Introduction to X-ray Pulsar Timing with PINT

NICER/IXPE Workshop, GWU 2024 July 31

Megan DeCesar George Mason University

General introduction to pulsar timing

Pulsar timing models

- Phase connected or coherent timing model: accounts for every pulse cycle, and can thus predict the time of every pulse arriving at the telescope
- Timing model is built by accounting for every observed pulse time of arrival (TOA)
- Model parameters that can be determined include:
 - Spin: frequency (v), spindown rate (dv/dt), additional frequency derivatives
 - Orbital (P_{orb} , T_0 , e, ω , $x = a \sin i$, post-Keplerian or GR terms)
 - Astrometric (position { α , δ }, parallax π , proper motion μ)

Note: Sometimes event times are referred to as TOAs; they are not the same thing as pulse TOAs!

"Folding" to produce a stable pulse profile

Every pulse is different -> must "fold" and measure arrival time of summed profile

This is a radio example.

With X-rays / high-E events, we might record events from only a few phases per rotation.

Measuring Pulse Times of Arrival (TOAs)

The data are pulse times of arrival (TOAs) at the telescope:

- All TOAs for a given timing analysis are relative to same fiducial time T₀
- Make a profile template; shift template to fit the observed profile to measure ΔT
- TOA precision depends on template fit, width of pulse (narrower pulse higher precision)
- Note that <100 ns event time precision \rightarrow TOA precision of 100 ns


```
Pulse Time of Arrival:
TOA = scan start time + \DeltaT
```

Measured at ground-based (radio) observatory: *topocentric* TOAs

We also refer to TOAs at the spacecraft as topocentric.

The "timfile"

Example of TOA lines from a timing model file, with standard naming convention PSRNAME.tim

- "Observatory" can be ground observatory for radio TOAs
- For high-energy TOAs, it can be the space-based observatory, the solar system barycenter, or the geocenter (Earth's center of mass; often used by *Fermi*)

Figure: Paul Ray

)bsei	rvator	y Fre	Radio equency (N	NHz) of	Pulse Time Arrival (MJ	ID)	Measuren Uncertainty	nent / (µs)	
a	3751	1518+49	370.000	50942.	0236998180)4596	69.1	9-May-98	460.2
a	3751	1518+49	370.000	50942.	0250887157	78912	74.9	9-May-98	460.8
a	3752	1518+49	370.000	50942.	0271026392	28441	107.8	9-May-98	460.1
a	3752	1518+49	370.000	50942.	0284915392	28888	68.4	9-May-98	463.7
а	3753	1518+49	370.000	50942.	0305030903	34722	63.0	9-May-98	459.7
а	3753	1518+49	370.000	50942.	0318919946	56585	71.4	9-May-98	468.7
a	3754	1518+49	370.000	50942.	0338964328	34537	64.2	9-May-98	461.5
a	3754	1518+49	370.000	50942.	0352853234	10819	57.4	9-May-98	456.3
a	3755	1518+49	370.000	50942.	0372874013	39970	74.4	9-May-98	459.7
а	3755	1518+49	370.000	50942.	0386762978	35610	65.1	9-May-98	461.5
а	3756	1518+49	370.000	50942.	0406788438	34616	54.2	9-May-98	458.8
а	3756	1518+49	370.000	50942.	0420677486	50490	87.3	9-May-98	470.2
а	3757	1518+49	370.000	50942.	0440698129	98474	88.9	9-May-98	461.2
а	3757	1518+49	370.000	50942.	0454587083	33792	71.8	9-May-98	463.1
a	3758	1518+49	370.000	50942.	0474844741	L1745	110.3	9-May-98	463.0
a	3758	1518+49	370.000	50942.	0488733653	36594	78.6	9-May-98	461.1
а	3759	1518+49	370.000	50942.	0508986582	20880	60.2	9-May-98	463.4
a	3759	1518+49	370.000	50942.	0522875503	33977	131.1	9-May-98	463.1
а	3760	1518+49	370.000	50942.	0542896185	58992	63.4	9-May-98	460.9
a	3760	1518+49	370.000	50942.	0556785121	L4494	93.2	9-May-98	462.8
a	3761	1518+49	370.000	50942.	0576810547	75176	116.2	9-May-98	461.0
а	3761	1518+49	370.000	50942.	0590699477	76154	75.0	9-May-98	463.0
a	3762	1518+49	370.000	50942.	0610824441	L0689	72.2	9-May-98	465.9
а	3762	1518+49	370.000	50942.	0624713325	59781	76.9	9-May-98	463.6
а	3763	1518+49	370.000	50942.	0645098858	31265	86.1	9-May-98	461.4
a	3763	1518+49	370.000	50942.	0658987748	30622	61.9	9-May-98	460.4
a	3764	1518+49	370.000	50942.	0679079498	38299	90.1	9-May-98	460.5
a	3764	1518+49	370.000	50942.	0692968395	56486	67.2	9-May-98	460.8
a	3765	1518+49	370.000	50942.	0712922713	37214	63.5	9-May-98	460.6
a	3765	1518+49	370.000	50942.	0726811613	30441	139.5	9-May-98	461.8

