NICER Analysis Workshop May 2021

MOC

HEH

Neutron star Interior Composition ExploreR

NICER Calibration: Status/Update Craig Markwardt (NASA/GSFC) on behalf of NICER Team

NICER High Level Recommendations

- Use the 'nicerl2' processing tool for all data
 - Applies calibration and standard processing
- Consult <u>on-line NICER documentation</u> for analysis issues
 - Software guide overview
 - Analysis "threads" procedures for common tasks
 - Analysis tips for specific known problems or issues you may encounter
 - Keep your CALDB <u>up to date</u>, and understand calibration limitations by reading <u>calibration</u> <u>documents</u>
- Send questions to the NICER helpdesk: https://heasarc.gsfc.nasa.gov/cgi-bin/Feedback

Data Processing Recommendations

- Use the 'nicerl2' processing task to process all NICER observations (part of standard HEASoft)
 - nicerl2 applies standard calibrations and screenings
 - Calibration: energy scale, timing offsets
 - Screenings: pointing, optical light, high background

- Use nicerl2 even if you freshly download data from the archive
 - When new calibration becomes available, the NICER pipeline does not always reprocess old data, or apply it immediately to new data, so you need to do it yourself

"Typical" NICER Spectrum: Crab

NICER Crab Spectrum

ICER + SEXTAN

LLARUM, SCIENTIA ET

NSA · GS

NICER Detector Features

- These features are non-X-ray and non background
- Forced trigger
 - Const rate
 - 0 keV
- Noise peak
 - Varies w/ optical light
 - ~120 eV
- Trigger efficiency function
 - Cut-off of source counts
 - ~240 eV

NICER Array Average

NICER Calibration Status

- Energy scale
- Energy range
- Background
- Response (ARF & RMF)
- Published NICER calibration notes found here: https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/nicer/docs/nicer_caldb_docs.html
- Most recent calibration release xti20200722

Energy Scale Calibration Status

- NICER energy scale (CALDB release xti20200722)
- After calibrations, all event files have "PI" column with common energy scale ("Pulse Invariant")
 - 1 PI = 10 eV (e.g. PI = 150 means E = 1.50 keV)
 - Accounts for temperature & optical loading (undershoots)
 - Estimated error ~5 eV (0-10 keV)
 - Assumes standard undershoot filtering of 0-200 ct/s/FPM

- NICER response was calibrated against the Crab in
 0.24-14 keV energy range (see xti2020722 notes)
- At low end of range, large noise peak may interfere with spectrum, for undershoots > 100 ct/s/FPM
- At high end of range, quality of background subtraction will be dominant systematic error contributor

NICER Background Estimation

- Scientist supplies filter file (.mkf) and spectrum, tool produces background spectrum and modified .mkf file with background rate estimates in various bands
- "**3C50**" model (nibackgen3C50; Remillard & Loewenstein; submitted for publication 2020)
 - Scientist supplies observation directory, tool produces source and background spectrum
- Both tools are based on array-averaged backgrounds (3C50 model will scale to actual number of detectors enabled)
 - Both tools may also require re-running nicerl2 with special settings, see their README documentation

NICER Effective Area (ARF)

- NICER response
 - NICER calibrated against
 Crab nebula as a
 "smooth" continuum
 - Systematic errors
 <1% (0.4-10 keV)
 - Total effective area and slope comparable to Madsen et al. 2017 NuSTAR
 - For on-axis targets only

NICER ARF Performance: Crab

- Basis of comparison is Toor & Seward (1978) result, extended to lower energies
- Above ~1 keV, NICER is in the mix of other observatories
- Below 1 keV, very significant differences with XMM RGS (Kaastra et al. 2009)
 - These are primarily driven by minor differences in absorption and dust scattering which lead to large apparent differences in flux
- Follow-up NuSTAR/NICER work (priv. comm.) suggests a slope error of ~0.03, and low energy response differences in the ~0.05e22 range

How NICER ARF is Estimated

- X-ray ray-tracing program CONSIM
 - Physical structures and surfaces (24 shells)
 - X-ray reflectivity and scattering
 - Account for surface micro-roughness (2A 12A)
- Throughput of each shell individually (vs Energy and roughness)
- Compared to calibration observations of Crab (see release notes)

- Per-shell effective area rack-and-stack for an idealized module
- Can see the effects of shell radius
 - Inner shells are more reflective at higher energies but lower geometric area
 - Outer shells have most effective area at soft energies
- Gold edges at 2.2 keV and 13.9 keV

NICER Redistribution (RMF)

- Detector RMF published model (Scholze & Procop 2009)
 - Embodies detector and read-out physics

SEXTAN

NSA + GSI

- Detector resolution based on ground calibration, typically 8-9 electron read noise
 - Assumes undershoots <100 ct/s (approx.)
- Trigger efficiency function fitted from on-orbit data

- Currently NICER responses are available as a separate download outside of CALDB
- A single ARF and RMF for each module, and simple tools to combine them for your observation
- Download information is here: <u>https://heasarc.gsfc.nasa.gov/docs/nicer/analysis_threads/arf-rmf/</u>
- Soon to be released: a response calculator which adjusts to conditions of a particular observation (see later slides)

Detector Features to Watch Out For

- ~2.2 keV Gold M edge from XRC reflector gold coating (actually a complex from 2.1 – 4.5 keV)
- 1.84 keV Silicon K edge (window & bulk detector)
- 1.56 keV Aluminum K edge/fluorescence (detector window)
- ~0.25 keV Trigger efficiency cut-off (varies by detector)
- ~0.15 keV Noise peak (varies by detector & lighting)
- At high optical light levels response is broadened but this is not yet modeled
 - Noise peak may intrude into spectrum at low energies
 - Sharp lines may be degraded

