

Introduction to ixpeobssim for data analysis

> Mason Ng (MIT) <u>masonng@mit.edu</u> Joint NICER/IXPE Workshop 2024

Joint NICER + IXPE Capabilities

- IXPE (polarization)
 - 2-8 keV
 - Provides two new observables (Stokes Q, U -> polarization degree and polarization angle)
 - Measures geometry (e.g., accretion geometry, magnetic field structure)
- NICER (timing, spectroscopy)
 - 0.3-12 keV ("anchors" the spectrum on either side of IXPE)
 - Much larger effective area
 - Scheduling agility
- Other (X-ray) missions:
 - NuSTAR, XMM-Newton, AstroSat, Insight-HXMT

- See formalism in Kislat+ 15 (APh, 68, 45K) and Baldini+ 22 (SoftX, 1901194B)
- For each event k, photoelectron direction ψ_k ,

•
$$i_k = 1$$
, $q_k = \cos(2\psi_k)$, $u_k = \sin(2\psi_k)$

- NOTE: Stokes parameters are divided by μ on an event-by-event basis
- $I = \sum_{k=1}^{N} i_k = N$, $Q = \sum_{k=1}^{N} q_k$, $U = \sum_{k=1}^{N} u_k$ (a) Q (c) U (e) V (f) V (f)

Typical Workflow (Data)

- Download the data you need (HEASARC)
 - Level 2 event files (e.g., ixpe01002701_det1_evt2_v04.fits)
 - From housekeeping: orbit file (e.g., ixpe01002701_all_orb_v01.fits), possibly
 - From auxiliary: usually none
 - Possibly: level 1 event files for background rejection
- Inspect the level 2 event files with SAOImage DS9
 - Typically ~60-90" source extraction regions (use *xpselect* to filter, with the --regfile flag)
 - Background rejection + subtraction considerations (see 3pm talk by Alessandro Di Marco; <u>Di</u> <u>Marco+ 23, ApJ, 165, 143</u>)
 - Background region: annulus with inner radius 150" and outer radius 300"
 - See https://github.com/aledimarco/IXPE-background
 - Calculate the total count rate (c/s/arcmin²)
 - If bright (rate > 2 c/s/arcmin²): no background subtraction or rejection
 - If faint (rate < 1 c/s/arcmin²): apply background rejection and background subtraction
 - If intermediate: background rejection is recommended, background subtraction not recommended
 - Output from xpselect: ixpe01002701_det1_evt2_v04_select.fits -> ixpe01002701_du1_src.fits

• Provides binned data information

• Example command:

- xpbin ixpe01002701_du?_src.fits --suffix all --algorithm PCUBE --irfname ixpe:obssim20211209_alpha075:v13
 --weights True --ebinalg LIST --ebins 1 --ebinning [2,8]
- Input event files note the "?" wildcard
- Suffix for output files for custom naming (I use "all" to mean all events)
- PCUBE = "Polarization Cube"
- Response files (important!) latest is v13, see Niccolo's presentation
- Specifying energy bins

• • •		X	fv: Binary Table	of ixpe020068	301_du1_src_all	fits[1] in /Volum	es/Samsung_T5	/IXPE-data/gx13	+1/event_l2/			
File Edit	Tools Help											
	ENERG_LO	ENERG_HI	E_MEAN	COUNTS	MU 📕	W 2	N_EFF	FRAC_W	MDP_99	I	I_ERR	
Select	E	E	E	J	E	E	E	E	E	E	E	
E All	keV	keV	keV									
Invert	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	
1	2.000000 E+ 00	8.000000 E+ 00	4.001209E+00	1078598	4.140167E-01	1.165868E+04	5.194118E+05	4.815620E-01	1.437750E-02	7.781810E+04	1.079754E+02	14
Go to: Edit cell:											1	

Data Products – Visualizing Polarization Cubes

- Example command:
 - xpbinview ixpe01002701_du?_src_all.fits

>>> xBin	nedPolarizationCube content
Quantity	2.008.00 keV
E_MEAN	3.9988972328306174
COUNTS	3050388.0
MU	0.4135977172814372
W2	38949.76953125
N_EFF	1357041.875
FRAC_W	0.4448751683392408
MDP_99	0.008903946659024907
I	229905.34375
I_ERR	197.35696411132812
Q	2722.40869140625
Q_ERR	674.8180672566731
U	158.5612335205078
U_ERR	674.8221001773712
QN	0.011841433122754097
QN_ERR	0.0029351995749627856
UN	0.0006896805134601891
UN_ERR	0.0029352171166198535
QUN_COV	-6.0180940826408585e-12
PD	0.011861500330269337
PD_ERR	0.002935205886274062
PA	1.6666560171593792
PA_ERR	7.089150751136133
P_VALUE	0.00028434160864330727
CONFID	0.9997156583913567
SIGNIF	3.4461269118979954

Further Analysis

- Energy-resolved PCUBEs:
 - Can do "--ebins 2 --ebinning [2,4,8]" for 2-4 keV and 4-8 keV
- Background-subtraction:
 - Not available by default in ixpeobssim
 - Pythonic implementation see <u>https://ixpeobssim.readthedocs.io/en/latest/pipeline.html</u>
 - Grab PCUBE information for source and background (xBinnedPolarizationCube class within ixpeobssim.binning.polarization)
- Statistics: see Statistics Guide, available here
- Protractor plots:
 - Not available by default in ixpeobssim, but can be added (defining contour radii of error * $\sqrt{\chi^2}$)