Barycentering TOAs

- Topocentric TOAs must be converted to a nearby inertial frame, typically the Solar System barycenter, before fitting the timing model
- This removes effects of observer motion and relativistic clock effects

Fitting TOAs to the timing model

The goal is to find model parameters that minimize residuals between data (measured TOAs) and model (predicted TOAs)

Fitting TOAs to the timing model

Example residuals

- Using radio data
- Long timing baseline
- Individual parameters perturbed from best-fit values

Fitting TOAs to the timing model (parfile)

Example parfile Measured TOAs PSRJ J1513-5908 Best Fit Parameters + RAJ 15:13:55.6713462 Error Estimates DECJ -59:08:09.16532Initial Model Fitting Engine F0 6.5970918979437165796 Parameters F1 -6.6530805250943988541e-11 Residuals to Best Fit 55336 PEPOCH POSEPOCH 54710 START 54220.401890338307769 1 Clock Solar System FINISH 1 58469.808981595782623 Ephemeris Corrections TZRMJD 57675.99293714394800 TZRSITE pks TRES 1054.132 EPHVER 2 TT(TAI) CLK UNITS TDB

$$\phi(t) = \phi(0) + \nu t + \frac{1}{2}\dot{\nu}t^2 + \frac{1}{6}\ddot{\nu}t^3 + \dots$$

Effects of choice of Solar System ephemeris

PSR J1713+0747 analyzed using DE405 solar system ephemeris

PSR J1713+0747 analyzed using previousgeneration DE200 solar system ephemeris.

~1µs timing errors \Leftrightarrow 300 m errors in Earth position.

Fitting TOAs to the timing model

- Several software options
- If you are starting out with timing, recommend learning PINT straight away

TOOLS FOR FITTING TIMING MODELS

- Tempo <http://tempo.sourceforge.net/>
 - Developed by Princeton and ATNF over 30+ years
 - Well tested and heavily used
 - Based on TDB time system
 - But, nearly undocumented, archaic FORTRAN code
- Tempo2 < https://bitbucket.org/psrsoft/tempo2>
 - Developed at ATNF recently
 - Based on TCB time system (coordinate time based on SI second)
 - Better documented, modern C code, uses long double (128 bit) throughout
 - Useful plug-in architecture to extend capabilities
- PINT <<u>https://github.com/nanograv/PINT</u>>
 - Modern, modular Python code for pulsar timing
 - Heavy use of well-debugged libraries (IAU SOFA, astropy)
 - Code independent of Tempo/Tempo2

Time Systems

TAI = Atomic time based on the SI second UT1 = Time based on rotation of the Earth UTC = TAI + "leap seconds" to stay close to UT1 TT = TAI + 32.184 s TDB = TT + periodic terms to be uniform at SSB TCB = Coordinate time at SSB, based on SI second

X-ray pulsar timing with NICER and PINT

Software used in this tutorial

HEASARC ftools:

https://heasarc.gsfc.nasa.gov/ftools/

- nicerl2 (NICER ftool)
- barycorr
- niextlc
- niextract-events

PINT: https://github.com/nanograv/PINT

- photonphase
- pintk

NICERsoft:

https://github.com/paulray/NICERsoft

- A repository with user-contributed tools
- Not official software (not distributed by HEASARC)
- psrpipe.py
- \circ cr_cut.py
- photon_toa.py
- remove_empty_evtfiles.py

Summary of analysis steps

> nicerl2 indir=<source>/<obsid> incremental=NO tasks=ALL
filtcolumns=NICERV5 clobber=YES

This produces a file with filename ending in"_cl.evt" → This is the clean, calibrated file to use for analysis.

