅌ 🛛 LogT keV 🛛 ᅌ				

https://ixpe.msfc.nasa.gov/cgi-aft/w3pimms/w3pimms.pl

Recommend reading the introduction to PIMMS on the MSFC IXPE site

Standard PIMMS interface for selecting:

- Convert From/To (e.g., Flux to IXPE count rate)
- Input (required for Flux) and Output Energy Range
- Source Model parameters (Power Law, Blackbody, etc.)
 - + (Only single-component models are available)
- Estimate Count Rate

Example output for a 1 mCrab source (results are for 3 telescopes combined):

PIMMS predicts 1.813E-01 cps with IXPE (2.000- 8.000keV) The above is the total count rate. The effective count rate for polarization is 0.1524and the modulated count rate is 0.0474for a modulation factor of 0.3108Now estimating 99% confindence level minimum detectable polarization (MDP_99) as a function of exposure time In 10000.0 s, MDP_99 = 35.38%In 100000.0 s, MDP_99 = 11.19%MDP_99 scales as the inverse of the square root of the integration time.

https://ixpe.msfc.nasa.gov/cgi-aft/w3pimms/w3pimms.pl

Converting from Flux to IXPE count rate returns total, effective, and modulated count rates.

Also returns modulation factor and MDP_99, the 99% confidence level minimum detectable polarization, for a 10,000 s and for a 100,000 s exposure (or, the exposure time needed to reach a given MDP_99).

- MDP_99 scales as 1/sqrt(Exposure Time)
- Should use 2-8 keV energy range for MDP_99 sensitivity
- ✦ Should use 0.5-10 keV for total count rate estimate

$$\mathrm{MDP}_{99} = \frac{4.29}{\langle \mu \rangle C_S} \left[\frac{C_S + C_B}{T} \right]^{1/2} \approx \frac{4.29}{\langle \mu \rangle \sqrt{N}}$$

Example output for a 1 mCrab source (results are for 3 telescopes combined):

PIMMS predicts 1.813E-01 cps with IXPE (2.000-8.000keV) The above is the total count rate. The effective count rate for polarization is 0.1524and the modulated count rate is 0.0474for a modulation factor of 0.3108Now estimating 99% confindence level minimum detectable polarization (MDP_99) as a function of exposure time In 10000.0 s, MDP_99 = 35.38%In 100000.0 s, MDP_99 = 11.19%MDP_99 scales as the inverse of the square root of the integration time. Note that the Effective count rate and the Modulated count rate are related to the count-weighted modulation factor over the output energy range:

$$\langle \mu \rangle = C_M / C_E.$$

WebPIMMS does not account for:

- Background
- Spatial Extent
- Spectral Energy Broadening
- Source variability
- Multi-component Spectra

Example 1: Bright point source with negligible background Gamma=2.05, $N_{H}=2x10^{21}$ cm⁻², $F_{2-8}=2.1x10^{-11}$ erg/s/cm² On the 2-8 keV range (input and output)

PIMMS predicts 1.813E-01 cps with IXPE (2.000-8.000keV) The above is the total count rate. The effective count rate for polarization is 0.1524 and the modulated count rate is 0.0474 for a modulation factor of 0.3108 Now estimating 99% confindence level minimum detectable polarization (MDP_99) as a function of exposure time In 10000.0 s, MDP_99 = 35.38% In 100000.0 s, MDP_99 = 11.19% MDP_99 scales as the inverse of the square root of the integration time.

This is the simplest and most common case. The reported MDP_99 can be used straight away. To get a better estimate of the total count rate, change the output energy range to 0.5-10 keV.

Example 1: Bright point source with negligible background Gamma=2.05, $N_{H}=2x10^{21}$ cm⁻², $F_{2-8}=2.1x10^{-11}$ erg/s/cm² on the 2-8 keV range (input and output)

PIMMS predicts 1.813E-01 cps with IXPE (2.000-8.000keV) The above is the total count rate. The effective count rate for polarization is 0.1524 and the modulated count rate is 0.0474 for a modulation factor of 0.3108 Now estimating 99% confindence level minimum detectable polarization (MDP_99) as a function of exposure time It takes 1390952.9s to achieve an MDP_99 of 3.00%

This is the output when PIMMS is given an input MDP_99 (here, 3%). If you predict your source will deliver somewhat more than 3% polarization degree, then you should propose for at least this 1.4 Ms exposure time.

Example 2: Extended source with measurable background (same absorbed power law model as example 1)

PIMMS predicts 1.813E-01 cps with IXPE (2.000-8.000keV) The above is the total count rate. The effective count rate for polarization is 0.1524and the modulated count rate is 0.0474for a modulation factor of 0.3108Now estimating 99% confindence level minimum detectable polarization (MDP_99) as a function of exposure time In 10000.0 s, MDP_99 = 35.38%In 100000.0 s, MDP_99 = 11.19%MDP_99 scales as the inverse of the square root of the integration time. Perform the following steps:

- Estimate area of region of interest, A (limited to w/in an ~5' radius)
- 2. Estimate 2-8 keV flux in ROI and select a spectral model
- 3. Use PIMMS to determine source Effective count rate and modulation factor (ignore MDP_99 values)
- Estimate background rate^{*} in ROI: (A)(0.0012 cts/s/ arcmin² (following <u>Di Marco et al. 2023</u>)
- 5. Compute MDP_99 from:

$$\mathrm{MDP}_{99} = \frac{4.29}{\langle \mu \rangle C_S} \left[\frac{C_S + C_B}{T} \right]^{1/2}$$

^{*}Background spectrum is approximately flat so, for other energy ranges, scale background rate linearly by band width

Example 3: Two-component point source; one component polarized

Polarized absorbed power law (see example 1)

PIMMS predicts 1.813E-01 cps with IXPE (2.000-8.000keV) The above is the total count rate. The effective count rate for polarization is 0.1524 and the modulated count rate is 0.0474 for a modulation factor of 0.3108

Unpolarized 0.61 keV APEC, solar Z, N_H= $2x10^{21}$ cm⁻², F₂₋₈= $2.1x10^{-11}$ erg/s/cm²

PIMMS predicts 3.900E-01 cps with IXPE (2.000-8.000keV) The above is the total count rate. Perform the following steps:

- 1. Estimate 2-8 keV flux and a spectral model for both components
- Use PIMMS to determine source Effective count rate and modulation factor (ignore MDP_99 values) for the polarized component
- 3. Use PIMMS to determine Total count rate in unpolarized component
- 4. Treat unpolarized component as a background and compute MDP_99 as before from:

$$\mathrm{MDP}_{99} = \frac{4.29}{\langle \mu \rangle C_S} \left[\frac{C_S + C_B}{T} \right]^{1/2}$$