More on protractor/polar plots

- Given measurement of Stokes parameters, q_0, u_0 :
 - Define contour radius $\varepsilon = \sigma \sqrt{\chi_2^2}$
 - $\sigma = \sigma_q = \sigma_u$ (standard deviation)
 - χ_2^2 is the chi-squared for the desired confidence level (2 d.o.f.)
- Parametric equation for the contour:
 - $q = q_0 + \varepsilon \cos(\zeta)$
 - $u = u_0 + \varepsilon \sin(\zeta)$
 - $0 \leq \zeta < 2\pi$
- Parametric equation for polarization error contours:
 - $p = \sqrt{q^2 + u^2}$ • $\psi = \frac{1}{2} \arctan\left(\frac{u}{a}\right)$
- $\sqrt{\chi_2^2} = 1.515 \ (68.3\%), 2.146 \ (90\%), 3.035 \ (99\%)$
 - Calculated from $\sqrt{-2\ln(1 \text{confidence})}$

Data Products – Polarization Map Cubes

Bucciantini+ 23

- Crab system: Pulsar wind nebula + central pulsar
- Q/I is far more asymmetric
- U/I shows high symmetry

• Example command:

- xpbin ixpe01002701_du?_src.fits --algorithm PHA1 --irfname ixpe:obssim20211209_alpha075:v13 -acceptcorr True --weights True
- xpbin ixpe01002701_du?_src.fits --<u>algorithm PHA1Q</u> --irfname ixpe:obssim20211209_alpha075:v13 -acceptcorr True --weights True
- xpbin ixpe01002701_du?_src.fits --algorithm PHA1U --irfname ixpe:obssim20211209_alpha075:v13 -acceptcorr True --weights True
- (Response files are added to the Stokes spectra files for you!)
- Can fit with XSPEC (*xpxspec*), Sherpa and 3ML
- See <u>Quick Start Guide</u> for guidance on fitting Stokes spectra in XSPEC

Interfacing with other software: 4U 1626-67 as an example

- 7.67 s pulsar
- 42-minute ultracompact low-mass X-ray binary
- 190 ks of 2-8 keV observations in March 2022
- Contemporaneous NICER + Chandra observations
 - Note: Source does not generally change significantly over the course of weeks
- Continuum generally well-fit with a blackbody + power law (plus rich Ne, O emission complexes)

4U 1626-67 Result: Phase-Averaged

4U 1626-67: NICER

X-ray Timing and Polarimetry

- Run Solar System barycenter corrections:
 - barycorr ixpe01002701_du1_src.fits outfile=ixpe01002701_du1_src_bary.fits orbitfiles=/path/to/ixpe01002701_all_orb_v01.fits ra=248.06996 dec=-67.46091 refframe=ICRS ephem=JPLEPH.421 clobber=YES
- Used PINT for X-ray timing
 - See Megan DeCesar's talk tomorrow for more
 - Example command: photonphase --ephem DE421 --outfile \$OUTFILE \$INFILE \$TRIAL_PARFILE
 - Can run *niextract-events*, <u>*nitemplate.py*</u> (for example)
 - Re-run *photonphase* with final PARFILE to update phases
 - Use *xpselect* (on phase) to extract phase-resolved data
 - Example command: xpselect ixpe01002701_du?_src_bary_phase.fits
 --phasemin 0.035 --phasemax 0.135 --suffix 0035-0135

Joint NICER/IXPE Workshop 2024

/path/to/ixpeobssim/evt/event.py

• PINT produces "PULSE_PHASE" columns

Joint NICER/IXPE Workshop 2024

• 1RXS J170849.0-400910 (Zane+

• 1E 2259+586 (Heyl+ 23)

Magnetars

IXPE + NICER (+ more)

- Workshop Presentations featuring IXPE and NICER observations:
 - Yash Bhargava (7/30, Afternoon Session II) X-ray Polarization in Neutron star Low mass X-ray Binary GX 340+0
 - + NuSTAR + AstroSat + Insight-HXMT + ATCA + GMRT
 - Alessandro Di Marco (7/31, Morning Session I) First detection of X-ray polarization in the UCXB 4U 1820-30 with IXPE
 - + Swift + NuSTAR + ATCA
 - Fabio La Monaca (7/31, Morning Session I) IXPE Highly Significant Detection of Polarization in Scorpius X-1
 - + NuSTAR + Insight-HXMT
 - Jack Steiner (7/31, Afternoon Session I) Synergies between Spectroscopy and Polarimetry using NICER and IXPE to Explore Accreting Stellar-Mass Black Holes
 - + Swift + NuSTAR + INTEGRAL + AstroSat

- End-to-end simulation workflow exists
 - Different to *xpobssim*
 - xpobssim: Given an arbitrary source model, simulate an IXPE observation
 - ixpesim: full detector simulation, based on the GEANT4 framework, following each interaction with the detector at a microscopic level
- Improving polarization track reconstruction algorithms
 - Neural network methods
 - See Cibrario+ 23, Peirson+ 21a, 21b, Kitaguchi+ 19
 - See book chapter by Peirson 22 Handbook of X-ray and Gamma-ray Astrophysics.

Conclusions

- Presented a possible workflow for analyzing IXPE observations + tips and caveats
- Data products in the form of polarization cubes, polarization map cubes, and I/Q/U Stokes spectra
- *Extension:* pulse phase-resolved polarimetry and spectropolarimetry
- Contemporaneous or simultaneous multi-mission and even multiwavelength campaigns are now the norm!
 - Stay on to hear about them!