Q: Can I ever just start from _cl.evt in the downloaded dataset? A: The recommendation is to always run nicerl2 before proceeding with other analyses.

Make or obtain a timing model (parfile)

Making a parfile for a pulsar without an existing timing model: You can start with fitting just the spin frequency, F0.

E.g.:

PSR J1234+56 RAJ 12:34:00 DECJ +56:00:00 **F0 0.01234** EPHEM DE405 CLK TT(TAI) UNITS TDB

Some software resources: Stingray, HENDRICS, psrfits2presto Using an existing parfile

- For a known pulsar, you can likely find an existing parfile, e.g. in a paper that previously timed the pulsar in question.
- Note: Existing parfiles can be out of date. You may be able to calculate reliable pulse phases for only the part of your data that overlaps in time with the
- A useful resource is the *Fermi* LAT 3rd Pulsar Catalog <u>individual pulsar</u> <u>summaries page</u>.

Option 1: First run the ftool barycorr^{1,2} --refframe=ICRS³ on the *_cl.evt file to barycenter the event times, and then run PINT's photonphase without the "--orbfile" option

> barycorr infile=0020020108/xti/event_cl/ni0020020108_0mpu7_cl.evt
outfile=0020020108/xti/event_cl/ni0020020108_0mpu7_cl_bary.evt
orbitfiles=0020020108/auxil/ni0020020108.orb refframe=ICRS

> photonphase --addphase --ephem DE405 --outfile 0020020108/xti/event_cl/ni0020020108_0mpu7_cl_bary_ph.evt --plot --plotfile 0020020108/xti/event_cl/B1509_0020020108_phaseogram.png 0020020108/xti/event_cl/ni0020020108_0mpu7_cl_bary.evt J1513-5908_PKS.par

¹Must specify ra= and dec= if NICER pointing position wasn't directly toward your pulsar. ²barycorr does not work for all missions; e.g., Fermi uses gtbary. ³refframe=ICRS is needed in order to use SSEs that are more recent than DE200 (e.g. DE405). **Option 2:** Starting from the *_cl.evt file, run the PINT command **photonphase**^{4,5}, including the --**orbfile** option to compute barycentered phases

> photonphase --addphase --ephem DE405 --plot --plotfile 0020020108/xti/event_cl/B1509_0020020108_phaseogram.png --orbfile 0020020108/auxil/ni0020020108.orb --outfile 0020020108/xti/event_cl/ni0020020108_0mpu7_cl_ph.evt 0020020108/xti/event_cl/ni0020020108_0mpu7_cl.evt J1513-5908_PKS.par

⁴photonphase works for many but not all missions. Some require the event file to be barycentered first. Fermi has a specific tool, fermiphase.

⁵photonphase can be pretty slow. For large numbers of events, first barycenter your data, and then run photonphase --polycos to speed it up.

NOTE: (a) To run on multiple files, must loop through them. (b) Can also make phaseogram later with niphaseogram.

Run psrpipe.py, including the parfile

You can just use the default options, so simply run:

> psrpipe.py --par <parfile> --ephem <parfile ephem> <raw directory(ies)>

Here is the command with defaults implicit, plus some common additional options:
> psrpipe.py --cormin 1.5 --kpmax 5 --tidy --nomap --par <parfile> --ephem
<parfile ephem> <raw directory(ies)>
Cosmic Solar KP-index
You will likely need --nomap because of cartopy (a python package) errors

Note: Full command with defaults being input explicitly: > psrpipe.py --emin 0.22 --emax 15.0 --mingti 16 --maxovershoot 1.5 --maxundershoot 200 --medianundershoot 100 --par <parfile> --ephem <parfile ephem> <raw directory(ies)>

Video: Running psrpipe.py

(pint) hesenode1%
(pint) hesenode1%
(pint) hesenode1%
(pint) hesenode1%
(pint) hesenode1%
(pint) hesenode1%

Output from psrpipe.py (obsIDs with events remaining)

