Joint NICER/IXPE Workshop 2024

Discovery of Relativistic Disc-wind in X-ray Binaries for the 1st time: Wind-regulated accretion in 4U 1543-47

Geethu Prabhakar

Indian Institute of Space Science and Technology (IIST), Trivandrum

29 July 2024

2

Introduction

Comprehensive study using NICER

Wideband Spectral Analysis

Investigation of absorption feature

Summary & Conclusion

- Discovered by Uhuru satellite on 1971
- Subsequent outbursts : 1984, 1992, 2002, 2021
- RA = 15h 47m 8.27s, DEC = −47°40′10.8" (J2000)
- The **brightest XRB** source ever discovered :

11.6 Crab in 2−4 keV (2021 outburst)

- Distance : $D = 7.5 \pm 0.5$ kpc (Jonker & Nelemans 2004)
- Mass of the black hole : M = 9.4 ± 1 M_o (Russell et al. 2006)
- Low orbital inclination

Lightcurve and Hardness ratio

Extremely luminous in low energies

(Prabhakar et al. 2023)

Lightcurve and Hardness ratio

Extremely luminous in low energies

5

Lightcurve and Hardness ratio

Extremely luminous in low energies

There is no comprehensive study in literature based on 2021 outburst of 4U 1543−47.

We noticed extreamly strong and dynamic absorption features in the 2021 outburst spectra: has not been observed in XRBs.

Find out the origin of this unique absorption feature and understand its role in accretion.

Comprehensive Study of the Outburst

- Hardness Intensity Diagram -

NICER

Wideband Spectral Analysis

Phenomenological Modelling

- For Comptonized spectrum: **thcomp**
- For strong absorption feature : *gabs*
- For weak Fe Kα absorption edge : *edge*

Phenomenological modelling

- Evolution of Parameters -

Phenomenological modelling - Evolution of Parameters -

T_{in} decreases throughout the outburst decay.

Γ : increases till ~day 60, then decreases.

 f_c : decreases till \sim day 60 then increases - behaviour is consistent with the spectral softening trend. Only a tiny fraction (< 3 %) of the soft photons Comptonized in the corona.

Strength : increases till ~day 60: dynamic

Optical depth associated with *gabs,*

 τ_{o} = strength /σ √2π

Phenomenological modelling - Evolution of Parameters -

T_{in} decreases throughout the outburst decay.

Γ : increases till ~day 60, then decreases.

 f_c : decreases till \sim day 60 then increases - behaviour is consistent with the spectral softening trend. Only a tiny fraction (< 3 %) of the soft photons Comptonized in the corona.

Strength : increases till ~day 60: dynamic

Optical depth associated with *gabs,*

 τ_{o} = strength /σ √2π

Luminosity exceeds L_{Edd} for the peak, then declines

Wideband Spectral Analysis

Reflection Modelling (RELXILL)

- **relxilllp**: powerlaw photons from corona with a highenergy cutoff illuminate the disk and reflected
- For strong absorption feature : **gabs**

tbabs(diskbb+relxilllp)gabs Model M2

Reflection modelling

- Evolution of Parameters -

 T_{in} and Γ - silimlar trend of evolution as in M1

Inclination θ \sim 32°-40°

High value of $log \xi$ (>3) : a highly ionized disc material throughout the outburst

Overabundance ($3.6 - 10$ AFe, \odot) of iron in the disk.

Rf : The fraction of primary photons reaching the disk increases till ~day 60, then decreases afterwards.

gabs strength estimated from both methods follow the same trend

Reflection modelling

- Evolution of Parameters -

 T_{in} and Γ - silimlar trend of evolution as in M1

Inclination θ \sim 32°-40°

High value of $log \xi$ (>3) : a highly ionized disc material throughout the outburst

Overabundance ($3.6 - 10$ AFe, \odot) of iron in the disk.

