NICER WORKSHOP | May 14th, 2021

A two-component Comptonisation model for the type-B QPO in MAXI J1348-630 revealed by **NICER**

Federico García, M. Méndez, K. Karpouzas, L. Zhang, D. Altamirano Kapteyn Astronomical Institute, Groningen NL & U. Southampton, UK

C. Bellavita (La Plata, ARG)

university of groningen

The corona geometry and its evolution is still unknown... (wonderful NICER datasets of MAXI J1820+070)

Motivation

- X-ray variability in LMXBs \rightarrow study physics and geometry of accretion flows
- Power Density Spectra show a variety of QPOs \rightarrow characteristic frequencies containing dynamical and geometrical information of the innermost regions.
- In this talk, we will focus on the radiative properties of these QPOs and what we can learn from them using a Comptonisation model.

Outline

- The spectral-timing Comptonisation model in a napkin:
 - The lower kHz QPOs in 4U1636-53
- Low-frequency QPOs in BH XRBs:
 - The Type-B QPO in MAXI J1348-630 seen by *NICER*.

The Comptonisation spectral-timing model

Karpouzas+(2020) Kumar & Misra (2014) Lee & Miller (1998) Physical parameters of the model

- ➤ Corona temperature, kTe
- \succ optical depth, τ
- Soft-photons source, kTs
- > feedback fraction, η
- ➤ corona size, L
- ➢ QPO frequency

The complex spectrum is found solving the linearised time-dependent *Kompaneets* eq. for Comptonisation

$$n_{\gamma} = n_{\gamma,0}(1 + \delta n_{\gamma} e^{-i\nu_{qpo}t})$$

Spectrum = Steady State + Variability at QPO frequency

nthcomp rms & lags

The Comptonisation spectral-timing model

Karpouzas+(2020) Kumar & Misra (2014) Lee & Miller (1998) Physical parameters of the model

- ➤ Corona temperature, kTe
- \succ optical depth, τ
- Soft-photons source, kTs
- ➢ feedback fraction, η
 ➢ corona size, L

> QPO frequency

The complex spectrum is found solving the linearised time-dependent *Kompaneets* eq. for Comptonisation

$$n_{\gamma} = n_{\gamma,0}(1 + \delta n_{\gamma} e^{-i\nu_{qpo}t})$$

Spectrum = Steady State + Variability at QPO frequency

nthcomp rms & lags

Geometry

The Comptonisation spectral-timing model

Energy-dependent variability (rms) and phase-lags

- *rms* increases with energy, showing a *pivot point at low energies* for *low feedback* (η)
- *lags* strongly depend on the feedback (η):
 - low $\eta \Leftrightarrow$ hard lags whereas high $\eta \Leftrightarrow$ soft lags

The lower kHz QPO in 4U 1636–53

(Karpouzas+2020, MNRAS 492, 1399-1415)

Zhang+2017 and Ribeiro+2017 measured the energy-dependent *rms* and *lags* of the lower kHz QPOs in the NS XRB 4U 1636–53 in the 570–920 Hz frequency range.

We fitted these data for 11 QPO frequencies, to study the frequency-dependent properties of the compact Comptonising region surrounding the NS.

We found two solutions: cold seed (blue) and hot seed (red). The cold seed (blue) leads to more reliable power-law indices and shows that the frequency-dependent properties are mainly driven by the size *L* evolution of the thick (τ ~10) and compact (*L* ~ 5–10 km) corona.

Karpouzas, Méndez, .., FG (2020)

9

The recent outburst of MAXI J1348–630

- MAXI J1348 is a recently-discovered BH transient (Yatabe+2019, Tominaga+2020).
- It went into outburst in Jan 2019 and transitioned from the Hard to the Soft State ~1 week later (Nakahira+2019, Cangemi+2019).
- During the transition, it showed a prominent Type-B QPO in the 4–5 Hz frequency range.

The type-B QPO in MAXI J1348–630

- In a recent paper (Belloni+2020) measured the spectral-timing properties of this QPO using NICER data (down to low energies ~0.8 keV).
- They found increasing-with-energy fractional variability (rms) and a particular lag-energy spectrum, with *positive* phase-lags with respect to a reference band at mid energies of 2–2.5 keV.
- They also fitted the time-averaged spectra with a *diskbb*simpl* model and found:

$$kT_{dbb} \sim 0.6 \text{ keV}$$
, $\Gamma \sim 3.5 \text{ (with } kT_e > 10 \text{ keV)}$

Fitting our variable-Comptonisation model

- We used our Comptonisation model to fit the spectral-timing data of the QPO.
- Our model can roughly describe the data:
 - Overall rms trend is found (increasing rms with *E*).
 - Lag spectrum shape is recovered (but with bad χ^2).

kT_e (keV)	Г	τ	kT_s (keV)	L (km)	η	$\frac{dH_{\text{ext}}}{(\%)}$	χ^2_{ν} (dof)
20^{\dagger}	3.5†	1.3†	0.205±0.003	7100±360	0.53±0.05	4.3±0.4	11 (28 dof

[†] fixed parameters.