(pint) hesenode1% ls									
0020020101_pipe	0020020105_pipe	0020020109_pipe	0020020113_pipe	1020020101_pipe	1020020105_pipe	60200201	04_pipe		
0020020102_pipe	0020020106_pipe	0020020110_pipe	0020020114_pipe	1020020102_pipe	6020020101_pipe	60200201	05_pipe		
0020020103_pipe	0020020107_pipe	0020020111_pipe	0020020115_pipe	1020020103_pipe	6020020102_pipe	J1513-59	08_PKS.par		
0020020104_pipe	0020020108_pipe	0020020112_pipe	0020020116_pipe	1020020104_pipe	6020020103_pipe				
(pint) hesenode1	(pint) hesenode1%								
(pint) hesenode1% ls 0020020108_pipe									
0020020108_clean	filt_bkg.png 002	0020108_cleanfilt	_sci.png cleanfi	lt.lc cleanfilt	.pha phaseogr	am.png	tot_and_eventgti.gti	tot.gti	
0020020108_clean	filt_eng.png cle	anfilt.evt	cleanfi	lt.mkf ni0020020	108.orb psrpipe_	expr.txt	tot_clipped.gti		

) 🥚 🌒 🔀 fv: Summary of cleanfilt.evt in /home/mdecesar/nicer/analysis/PSRB1509-58_timing/my_pipe/0020...

File Edit T	ools Help																					
Index	Extension	-	Гуре		Dimensi	ion			v	iew												
0	Primary	I	mage		0			Heade	er 🛛 Imaj	ge	Table	1										
1	EVENTS	E	Binary	15 cols X 4656 rows		Heade	er Hist	Plot /	Al Sele	:t												
2	GTI	E	Binary	ry 2 cols X 1 rows		Heade	er Hist	Plot /	Al Sele	:t								\frown				
3	FPM SEL	ľ	• • •							X fv: Bina	ry Table of cle	anfilt.evt[1] in	/home	/mdecesar/nicer/analys	sis/PSRB1509-58_	timing/my_pipe/002002	0106_pipe/					1
			File Edit	Tools H	Help																	
4	GTI_MPUU	-			TIME	RAWX	BAWY	PHA	PHA_FAST	DET_ID	DEADTIM	E EVENT_F	LAGS	— ТІСК	MPU_A_TEMP	MPU_UNDER_COUNT	PI_FAST	PI	PI_RATIO	PULSE_PHASE		
5	GTI MPU1		Select	◀	1D	1B	1B	11	11	1B	1B	8X		1K	ī	J	11	11	1E	D		
	-		All	Γ.	s	pixel	pixel	chan	chan		S		_		Celsius		chan	chan				
<mark>=</mark> 6	GTI_MPU2		Invert	<u> </u>	Modify	моанту	моату	моату	моану	Μοαιτγ	Modify	Modify		Modify	Modify	моату	моану	Modify	Modify	Modity	C	<u>_</u>
			1	1102128	865.133434996	0	0	690	781	57	0.00002263	7	0	30467848259319	33.155	7	148	142	9.594595E-0	1 6.175405099342E-01		4
– /	GTI_MP03		2/	1102128	865.415276006	0	5	1368	1331	63	0.00002263	7	0	30465965199829	32.731	6	379	373	9.8416891-0	1 4.726361481516E-01	4 1	
- 0	GTL MPU/		1	1102128	865.546791002	0	1	2531	2439	56	0.00002263	7	0	30467858925362	33.155	6	867	849	9.7923870	1 3.382767918745E-01	41 /	
• •	GTI_MF04		14	1102128	865.567445993	3	2	1241	1171	44	0.00002263	7	0	30469654359472	34.109	5	337	337	1.000000.+0	0 4.742287683582E-01	41 /	
9	GTL MPU5		/ 5	1102128	865.657436997	4	6	1595	1607	30	0.00002263	/	0	30472604587731	36.124	3	485	4//	9.814815 -0	1 6.655357269412E-02	4 1	
- 3			5	1102128	865.662405998	0	3	1258	1233	67	0.00002263	7	0	30465971576627	32.731	4	344	346	1.005814.+0	0 9.925940775099E-02	4 1 1	
1 0	GTI MPU6		, 8	1102120	865 823895007	1	4	1018	074	40	0.00002263	7	0	30465075743613	34.109	10	254	248	9.710982 -0	1 1 621038005730F_01	4 1	
	- /	/	9	1102120	865 929389998	6	1	879	807	15	0.00002263	7	0	30476652414525	35 275	5	204	240	9.6172258-0	1 8 565675145559F-01	1	
			10	1102128	865.942524999	3	4	778	734	42	0.00002263	7	0	30469664037829	34.109	5	160	153	9.562500E 0	1 9.430254316474E-01	1/	
	/		11	1102128	865.979012996	3	2	936	898	44	0.00002263	7	0	30469664979332	34.109	5	228	222	9.736842E-0	1 1.831880361798E-01	1/	
	time		12	1102128	865.988566995	4	4	1480	1403	32	0.00002263	7	0	30472613132042	36.124	5	423	423	1.000000E+	0 2.460747613406E-01	1/ /	
Event	umes		13	1102128	866.046950996	7	5	913	966	01	0.00002263	7	0	30479089482364	34.745	4	216	219	1.013889E+0	6.303627289205E-01	1	
: N																						
יו חו		F	4																			1
			Go to:		Edit cell:																	

