

IXPE Science Operations NICER/IXPE Workshop

2024-Jul-30 Allyn Tennant

• IXPE was never intended to be fast response spacecraft

- Typical observations take about week, hence waiting a few days should make no difference
- Neither SOC nor the MOC are 24/7 operations
 - It is a low-cost mission with minimal direct interaction with the spacecraft
 - Budgets are being squeezed
- Forget what you know about Swift and NICER response times
 - Our drivers are totally different

• This is a look "behind the curtain" of IXPE operations

- Make some of operations less mysterious
- Only indirectly will help you write better proposals
- Will not focus on issues of software or data analysis
- We are spatially separated
 - The Science Operations Center (SOC) is at Marshall Space Flight Center in the Central (US) time zone
 - The SOC lead (me) remote works in the Eastern time zone
 - The Mission Operations Center (MOC) is at Laboratory for Atmospheric and Space Physics (LASP) in the Mountain time zone
 - The prime spacecraft contractor is at BAE (formally Ball) also in Mountain time zone
 - The instrument team is in Italy
 - HEASARC is at Goddard Space Flight Center

- IXPE generates more data per event than any previous X-ray mission
 - Takes a picture of every electron track
 - Limited on-board storage
 - 4 GB for event data
 - Limited number of ground stations
 - Inclination is effectively zero degrees
 - Malindi is prime
 - Average use is every other pass (7.5 passes per day)
 - Singapore is backup
 - Can be used a few times per week
 - (can not be used at certain times of the day)
 - Planning must allow for missed contacts
 - Telemetry load is very important
 - Totally drives planning for bright sources

- IXPE operates with minimal ground interaction
 - The spacecraft holds the observing plan for an entire week
 - The plan includes all contact times
 - When spacecraft flies over a ground station at a scheduled contact time it
 - Turns on transmitter
 - Transmits a block of data
 - Resets the pointers
 - Note, the spacecraft does this whether or not there is full two-way communications
 - If ground station is not ready, then there will be a large gap in the data
 - Since the spacecraft has reset pointers, it will not fill in gap, but continue on
 - The MOC needs to find this gap and manually request a re-transmission before the data are overwritten

Operations

- There are often short gaps in the data
 - Can be radio interference (lightning)
 - Often due to the spacecraft transmitting on two antennae
 - Can result in classic interference pattern in the signal strength
 - Not a hard cutoff, but gradual degradation of the signal
 - Resulted in an unexpected number of small files (100-1000s) early in the mission
 - Greatly slowed SOC processing
 - The MOC now predicts the times of destructive interference
 - Weekly load will pause transmission of data during the worst intervals
 - Can still get short gaps
 - Since the predictions are a week in advance predictions can be slightly in error
 - Trade off between getting as much data as possible when you can

- The MOC needs to identify all gaps in the data and request re-transmission of the missing data.
 - Gap checker is now automated
 - Re-transmission requires more interaction with the spacecraft
 - Verify two-way communication
 - Need to pause the current download
 - Transmit commands to dump blocks of missing data
 - Resume normal download
- Even when the MOC has all the data, the SOC still sees gaps
 - We then request that the MOC re-send the data
 - This adds another couple of days to the collecting all the data

- Worse case is it can take a week to get data from a bright source off the spacecraft
 - Often takes less, but cannot assume that when planning
- Allow another couple of days for MOC to find and fill gaps
- Allow another couple of days for the SOC to request resend of any missing data
- For long observations SOC processing can take several days
- Can take up to two weeks to process data
 - Often done in less time

- IXPE data by NASA HQ rules have no exclusive use period
 - An exception can be requested in your proposal and can be granted (decided by NASA HQ)
- To discourage people publishing results based on incomplete observations, we only distribute data for completed observations
 - Completion includes all data from one observation that can be obtained in one 6-month season
 - The clock starts when we distribute data to the HEASARC
 - The PI is not given a "head start"
- If this is fine, ask for one observation
 - We will segment as needed
- If you want the data quickly ask for multiple observations
 - Each dataset will be distributed when completed
 - Put a note in RPS saying the observations do not need to be spaced out

SOC Planning

- The Long-Term Planning begins when SOC gets the target list
 - Includes observing constraints
 - Normal phase constraints such as
 - Avoid X-ray eclipses
 - Observe at peak of super orbital period
 - Want to space out observations in time but not by too much
 - Avoid times around full Moon
 - Some checking of targets is performed
 - Up to observer to get the numbers right
 - Bright sources need to be broken up into "4 GB chunks"
 - Need to observe a faint source while on-board storage is read down
 - Want to get back to bright source quickly
 - Results in the faint target also being segmented
 - Want all segments to occur in the same 6-month season
 - Planning is a "packing problem"
 - Need to lay out the full year to make sure last targets are visible at the end of the year
 - Since ToO's can change the plan, only 6 months are published

Normal Planning Cycle

- From the LTP, the SOC prepares a 3 week list of targets one week in advance
 - This list is called an Instrument Activity Plan (IAP)
 - IAP includes name, position, data rate and exposure time
 - Does not contain observation start/stop times
 - The MOC prepares a "slew report" for all 3 weeks
 - The MOC plans slews to occur during Earth occultation of the target
 - Provides feedback to SOC when observations begin and end
 - · For time critical observations we will adjust the exposure times to be consistent with LTP
 - We only control to 6 hours
 - The MOC also looks at how bright the upcoming targets are
 - If a bright target is coming up, the MOC will request additional contacts for that week
 - Ground station requests go in 3 weeks in advance
 - The MOC plans the upcoming week
 - Includes all spacecraft activities (contacts/slews/etc.)
 - Plan is checked and approved by MOC, SOC and BAE