Rf : The fraction of primary photons reaching the disk increases till ~day 60, then decreases afterwards.

gabs strength estimated from both methods follow the same trend

Investigation of the Absorption feature

..can be due to

- Obscuring cloud in the line-of-sight
- Occultation due to companion star
- Stellar wind from companion
- Strong accretion disk-wind

..can be due to

- Obscuring cloud in the line-of-sight
- Occultation due to companion star
- Stellar wind from companion
- Strong accretion disk-wind

..can be due to

- Obscuring cloud in the line-of-sight
- Occultation due to companion star
- Stellar wind from companion
- Strong accretion disk-wind

Absorption features in the Spectra of 4U 1543−47

Used partial covering fraction model *(pcfabs)*

..can be due to

- Obscuring cloud in the line-of-sight
- Occultation due to companion star
- Stellar wind from companion
- Strong accretion disk-wind

Used partial covering fraction model *(pcfabs)*

No improvement in the fitting

..can be due to

- Obscuring cloud in the line-of-sight
- Occultation due to companion star
- Stellar wind from companion
- Strong accretion disk-wind

Used partial covering fraction model *(pcfabs)*

No improvement in the fitting

 $\boldsymbol{\mathsf{x}}$

..can be due to

- Occultation due to companion star
- Stellar wind from companion
- Strong accretion disk-wind

Used partial covering fraction model *(pcfabs)*

No improvement in the fitting

 $\boldsymbol{\mathsf{x}}$

..can be due to

- Occultation due to companion star
- Stellar wind from companion
- Strong accretion disk-wind

Used partial covering fraction model *(pcfabs)*

No improvement in the fitting

Checking for orbital variations

Orbital variations ?

- All NuSTAR epoch data fitted using M1 and M2
- Estimated *gabs-strength* (S_i)

Si

S p

- Extracted spectrum from different patches of GTIs
- Simultaneous joint fit of all GTI-patches under each epoch using M1
- Estimated *gabs-strength* (S_p)
- **Binary orbital period 26.79 h**
- **The orbital position of each patch is identified based on the start time of Epoch -1**
- **Plotted S^p -Sⁱ against orbital phase**
- **Residual varies within ±0.5 keV**

Residual strength $(\mathsf{S}_\mathsf{p}$ - $\mathsf{S}_\mathsf{i})$ is measured for each patches inside an epoch

- **Binary orbital period 26.79 h**
- **The orbital position of each patch is identified based on the start time of Epoch -1**
- **Plotted S^p -Sⁱ against orbital phase**
- **Residual varies within ±0.5 keV**

Residual strength $(\mathsf{S}_\mathsf{p}$ - $\mathsf{S}_\mathsf{i})$ is measured for each patches inside an epoch

- **Binary orbital period 26.79 h**
- **The orbital position of each patch is identified based on the start time of Epoch -1**
- **Plotted S^p -Sⁱ against orbital phase**
- **Residual varies within ±0.5 keV**

Orbital position of BH and companion is not responsible for the dynamic nature of the absorption features

Si

S^p

Residual strength $(\mathsf{S}_\mathsf{p}$ - $\mathsf{S}_\mathsf{i})$ is measured for each patches inside an epoch

..can be due to

- Obscuring cloud in the line-of-sight \boldsymbol{x}
- Occultation due to companion star \bm{x}
- Stellar wind from companion
- Strong accretion disk-wind

..can be due to

- Obscuring cloud in the line-of-sight \boldsymbol{x}
- Occultation due to companion star \bm{x}
- Stellar wind from companion
- Strong accretion disk-wind

..can be due to

stellar wind from companion

- Obscuring cloud in the line-of-sight \boldsymbol{x}
- Occultation due to companion star \bm{x}
- Stellar wind from companion
- Strong accretion disk-wind

..can be due to

- **Obscuring cloud in the line-of-sight** \boldsymbol{x}
- Occultation due to companion star \bm{x}
- Stellar wind from companion
- Strong accretion disk-wind

16

stellar wind from companion

 $2.45 M_{\odot}$ 2.84 R**[⊙]**

..can be due to

stellar wind from companion

 $2.45 M_{\odot}$ 2.84 R**[⊙]**

- Obscuring cloud in the line-of-sight \boldsymbol{x}
- Occultation due to companion star \bm{x}
- Stellar wind from companion
- Strong accretion disk-wind

Escape velocity of the stellar material : 573 km/s

..can be due to

stellar wind from companion

 $2.45 M_{\odot}$ 2.84 R**[⊙]**

- Obscuring cloud in the line-of-sight \boldsymbol{x}
- Occultation due to companion star \bm{x}
- Stellar wind from companion
- Strong accretion disk-wind

Escape velocity of the stellar material : 573 km/s

..can be due to

stellar wind from companion

 $2.45 M_o$ 2.84 R**[⊙]**

- Obscuring cloud in the line-of-sight \boldsymbol{x}
- Occultation due to companion star \bm{x}
- Stellar wind from companion
- Strong accretion disk-wind

Escape velocity of the stellar material : 573 km/s

Stellar wind column density and ionization should decrease with X-ray luminosity, therefore absorption strength also