Phaseograms and GTIs

Next step is finding optimal energy ranges ... but first a quick aside

- psrpipe.py produced the output file cleanfilt.evt for each obsid
- If you used an already-existing, phase-connected parfile (that is valid over your full dataset) to compute PULSE_PHASE, then you can:
 - Remove files with no remaining data after the **psrpipe.py** filtering step
 - Merge the cleanfilt.evt files into a single merged.evt file
 - Optional: Make a light curve (over time not the same as a pulse profile) from merged.evt; check for and remove flaring; output is merged_cut.evt
 - Use merged.evt or merged_cut.evt for the rest of the analysis
- If instead you have a new parfile, e.g. that has only F0 measured from single obsid, then:
 - You cannot yet merge all the obsids first need a phase-connected timing model
 - Optional: Make light curve and check for flaring (output is cleanfilt_cut.evt)
 - Do the rest of the analysis on individual cleanfilt.evt or cleanfilt_cut.evt files
 - After finding a timing solution using TOAs from the full dataset, you can re-compute PULSE_PHASE with this good solution, and then merge the files as described above

For this tutorial, I'll use a merged event file

File Edit

Index

0

1

2

- Remove files with no data and merge

 Make file list, remove empty files, merge
- > /bin/ls -1 *pipe/cleanfilt.evt > files.txt
 > remove_empty_evtfiles.py files.txt cleanfiles.txt
 > niextract-events @cleanfiles.txt merged.evt
- Optional: Make light curve and examine in "fv" to determine "--cut" value

> niextlc merged.evt merged_2-10keV.lc timebin=32
pirange=200:1000 lcthresh=0.9 clobber=yes
> fv merged.evt

> cr_cut.py merged.evt --outname merged_cut.evt --cut 10.6 --filterbinsize=32.0 --lcfile merged_2-10keV.lc

Find optimal energy range for pulsations

Make event file with optimal energy range only with niextract-events:

> niextract-events
Input file name:[] merged_cut.evt[PI=110:995]
Name of output events file:[] merged cut optimal.evt

Or with psrpipe.py:

> psrpipe.py --emin <min energy> --emax <max energy> ...

Now make template

> nitemplate [options] input_file

For example, for events binned into 64 histograms, and to output a profile with 32 phase bins:

> nitemplate --nhistbins 64 --nprofbins 32 merged_cut_optimal.evt

Note: using unbinned fitting can take a while, so binning is typically recommended

Demo: nitemplate

[(pint) hesenode1%
((pint) hesenode1%
((pint) hesenode1%
((pint) hesenode1%
((pint) hesenode1%
((pint) hesenode1%
(020020101_pipe 0020020109_pipe 1020020101_pipe 6020020105_pipe 0020020105_pipe 0020020111_pipe 1020020103_pipe cleanfiles.txt m
0020020104_pipe 0020020112_pipe 1020020104_pipe files.txt m
0020020105_pipe 0020020113_pipe 1020020105_pipe files.txt m
0020020105_pipe 0020020114_pipe 6020020105_pipe gti_data_squeezed.txt m
0020020107_pipe 0020020115_pipe 6020020102_pipe gti_data.txt m
0020020108_pipe 0020020116_pipe 6020020103_pipe gti_files.txt m
0020020108_pipe 0020020115_pipe 6020020102_pipe gti_files.txt m
0020020108_pipe 0020020115_pipe 6020020103_pipe gti_files.txt m
0020020108_pipe 0020020115_pipe files.txt m
0020020108_pipe files.txt m
0020020108_pipe files.txt m
0020020108_pipe files.txt m
0020020108_pipe files.t

