
Introduction to X-ray Pulsar
Timing with PINT

NICER/IXPE Workshop, GWU
2024 July 31

Megan DeCesar
George Mason University

General introduction to pulsar timing

Pulsar timing models

● Phase connected or coherent timing model: accounts for every pulse cycle, and can thus
predict the time of every pulse arriving at the telescope

● Timing model is built by accounting for every observed pulse time of arrival (TOA)

● Model parameters that can be determined include:

○ Spin: frequency (ν), spindown rate (dν/dt), additional frequency derivatives

○ Orbital (Porb, T0, e, ω, x = a sini, post-Keplerian or GR terms)

○ Astrometric (position {α, δ}, parallax π, proper motion μ)

Note: Sometimes event times are referred to as TOAs; they are not the same thing as pulse TOAs!

“Folding” to produce a stable pulse profile

Every pulse is different -> must “fold” and
measure arrival time of summed profile

This is a radio
example.

With X-rays / high-E
events, we might

record events from
only a few phases

per rotation.

...

time

si
gn

al

Figure: David Nice, Paul Ray

Fold 102 - 104 pulses to
produce pulse profile
that is stable over long
timescales

Measuring Pulse Times of Arrival (TOAs)

The data are pulse times of arrival (TOAs) at the telescope:

● All TOAs for a given timing analysis are relative to same fiducial time T0

● Make a profile template; shift template to fit the observed profile to measure ΔT

● TOA precision depends on template fit, width of pulse (narrower pulse higher precision)

● Note that <100 ns event time precision TOA precision of 100 ns

Δt

Radio X-ray (NICER)

Δt

Pulse Time of Arrival:
TOA = scan start time + ΔT

Measured at ground-based (radio)
observatory: topocentric TOAs

We also refer to TOAs at the
spacecraft as topocentric.

The “timfile”

Example of TOA lines from
a timing model file, with
standard naming
convention PSRNAME.tim

● “Observatory” can be
ground observatory for
radio TOAs

● For high-energy TOAs, it
can be the space-based
observatory, the solar
system barycenter, or
the geocenter (Earth’s
center of mass; often
used by Fermi)

Figure: Paul Ray

Barycentering TOAs

● Topocentric TOAs must be converted to a nearby inertial frame, typically the
Solar System barycenter, before fitting the timing model

● This removes effects of observer motion and relativistic clock effects

Fitting TOAs to the timing model

The goal is to find model parameters that minimize residuals between data
(measured TOAs) and model (predicted TOAs)

Very simple model: Only need
to fit for spin frequency

Figure: Ryan Lynch

Example residuals

● Using radio
data

● Long timing
baseline

● Individual
parameters
perturbed from
best-fit values

Fitting TOAs to the timing model

Position: 1% offset in δ

4% offset in spindown rate

Neglecting proper
motion (380 mas yr -1)

Lorimer & Kramer
(Pulsar Handbook)

Fitting TOAs to the timing model (parfile)

Fitting Engine

Measured

TOAs

Solar System

Ephemeris

Clock

Corrections

Initial Model

Parameters

Best Fit Parameters +

Error Estimates

Residuals to Best Fit

φ(t) = φ(0) + νt +
1

2
ν̇t2 +

1

6
ν̈t3 + ...

Example parfile

Effects of choice of Solar System ephemeris

PSR J1713+0747 analyzed using DE405
solar system ephemeris

PSR J1713+0747 analyzed using previous-
generation DE200 solar system ephemeris.

~1μs timing errors ⇔ 300 m errors in Earth position.

Splaver+ 2005

Fitting TOAs to
the timing model

Figure: Paul Ray

● Several software
options

● If you are starting
out with timing,
recommend
learning PINT
straight away

TOOLS FOR FITTING TIMING MODELS
• Tempo <http://tempo.sourceforge.net/>

• Developed by Princeton and ATNF over 30+ years

• Well tested and heavily used

• Based on TDB time system

• But, nearly undocumented, archaic FORTRAN code

• Tempo2 < https://bitbucket.org/psrsoft/tempo2>

• Developed at ATNF recently

• Based on TCB time system (coordinate time based on SI second)

• Better documented, modern C code, uses long double (128 bit) throughout

• Useful plug-in architecture to extend capabilities

• PINT <https://github.com/nanograv/PINT>

• Modern, modular Python code for pulsar timing

• Heavy use of well-debugged libraries (IAU SOFA, astropy)

• Code independent of Tempo/Tempo2

Time Systems

TAI = Atomic time based on the SI second

UT1 = Time based on rotation of the Earth

UTC = TAI + "leap seconds" to stay close to UT1

TT = TAI + 32.184 s

TDB = TT + periodic terms to be uniform at SSB

TCB = Coordinate time at SSB, based on SI second

X-ray pulsar timing with NICER and PINT

NICERsoft:
https://github.com/paulray/NICERsoft

○ A repository with user-contributed tools
○ Not official software (not distributed by

HEASARC)