..can be due to

stellar wind from companion

 $2.45 M_o$ 2.84 R**[⊙]**

- Obscuring cloud in the line-of-sight \boldsymbol{x}
- Occultation due to companion star \bm{x}

 \bm{x}

- Stellar wind from companion
- Strong accretion disk-wind

Escape velocity of the stellar material : 573 km/s

Stellar wind column density and ionization should decrease with X-ray luminosity, therefore absorption strength also

..can be due to

- Obscuring cloud in the line-of-sight \boldsymbol{x}
- Occultation due to companion star \bm{x}

 \bm{x}

- Stellar wind from companion
- Strong accretion disk-wind

Accretion disk-wind

Super Eddington peak luminosity of the source can launch strong disk-wind

- Disk-wind is more prominent in the soft state of XRB
- **If the disk-ionized winds are responsible for the absorption features,**

expect maximum strength for the features when the source is softer : ∼ day 60

..can be due to

- Obscuring cloud in the line-of-sight \boldsymbol{x}
- Occultation due to companion star $\boldsymbol{\times}$. \bm{x}
- Stellar wind from companion
- Strong accretion disk-wind

Accretion disk-wind

Super Eddington peak luminosity of the source can launch strong disk-wind

- Disk-wind is more prominent in the soft state of XRB
- **If the disk-ionized winds are responsible for the absorption features,**

expect maximum strength for the features when the source is softer : ∼ day 60

..can be due to

- Obscuring cloud in the line-of-sight \boldsymbol{x}
- Occultation due to companion star \bm{x}

 \bm{x}

- Stellar wind from companion
- Strong accretion disk-wind

Accretion disk-wind

Super Eddington peak luminosity of the source can launch strong disk-wind

- **Disk-wind is more prominent in the soft state of XRB**
- **If the disk-ionized winds are responsible for the absorption features,**

expect maximum strength for the features when the source is softer : ∼ day 60

> Strength of absorption & optical depth are maximum on \sim day 60

..can be due to

- Obscuring cloud in the line-of-sight \boldsymbol{x}
- Occultation due to companion star \bm{x}

 \bm{x}

- Stellar wind from companion
- Strong accretion disk-wind

Accretion disk-wind

Super Eddington peak luminosity of the source can launch strong disk-wind

- **Disk-wind is more prominent in the soft state of XRB**
- **If the disk-ionized winds are responsible for the absorption features,**

expect maximum strength for the features when the source is softer : ∼ day 60

> Strength of absorption & optical depth are maximum on \sim day 60

- Transition energy of the most ionized line with the highest absorption yield (Fe XXV and Fe XXVI) : 6.68 and 6.97 keV
- Assuming the feature is produced by absorption of the accretion disk photons by highly ionized blue shifted diskwind,

Estimated wind speed

Broad feature can be produced by combining multiple lines of various ionization states of iron.

- Transition energy of the most ionized line with the highest absorption yield (Fe XXV and Fe XXVI) : 6.68 and 6.97 keV
- Assuming the feature is produced by absorption of the accretion disk photons by highly ionized blue shifted diskwind,

Estimated wind speed

Broad feature can be produced by combining multiple lines of various ionization states of iron.

- Transition energy of the most ionized line with the highest absorption yield (Fe XXV and Fe XXVI) : 6.68 and 6.97 keV
- Assuming the feature is produced by absorption of the accretion disk photons by highly ionized blue shifted diskwind,

Estimated wind speed

Broad feature can be produced by combining multiple lines of various ionization states of iron.

1 st relativistic disk-wind in XRBs!

Phenomenological modelling shows the presence of the neutral Fe Kα absorption (edge) at ∼ 7.1 − 7.4 keV (from outer disk)

- Once the luminosity reduces, there is a sudden infall of matter onto the BH, leading to an evacuation of the inner disk.
- Sudden drop of ionized EW (BC) can be due to the evacuation of the inner disk.