- The SOC produces an IAP on Wed afternoon and submit to MOC on Thurs morning
- The MOC produces the slew report by Friday
- The MOC plans the upcoming week (12 UT on Thurs to 12 UT following Thurs)
- The draft command load appears on Tues
 - The command load is abstracted and posted at
 - <u>https://ixpe.msfc.nasa.gov/for_scientists/weekly.html</u>
- On Wed the commands for the entire week are loaded to spacecraft
 - Goal is to have two chances to upload during working hours at MOC
- At 12 UT on Thurs the new command load takes over control

- After each contact, the MOC collects data from the ground station
 - Then forwards all data to the SOC
 - "Science" and Spacecraft data come in separate data streams
 - Raw instrument will contain separate gaps
 - Will need both to process data
 - Instrument data are sent to the Italian Team for health and safety monitoring

• When data set is as complete, processing begins

- Apply detector corrections as provided by the instrument team
 - Charging impacts the detector gain and depends on how bright the target is
 - Need to integrate the charge history to get current charge state (hence the gain)
 - Requires a complete set of data
 - Charging model is still not totally correct
- Actual boom motion was much larger than predicted pre-launch
 - We created a model for the boom motion which is applied
 - For bright sources, we apply an X-ray aspect solution
- Final level 1 and 2 products are produced
 - SOC lead does a quick inspection of data before it is released

- ToO's can impact the normal planning in 1 of 3 ways
 - If the ToO is 3-4 weeks out, we just change the LTP
 - If the ToO can start after 12 UT a week from upcoming Thurs we can tweak the IAP
 - If the ToO impacts the planned or what's on the spacecraft, then the MOC must replan the load
- A pre-approved ToO is considered must do
- All other ToOs are considered to be Director's Discretionary Time
- All ToO's are subject to a review process that includes external scientists
 - Review takes place in parallel with the planning
- Friday afternoon is the worse time to submit a ToO
 - Already planning the following week
- Monday/Tuesday is better
 - Very helpful if target can be observed a week from the upcoming Thurs
- Depends on what is currently on the spacecraft
 - If the ToO is bright and we just observed a bright target, may need to wait

- In all cases the following key steps are needed
 - The MOC is alerted that a ToO is being considered
 - The coordinates and estimated count rates are checked
 - We update our data base
 - · Figure out when the commands can be uploaded to the spacecraft
 - Depends on contacts, for faint sources may not have a lot of choices
 - May require a request for an additional contact
 - The LTP is reworked in two phases
 - First (before the IAP is submitted)
 - Minimize disruption to overall plan
 - Takes into account the amount of storage currently in use
 - Add new target so that it does not violate the storage limits
 - Second (after IAP is submitted to MOC
 - Restore any cat A bumped targets
 - Try to complete any observation that had been started
 - IAP is created and provided to MOC

• Star tracker

- We have one star tracker with 2 heads
- Sometimes one head is searching for stars, the other head is restricted to 5 stars
- Has no noticeable impact on science quality
- GPS
 - Use for both timing and position
 - Instrument has a very accurate oscillator
 - Occasionally drops out
 - Requires a GPS restart
 - Early in the mission, this was a manual process
 - Never occurred during a fast (<1 sec) pulsar
 - We fill in GPS data using Two Line Elements (and added a note in the README file)
 - The spacecraft now detects this condition and automatically restart the GPS
 - GPS dropouts are now about a minute
 - For these cases we do not back fill that data with TLE data
 - Bad GPS times are not included in the Good Time Intervals

- Battery issue
 - Battery is used every orbit which results in battery wear
 - Have reduced the heater power usage, increasing the lifetime
 - The entire team continues to look at ways to reduce wear
 - (LASP operates a spacecraft with a totally dead battery)
- Fill Frame
 - So far has happened twice, the spacecraft starts transmitting "fill frames"
 - Telemetry contains no useful data, however
 - Spacecraft is still executing the command load
 - Spacecraft will accept ground commands
 - Effectively required a reboot of the spacecraft
 - Restoring spacecraft to normal operations requires almost a week
 - Root cause not understood but BAE can simulate on the ground
 - Has a potential "work around" to restore telemetry without the reboot
 - Will be tested at next occurrence
 - If successful, will automate recovery
 - If data was not overwritten, it can be recovered off the recorder

Early SAA entry

- During geomagnetic storms
 - A magnetic trough West of the the South Atlantic Anomaly (SAA) fills with particles
 - IXPE enters this trough about 10 minutes prior to main SAA
 - Totally different from the small rate increase seen just before SAA entry
 - The detector count rate can reach very high levels
 - To protect the detector the spacecraft detects this condition
 - Instrument is commanded into SAA mode at this time
 - Note, upon SAA exit the on-board load normally commands SAA mode off
 - Other than slightly shortening the observation, has no impact on science

- IXPE operates with a very small team
 - Nominal 40-hour work week
 - The team is very dedicated and typically can be reached
- A maximum amount is done on the spacecraft
 - Does reduce flexibility
- We try to accommodate as many science related requests as possible
 - As in for all missions there are many trade offs that need to be considered
- The primary task of the SOC is to help you get good science