J1513-5908_PKS.par merged_2-10keV_cut.lcurve merged_2-10keV.lc merged_cut.evt merged_cut_optimal.evt merged_cut_profinfo.yml merged.evt OptimalProfile_1.10keV_9.95keV.png Barycentric TOAs:

> photon_toa.py --orbfile @orbfiles.txt --ephem DE405 --plot --plotfile phaseogram.png --tint 500 --outfile toas.tim merged_cut_optimal.evt itemplate.gauss J1513-5908_PKS.par

Topocentric TOAs (needed for long-term effects, with long dataset):

> photon_toa.py --orbfile @orbfiles.txt --ephem DE405 --topo --plot --plotfile phaseogram.png --tint 500 --outfile toas.tim merged_cut_optimal.evt itemplate.gauss J1513-5908_PKS.par

Note: --tint value will vary between pulsars, e.g. depending on flux level

Barycentric vs. topocentric timfiles

photon_toa 0.00000 57934.9592382679479051 1056.117 STL_GEO -nsrc 1667.23 -nbkg 7055.77 -expos\ ure 640.0 -dphi 0.00063 -mjdtt 57934.96003901 -telx -6104.97490069 -tely 2857.96780109 -telz -7\ 97.07490027 -vx -1.39959292 -vy -4.63629030 -vz -5.93978842 -htest 371.65 -t NICER photon_toa 0.000000 57935.2825710407212731 773.976 STL_GEO -nsrc 2676.78 -nbkg 11328.22 -expos\ ure 960.0 -dphi -0.00429 -mjdtt 57935.28337178 -telx -6166.98019422 -tely 2262.51469019 -telz -\ 1712.06318512 -vx -0.30463059 -vy -5.12654011 -vz -5.68713461 -htest 620.75 -t NICER photon_toa 0.000000 57935.4736814040257407 1147.935 STL_GEO -nsrc 1550.26 -nbkg 6560.74 -expos\ ure 576.0 -dphi 0.02091 -mjdtt 57935.47448214 -telx -5973.00529477 -tely 3121.57885813 -telz -8\ 06.19580736 -vx -1.59465397 -vy -4.57552409 -vz -5.93802334 -htest 273.53 -t NICER photon_toa 0.000000 57936.2470139430570718 793.204 STL_GEO -nsrc 2649.44 -nbkg 11212.56 -expos\ ure 928.0 -dphi -0.00412 -mjdtt 57936.24781468 -telx -5948.91548078 -tely 2816.46313049 -telz -\ 1661.54481272 -vx -0.80123673 -vy -5.05178724 -vz -5.70564436 -htest 536.64 -t NICER

Barycentric Photon_toa 0.000000 57934.9637210961460247 1056.09 Pinsrc 1667.23 -nbkg 7055.77 -exposure 64 0.0 -dphi 0.00063 -htest 371.65 -t NICER photon_toa 0.000000 57935.2870397931529061 773.960 Pinsrc 2676.78 -nbkg 11328.22 -exposure 96 0.0 -dphi -0.00429 -htest 620.75 -t NICER photon_toa 0.000000 57935.4781417168941433 1147.913 Pinsrc 1550.26 -nbkg 6560.74 -exposure 57 6.0 -dphi 0.02091 -htest 273.53 -t NICER photon_toa 0.000000 57936.2514399364904626 793.187 Pinsrc 2649.44 -nbkg 11212.56 -exposure 92 8.0 -dphi -0.00412 -htest 536.64 -t NICER photon_toa 0.000000 57937.9876579888261973 751.336 Pinsrc 2510.68 -nbkg 10625.32 -exposure 92 8.0 -dphi -0.00459 -htest 573.92 -t NICER

...and fit with PINT (or Tempo2*)

Command line:
> pintk parfile timfile

You can also run PINT in python or in a Jupyter notebook.