○ psrpipe.py
○ cr_cut.py
○ photon_toa.py
○ remove_empty_evtfiles.py

HEASARC ftools:
https://heasarc.gsfc.nasa.gov/ftools/

○ nicerl2 (NICER ftool)
○ barycorr
○ niextlc
○ niextract-events

PINT: https://github.com/nanograv/PINT
○ photonphase
○ pintk

Software used in this tutorial

https://github.com/paulray/NICERsoft
https://heasarc.gsfc.nasa.gov/ftools/
https://github.com/nanograv/PINT

Calibration:
Run nicerl2

and use
_cl.evt for
analysis

Add phases
with psrpipe.py

--addphase
and use

cleanfilt.evt

Run nioptcuts to
get optimal

energy range

Filter out events
only in the optimal
energy range with
niextract-events

Run psrpipe.py
--emin --emax

Make a profile
and template

Generate
TOAs
and fit
with
PINT

Make
new or
obtain

existing
parfile

Add phase
column with
photonphase

Summary of analysis steps

Calibrate and make clean event file with nicerl2

> nicerl2 indir=<source>/<obsid> incremental=NO tasks=ALL
filtcolumns=NICERV5 clobber=YES

This produces a file with filename ending in“_cl.evt”
This is the clean, calibrated file to use for analysis.

Q: Can I ever just start from _cl.evt in the downloaded dataset?
A: The recommendation is to always run nicerl2 before proceeding with other
analyses.

Make or obtain a timing model (parfile)

Making a parfile for a pulsar without an
existing timing model: You can start with
fitting just the spin frequency, F0.

E.g.:

PSR J1234+56
RAJ 12:34:00
DECJ +56:00:00
F0 0.01234 1
EPHEM DE405
CLK TT(TAI)
UNITS TDB

Some software resources: Stingray,
HENDRICS, psrfits2presto

Using an existing parfile

● For a known pulsar, you can likely find an
existing parfile, e.g. in a paper that
previously timed the pulsar in question.

● Note: Existing parfiles can be out of date.
You may be able to calculate reliable
pulse phases for only the part of your data
that overlaps in time with the

● A useful resource is the Fermi LAT 3rd
Pulsar Catalog individual pulsar
summaries page.

https://fermi.gsfc.nasa.gov/ssc/data/access/lat/3rd_PSR_catalog/3PC_HTML/
https://fermi.gsfc.nasa.gov/ssc/data/access/lat/3rd_PSR_catalog/3PC_HTML/

Option 1: First run the ftool barycorr1,2 --refframe=ICRS3 on the *_cl.evt file to barycenter the
event times, and then run PINT’s photonphase without the “--orbfile” option

> barycorr infile=0020020108/xti/event_cl/ni0020020108_0mpu7_cl.evt
outfile=0020020108/xti/event_cl/ni0020020108_0mpu7_cl_bary.evt
orbitfiles=0020020108/auxil/ni0020020108.orb refframe=ICRS

> photonphase --addphase --ephem DE405
--outfile 0020020108/xti/event_cl/ni0020020108_0mpu7_cl_bary_ph.evt
--plot --plotfile 0020020108/xti/event_cl/B1509_0020020108_phaseogram.png
0020020108/xti/event_cl/ni0020020108_0mpu7_cl_bary.evt J1513-5908_PKS.par

1Must specify ra= and dec= if NICER pointing position wasn’t directly toward your pulsar.
2barycorr does not work for all missions; e.g., Fermi uses gtbary.
3refframe=ICRS is needed in order to use SSEs that are more recent than DE200 (e.g. DE405).

Compute phases and add PULSE_PHASE column to _cl.evt

Option 2: Starting from the *_cl.evt file, run the PINT
command photonphase4,5, including the --orbfile option
to compute barycentered phases

> photonphase --addphase --ephem DE405 --plot
--plotfile 0020020108/xti/event_cl/B1509_0020020108_phaseogram.png
--orbfile 0020020108/auxil/ni0020020108.orb
--outfile 0020020108/xti/event_cl/ni0020020108_0mpu7_cl_ph.evt
0020020108/xti/event_cl/ni0020020108_0mpu7_cl.evt
J1513-5908_PKS.par

4photonphase works for many but not all missions. Some require the event file to be
barycentered first. Fermi has a specific tool, fermiphase.
5photonphase can be pretty slow. For large numbers of events, first barycenter your
data, and then run photonphase --polycos to speed it up.

NOTE: (a) To run on multiple files, must loop through them. (b) Can also make phaseogram later with niphaseogram.