If evacuation happens \longrightarrow drop of soft photon flux

Expect relatively harder spectrum

Observed drop (14%) in soft flux (0.5-7 keV)

- Inner accretion disk recovers over the next 10 days (CD) due to transfer of matter from the outer disk
- Neutral component (or the outer disk) follows the same trend as the ionized component with a delay of the viscous timescale

If evacuation happens \longrightarrow drop of soft photon flux

Expect relatively harder spectrum

Observed drop (14%) in soft flux (0.5-7 keV)

- Inner accretion disk recovers over the next 10 days (CD) due to transfer of matter from the outer disk
- Neutral component (or the outer disk) follows the same trend as the ionized component with a delay of the viscous timescale

 $\begin{array}{|c|c|c|c|}\n\hline\n\text{(a)} & \text{radual} \\
\hline\n\end{array}$

If evacuation happens \longrightarrow drop of soft photon flux

Expect relatively harder spectrum

Observed drop (14%) in soft flux (0.5-7 keV)

- Inner accretion disk recovers over the next 10 days (CD) due to transfer of matter from the outer disk
- Neutral component (or the outer disk) follows the same trend as the ionized component with a delay of the viscous timescale

Summary & Conclusion

- **Exhibit super Eddington peak luminosity on Epoch 1.**
- Source is in HSS through out, with a steep Γ due to a very small fraction (< 3%) of inverse-Comptonized photons and low corona temperature.
- Inclination of the system ~32° −40°
- Extreme luminosity, high ionization (log $\xi > 3$) and overabundance of iron.
- HID : correlated evolution of flux and HR (thermal disc origin)
- A broad, dynamic absorption feature at ~ 8 − 11 keV : 1st time in XRBs. We propose that this feature is due to the absorption of the accretion disk photons by the highly ionized, blue shifted disk-wind.
- Estimated wind speed of nearly 30% of speed of light
- The evolution of EW of the neutral absorption component (edge) and the ionized component (gabs), follow each other with a delay of the typical viscous timescale of 10 − 15 days. The evacuation of the inner accretion disk - a drop in the soft photon flux and an enhancement of hard flux.

THANKS **!**

Data reduction

Swift/XRT

- Used *xrtpipeline*
- Source spectra : Circular region, R= 30 pixel (for pile up data annular region of outer

circle 30 pixel and varying inner radius)

- Background : Annular region of 70-130 pixel radius
- Response file and ancillary response files are created
- Grouping : 20 photons per bin

NuSTAR

- Used *nupipeline*
- Source spectra: Circular region of 30 (35) pixel radius
- Background spectra: Circular region of 30 (35) pixel radius
- *NUPRODUCTS* task is used to generate science products such as light curves, energy spectra, response matrix files (RMFs) and auxiliary response files (ARFs) for both telescopes FPMA and FPMB.
- Grouping : 30 (50) photons per bin

Data reduction

NICER

- Used *nicerl2* task
- Applied barycenter corrections
- RMFs and ARFs are generated
- Background : generated using *nibackgen*
- Grouping : 25 photons per bin
- Systematics: 1.5 % (1%)

AstroSat

- Pile-up: annular extraction with Rin= 3 (2) arcmin and Rout=16 (15) arcmin.
- SXT: Sourc spectra, background and RMF files generated.
- ARF file generated using '*sxtARFModule*'.
- Grouping : 30 photons per bin
- LAXPC *LaxpcSoftv3.4*, source spectrum, background and spectral response generated.
- Systematics of 2% for SXT & LAXPC

Table 4.2: Wideband NICER-NuSTAR simultaneous pairs and AstroSat observations (highlighted in grey colour) using the model M1: tbabs (thcomp×diskbb) edge×gabs and tbabs (thcomp×diskbb) gabs respectively. The error values represent 90% confidence interval. The NuSTAR data on Epoch 8, 11 & 12 are not included here as no simultaneous NICER observations are available. The bolometric $(0.5 - 100 \text{ keV})$ observed flux and estimated luminosity for each epoch is also shown.

* edge is used for *NICER-NuSTAR* pairs whereas gauss component is used only for Epoch 3 & 6 of *AstroSat* data.
 f Frozen parameters **40** 1543-47

Table 4.3: Reflection modelling of NICER-NuSTAR simultaneous pairs and AstroSat observations (highlighted with grey colour) using the model tbabs(diskbb+relxilllp)gabs. The error values represent 90% confidence interval. The NuSTAR data on Epoch 8, 11 & 12 are not included here as no simultaneous $NICER$ observations are available.

 a Parameter uncertainty can't be estimated.

 b Parameter hits the boundary.</sup>

 f Frozen parameters.

Table 5.1: Parameters of phenomenological spectral modelling of NuSTAR using the model tbabs (thcomp×diskbb)edge×gabs (M1). Errors are in 90% confidence intervals.

 a Parameter uncertainty can't be estimated.

Table 5.2: Parameters of the reflection modelling of NuSTAR using the model tbabs (diskbb+relxilllp) gabs (M2). Errors are in 90% confidence intervals.

^a Parameter uncertainty can't be estimated.

 b Parameter hits the boundary.</sup>