• The data is fitted using a single Comptonisation region of ~7000 km (~400 Rg for 10 Msun BH) with intermediate feedback ($\eta \sim 50\%$) which explains the change from soft to hard lags at E ~ 2.5 keV

A two-component variable-Comptonisation model

• We then explored the possibility that the QPO spectrum arises from two Comptonisation regions:

$$N(E, t, \omega_0) = N_1(E)e^{i\omega_0 t} + N_2(E)e^{i(\omega_0 t + \phi)}$$
(1)
= $\left(N_1(E) + N_2(E)e^{i\phi}\right)e^{i\omega_0 t} = |N(E)|e^{i\Phi(E)}e^{i\omega_0 t},$

• By doing this, we can get the variability amplitudes and phase-lags by combining two Comptonisation models, this way:

$$\begin{split} |N(E)| &= \left[|N_1(E)|^2 + |N_2(E)|^2 \\ &- 2|N_1(E)||N_2(E)|\cos(\phi_2(E) - \phi_1(E) + \phi) \right]^{1/2} \end{split}$$

 $\tan \left(\Phi(E) \right) = \frac{\text{Im}\{N_1(E)\} + \text{Im}\{N_2(E)e^{i\phi}\}}{\text{Re}\{N_1(E)\} + \text{Re}\{N_2(E)e^{i\phi}\}}$

García+2021 12

Fitting a two-component Comptonisation model

• With this model, we obtain remarkably better fits to both the *rms* and *lag* spectra.

Fitting a two-component Comptonisation model

 The data is well fitted invoking two Comptonisation regions of ~500 km (25-30 Rg) and ~10 000 km (550 Rg).

Component	kT _s (keV)	$\frac{L}{(10^3 \text{ km})}$	η	δH _{ext} (%)	δkT_s (%)	δkT_e (%)
Small (1)	0.38±0.02	0.49±0.14	0.22±0.03	68±15	1.1±0.3	42±10
Large (2)	0.34±0.01	10.4±1.5	0.80±0.12	10±1	0.42±0.05	8.8±0.8

- In the fits, we recover compatible temperatures for the soft-photon source (*kTs*) with the time-avg spectrum, in both cases.
 - This points to the innermost parts of the disk as the main source of soft-photons (and variability).
 García+2021

Fitting a *two-component* Comptonisation model

 The data is well fitted invoking two Comptonisation regions of ~500 km (25-30 Rg) and ~10 000 km (550 Rg).

Component	kT _s (keV)	$\frac{L}{(10^3 \text{ km})}$	η	$\frac{\delta H_{\text{ext}}}{(\%)}$	δkT_s (%)	$\frac{\delta kT_e}{(\%)}$
Small (1)	0.38±0.02	0.49±0.14	0.22 ± 0.03	68±15	1.1±0.3	42±10
Large (2)	0.34 ± 0.01	10.4 ± 1.5	0.80 ± 0.12	10 ± 1	0.42 ± 0.05	8.8 ± 0.8

- In the fits, we recover compatible temperatures for the soft-photon source (*kTs*) with the time-avg spectrum, in both cases.
- This points to the innermost parts of the disk as the main source of soft-photons (and variability).

Switching to a diskBB as the soft-photon source (preliminary results)

 $\chi^2 = 1.71$ (23 dof)

The data is **best fitted** invoking two Comptonisation regions of ~350 km (20 Rg) and >12 000 km (>650 Rg).

Component	kT _s (keV)	$\frac{L}{(10^3 \text{ km})}$	η	$\frac{\delta H_{\text{ext}}}{(\%)}$
Small (1)	0.48(2)	0.34(5)	0.47(3)	67(10)
Large (2)	0.75(4)	>12.0	< 0.10	12(2)

- In the fits, we recover compatible temperatures for the soft-photon source (*kTs*) with the time-avg spectrum (0.6 keV for a diskBB).
- The most important change is in the feedback fraction of the large component.

Switching to a diskBB as the soft-photon source (preliminary results)

(see Carotenuto+2021)

The data is *best fitted* invoking two
 Comptonisation regions of ~350 km (20 Rg) and
 >12 000 km (>650 Rg).

Component	kT _s (keV)	$\frac{L}{(10^3 \text{ km})}$	η	$\delta H_{\rm ext}$ (%)
Small (1)	0.48(2)	0.34(5)	0.47(3)	67(10)
Large (2)	0.75(4)	>12.0	< 0.10	12(2)

- In the fits, we recover compatible temperatures for the soft-photon source (*kTs*) with the time-avg spectrum (0.6 keV for a diskBB).
- The most important change is in the feedback fraction of the large component.

Summary

- Comptonisation dominates the spectra in the hard and intermediate states in BH XRBs.
- We have shown that a spectral-timing Comptonisation model can fit well the energy-dependence of the low-frequency QPOs in these sources.
- The QPO lags can be used to constrain the size of the Comptonising region, information that cannot be attained from the typical time-averaged spectra.
- A feedback term is required to produce soft QPO lags as those seen in the low energy band in the type-B QPO of MAXI J1348.
- In this case, a good fit is obtained when two Comptonisation regions are considered, possibly revealing a more complex underlying corona structure (García+2021).
- Finally, we note that thanks to recent spectral-timing analyses, new evidence has been gathered regarding the evolution of the size of the Comptonisation region (corona) during BH outbursts, mainly thanks to *NICER* (Kara+2019, Wang+2021, and see our recent... *Karpouzas+2021*).

NICER WORKSHOP | May 14th, 2021

Thank you very much for your attention!

Federico García, M. Méndez, K. Karpouzas, L. Zhang, D. Altamirano Kapteyn Astronomical Institute, Groningen NL & U. Southampton, UK

C. Bellavita (La Plata, ARG)

university of groningen