*Tempo2 will also work, but only for barycentric TOAs

Initial parfile:	PSRJ RAJ DECJ FØ F1 PEPOCH	J1513-5908 15:13:55.6713462 -59:08:09.16532 6.5970918979437165796 -6.6530805250943988541e-11 55336
	START	54710 57220 701800338307760 1
	FINISH	58469.808981595782623
	TZRMJD	57675.99293714394800
	TZRSITE	pks
	TRES	1054.132
	EPHVER	2
	CLK	TT(TAI)
	UNITS	TDB

pintk example

• • •	mdecesar -	– ssh -XY hesenode1.nrl.navy.mil – 104×50	000
JUMP	-pdfb3_64MHz_512ch 1	8.9e-06 0 0.0	<u>F</u> ile Viev
JUMP	-pdfb4.*_1024_[1,2] 1	2.23e-06 0 0.0	- Sninder
JUMP	-pdfb4_256MHz_1024ch 1	5.05e-06 0 0.0	T Spinuov
JUMP	-pdfb4_55319_56055_cals	1 9.27e-07 0 0.0	PhaseJ
JUMP	-pdfb4_56110_56160_cals	1 5.41e-07 0 0.0	Astrome
JUMP	-pdfb4_56160_57575_cals	1 4.25e-07 0 0.0	🗆 SolarWi
JUMP	-pdfb4_57575_65000_cals	1 1.71e-07 0 0.0	C Dispers
WAVEEPOCH	55336.0000000000000000	10	
WAVE_OM	0.00102364858//29	2 0 0.0	
WAVEL	0.0808///3/86063		
WAVE2	-0.02356008/63500	0.098534/12312595	
WAVE3	-0.08422/611021/9	2 -0.064806699752683	pre-fit
WAVE4	0.09649806728102		pro fit
WAVES	-0.0043440/1856/2/	9 0.088023243187245	post-in
WAVE6	-0.0525/2534/9084	8 -0.031/34380028195	mjd
WAVE/	0.03284997389062	5 -υ.υ1//89845//286/	year
WAVE8	0.001062597214920	3 0.0181224/3688484	orbital pha
WAVE9	-0.004920882141101	.3 -0.00153440/211/044	serial
CORRECT_TROP	USPHERE	N	day of yes
PLANET_SHAPT	RU	1	froguenes
INE_SW	9.90		Tequency
SWM	Ø. 252	5 0 0 2	TOA erro
DM	252.	5 0 0.3	rounded M
Number of TO	Ac. 18		WB DM
Number of co	mmands: 0		WB DM re
Number of ob	servatories: 1 ['barvcenter'	1	WB DM e
MID span: 5	7934.964 to 57976.826		elongatio
Date span: 2	017-06-30 23:07:45.502707014	to 2017-08-11 19:49:56.876883931	ololigato
barycenter T	OAs (18):		
Min freq:	inf MHz		
Max freq:	inf MHz		
Min error:	678 US		
Max error:	1.5e+03 us		
Median err	or: 1.03e+03 us		
nourun orr			
Downloading	https://raw.githubuserconten	t.com/ipta/pulsar-clock-corrections/main/index.txt	
		======================================	
WARNING (pi	nt.logging): /home/mdecesar/env/pint/lib/python3.8/site-packages/	Color
.py:154 Erfa	Warning: ERFA function "dtf2	d" yielded 1 of "dubious year (Note 6)"	(d
Downloading	nttps://npiers.obspm.tr/iers	/bul/bulc/Leap_Second.dat	0.0
		======================================	
RMS pre-fit	PINI residuals are 1100.54/	us	0.0
	nt lassing). /heme/mdeeseem/env/mint/lib/muthen2.0/site-methods/	⊂ n
WARNING (pi	nt.ioyying): /nome/muecesar/env/pint/iib/python3.8/Site-packages/a	⊂ ju
TimeDolto	2/90 IIMEDELTAMISSINGUNITWAR	ning: Numerical value without unit or explicit format p	
HADNING (ni	ssuming days). Dulaan has not been fitted wet! Civing ove fit world	<u>E</u> it R
WARNING (pi	nt.pintk.pik). Pulsar has not been fitted yet! Giving pre-fit resid	
	пс.ртпск.ртк	/. Fursar has not been fitted yet: Giving pre-fit fesio	ua19

Summary

- Pulsar timing yields high precision on pulsar parameters and allows probing of pulsar properties
- There are many tools available for pulsar timing analysis
- This tutorial used NICER data, but the general process is the same no matter what observing frequency, and some tools can be used for different situations (e.g. different space missions, ground-based observatories)
- I hope this tutorial is helpful for those who want to get started on NICER+PINT pulsar timing!

Thanks!

Contact: Megan DeCesar <u>megan.e.decesar.ctr@us.navy.mil</u> mdecesa@gmu.edu