Phaseogram from photonphase

Compute phases and add PULSE_PHASE column to _cl.evt

Run psrpipe.py, including the parfile

You can just use the default options, so simply run:
> psrpipe.py --par <parfile> --ephem <parfile ephem> <raw directory(ies)>

Here is the command with defaults implicit, plus some common additional options:
> psrpipe.py --cormin 1.5 --kpmax 5 --tidy --nomap --par <parfile> --ephem
<parfile ephem> <raw directory(ies)>

Note: Full command with defaults being input explicitly:
> psrpipe.py --emin 0.22 --emax 15.0 --mingti 16 --maxovershoot 1.5
--maxundershoot 200 --medianundershoot 100 --par <parfile> --ephem <parfile
ephem> <raw directory(ies)>

Clean data and compute phases with psrpipe.py

You will likely need --nomap
because of cartopy (a
python package) errors

Cosmic
ray rigidity

Solar
KP-index

Video: Running psrpipe.py

Output from psrpipe.py (obsIDs with events remaining)

Event times
in MET

102002010100200201150020020106

Phaseograms and GTIs

GTIs
within
obsid

Next step is finding optimal energy ranges ... but first a quick aside

● psrpipe.py produced the output file cleanfilt.evt for each obsid

● If you used an already-existing, phase-connected parfile (that is valid over your full dataset)
to compute PULSE_PHASE, then you can:

○ Remove files with no remaining data after the psrpipe.py filtering step
○ Merge the cleanfilt.evt files into a single merged.evt file
○ Optional: Make a light curve (over time – not the same as a pulse profile) from merged.evt;

check for and remove flaring; output is merged_cut.evt
○ Use merged.evt or merged_cut.evt for the rest of the analysis

● If instead you have a new parfile, e.g. that has only F0 measured from single obsid, then:
○ You cannot yet merge all the obsids – first need a phase-connected timing model
○ Optional: Make light curve and check for flaring (output is cleanfilt_cut.evt)
○ Do the rest of the analysis on individual cleanfilt.evt or cleanfilt_cut.evt files
○ After finding a timing solution using TOAs from the full dataset, you can re-compute

PULSE_PHASE with this good solution, and then merge the files as described above

For this tutorial, I’ll use a merged event file

● Remove files with no data and merge
○ Make file list, remove empty files, merge

> /bin/ls -1 *pipe/cleanfilt.evt > files.txt
> remove_empty_evtfiles.py files.txt cleanfiles.txt
> niextract-events @cleanfiles.txt merged.evt

● Optional: Make light curve and examine plot
in “fv” to determine “--cut” value

> niextlc merged.evt merged_2-10keV.lc timebin=32
pirange=200:1000 lcthresh=0.9 clobber=yes
> fv merged.evt
> cr_cut.py merged.evt --outname merged_cut.evt --cut
10.6 --filterbinsize=32.0 --lcfile merged_2-10keV.lc

> nioptcuts.py merged_cut.evt

Make profile in optimal energy band:
> RPP-profile.py --optemin 1.1
--optemax 9.95 merged_cut.evt

Find optimal energy range for pulsations

Make event file with optimal energy range only with niextract-events:

> niextract-events
Input file name:[] merged_cut.evt[PI=110:995]
Name of output events file:[] merged_cut_optimal.evt

Or with psrpipe.py:

> psrpipe.py --emin <min energy> --emax <max energy> ...

Filter event file to include only the optimal energy range

Now make template
> nitemplate [options] input_file

For example, for events binned into 64 histograms, and to output a profile with
32 phase bins:
> nitemplate --nhistbins 64 --nprofbins 32 merged_cut_optimal.evt

Note: using unbinned fitting can take a while, so binning is typically
recommended

Make template

Demo: nitemplate

Barycentric TOAs:

> photon_toa.py --orbfile @orbfiles.txt --ephem DE405 --plot
--plotfile phaseogram.png --tint 500 --outfile toas.tim
merged_cut_optimal.evt itemplate.gauss J1513-5908_PKS.par

Topocentric TOAs (needed for long-term effects, with long dataset):

> photon_toa.py --orbfile @orbfiles.txt --ephem DE405 --topo
--plot --plotfile phaseogram.png --tint 500 --outfile toas.tim
merged_cut_optimal.evt itemplate.gauss J1513-5908_PKS.par

Note: --tint value will vary between pulsars, e.g. depending on flux level

Generate TOAs...

Barycentric vs. topocentric timfiles

Topocentric

Barycentric

Note: full observatory list here

https://nanograv-pint.readthedocs.io/en/latest/observatory_list.html

Command line:
> pintk parfile timfile

You can also run PINT in python or
in a Jupyter notebook.

*Tempo2 will also work, but only for
barycentric TOAs

...and fit with PINT (or Tempo2*)

Initial
parfile:

pintk example

● Pulsar timing yields high precision on pulsar parameters and allows probing
of pulsar properties

● There are many tools available for pulsar timing analysis
● This tutorial used NICER data, but the general process is the same no matter

what observing frequency, and some tools can be used for different
situations (e.g. different space missions, ground-based observatories)

● I hope this tutorial is helpful for those who want to get started on
NICER+PINT pulsar timing!

Thanks!

Summary

Contact: Megan DeCesar
megan.e.decesar.ctr@us.navy.mil
mdecesa@gmu.edu

mailto:megan.e.decesar.ctr@us.navy.mil