Astrophysical Features to Watch Out For

- The interstellar medium is often modeled with neutral N_H models such as wabs, tbabs (Wilms et al.), etc.
- These models are general approximations to reality, especially with all parameters left at solar abundance
- Most common features:
 - Oxygen K edge (0.56 keV)
 - Iron L edge (0.71 keV)
 - Neon K edge (0.87 keV)
- If you see residuals in this energy range, consider using "tbfeo" or "tbvarabs" to allow abundances to vary; check literature for reported abundances
- Even so, actual edge profiles may not match "perfect" profiles tabulated in tbabs model (due to ionization, molecular compounds, or dust composition of ISM); see Crab to right
- Dust scattering halos see bright target slide

NICER Concerns: Bright Targets

- **Deadtime correction** affects all observations, but typically a few percent
 - Team is working on documentation and tools for deadtime corrections
- **Pile-up** is a concern only for the brightest targets (>>3.5 Crab); this is a difficult issue to model
- **Dust scattering halos** have significant effects
 - Energy dependent
 - Aperture size dependent
 - complicates comparing observatories with different apertures (NICER 360", RXTE 1°, CCD imagers ~few arcsec)
 - Halo is time dependent if source varies
 - 'xscat' model in XSPEC recently updated by Randall Smith for larger radius apertures such as NICER. Use radius=180"

Seward et al. 2005

NICER Concerns: Faint Targets

- The primary concern for faint targets is proper background subtraction
 - May be worth trying both available models
- Some detectors are known to be noisier and may be worth excluding: "14" and "34" **ROSAT All-Sky Survey**
- Working near the Galactic plane, beware of additional diffuse emission not in the background model (example of RX J1856)

RX J1856 Region

- Current NICER ARF is on-axis only
 - Calculator developed for different pointing scenarios (rasters, off-axis targets, spoiler sources, etc.)
 - Current per-shell ARF approach too difficult to maintain going forward: simplify
- Current dependence upon optical loading incomplete
 - Response matrix is at fixed (dark) resolution
 - Calculator developed to estimate response under conditions of actual observation
 - Energy scale tested in undershoot range 0-200 ct/s (dark to medium optical loading conditions)
 - Typically handles orbit night and >60 deg from sun
 - Need extension of gain scale to higher optical loading

- How does vignetting behave? Versus
 - energy
 - reflector surface micro-roughness
 - shell
 - off-axis angle
 - optical tip/tilt
 - Overwhelming number of dimensions!
- How do we utilize this information in software?
- Solution: a vignetting lookup table
- Step through filter file 1 second at a time, use pointing information, calculate throughput for point source
 - Stretch goal: alternate surface brightness profiles

- This past Fall, our work started assuming azimuthal symmetry for vignetting profile
- Results: Very little change in throughput with roughness, vignetting shape dominated by geometry & collimator

Detailed Work: Full 2D Profile

- We now know vignetting profile is not symmetric
- Why? Some XRC optics are tipped by 0-90" from perfect alignment

+ SEXTAN

LARUM, SCIENTIA ET

Module-to-module variations

600

800

1000

- We now have a new ARF model that simplifies the number of dimensions (only two roughness values allowed)
- We have raytraced vignetting profiles
- Fitted vignetting profile to each module to derive
 - Best boresight
 - Tip angle
 - Azimuth of tip axis
- ARF calculator tool to use this data

New NICER RMF Calculator Tool

- Resolution and trigger efficiency will vary, depending upon optical loading conditions
- Calculator steps through filter file and estimates observation-dependent broadening

+ SEXTAN

Extending to Higher Optical Loading

- Extend current range (0-200) to wider range (0-500 ct/s)
 - 0-200 ct/s: roughly >60 deg from sun
 - 0-500 ct/s: roughly >45 deg from sun
- New gain model (optmv12)
 - Complete (Next slide)
 - In current recommended undershoot range of 0-200 ct/s, change in energy scale <5 eV
 - Above 200 ct/s, change ~15-25 eV
- RMF calculator for custom per observation responses
 - Use known detector performance factors to estimate resolution-based broadening at each filter file time step

New Gain Model (optmv12)

+ SEXTAN

Time Seg 0 PI Forced Trigger Optical Loading Performance DET_ID=05 15 Centroid (eV) 10 +2 eV Ο 5 -30.3±21.0eV 0 -5 200 400 600 Undershoot Rate (ct/s) Centroid Resid (eV) 32 unhunhunhundan 0.77 eV 0 -1 $\frac{-2}{-3}$ 400 600 n 200 Current Calib. Undershoot Rate (ct/s) Range Peak 1ơ Width (eV) 55 mhududud 50 Zero a 3771 + 27445 $.50 \pm 0.021$ 40 35 30 200 400 600 0 Undershoot Rate (ct/s)

Improved behavior allows gain solution to undershoots of ~500 ct/s/FPM

Summary

- Current Released Calibration
 - Energy Range: 0.24-14 keV (undershoots 0-200)
 - Energy Scale: ~5 eV (undershoots 0-200)
 - Effective Area: ~1% (on-axis only)
 - RMF: not undershoot-dependent
- To-be-released Calibration
 - Energy Scale: undershoots 0-500
 - Effective Area: off-axis calculator
 - RMF: undershoot-dependent trigger efficiency

- Detector and astrophysical features
- Bright sources
 - Dust scattering halos can be significant
- Faint sources
 - Background subtraction is dominant systematic error