NICER Analysis Workshop May 2021

MOO

HEH

Neutron star Interior Composition ExploreR

NSTITUTE

How to Analyze NICER Data Craig Markwardt (NASA/GSFC) on behalf of NICER Team

- This is a tutorial for scientists new to NICER data analysis
- Getting started with software and calibration data
- Retrieving data from the archive
- Important NICER data files
- How to process NICER observations
 - Nicerl2
 - Extract light curve
 - Extract spectrum
 - Response matrices (ARF/RMF)

- This tutorial will show you how to start with NICER data processing
 - From archive data to final products
- Basic analysis steps
- Basic output products
 - Light curve
 - Spectra

- The NICER team provides analysis help to guest observers in a number of ways
 - On-line help
 <u>https://heasarc.gsfc.nasa.gov/docs/nicer/nicer_analysis.html</u>

 deals with many common NICER analysis tasks, tips
 and caveats
 - The NICER help desk <u>https://heasarc.gsfc.nasa.gov/cgi-bin/Feedback</u> will route questions to NICER scientists
 - Please note that we are unable to provide scientific consultations
 - On-line help for software tasks
 <u>https://heasarc.gsfc.nasa.gov/lheasoft/ftools/headas/nicer.html</u>

- This week Wednesday, we will be hosting an analysis help forum on Zoom (same meeting link)
 - 0900 1100 EDT
 - Submit your questions
 <u>https://forms.gle/Wh12E34dZmZrYJCC8</u>
 - We will try to answer your questions on Wednesday
 - After Wednesday we will not be able to answer further submitted questions
- You may also submit questions in the chat during all sessions this week, but we may defer more complicated answers to the help forum

- You will need NICER software and calibration data in order to do standard processing
 - Software
 - NICERDAS, is part of the HEASoft package
 - HEASoft 6.28.2 is most recent version
 - Calibration Data
 - Released through Calibration Database (CALDB)
- Installation instructions
 <u>https://heasarc.gsfc.nasa.gov/docs/nicer/analysis_threads/nicer-setup</u>
- There are also separate downloads for response files

- A "unix-like" computer
 - Linux
 - Mac OS X
 - Windows (using WSL or WSL2)
- Installation instructions provide detailed steps and prerequisites to get software and calibration data

Testing That Your Installation is Working

- Software
 - Command: nicerversion
 - Response: (depends on software version)
 yyyy-mm-dd_Vnnn
- Calibration
 - Command:

quzcif NICER XTI - - ALIGNMENT now now -

- Response: (may change in future) /home/dtsops/caldb/prod/data/nicer/xti/bcf/pntmis/ni xtipntmis20170601v001.teldef 0

Retrieving Data from NICER Archive

- NICER data is typically transferred to HEASARC archive within two weeks of observation
 - GO-awarded observations may be encrypted
 - GO's will receive decryption instructions
- We will download a sample observation from HEASARC and process it
 - Cassiopeia A supernova remnant
- We will use the HEASARC Browse Interface
 - <u>https://heasarc.gsfc.nasa.gov/db-perl/W3Browse/w3browse.pl</u>

NICER · SEXTANT	ering a Basic	Que	ery
Object Name or Coordinates:	cas a	and/or	Local Browse No file selected.
	e.g. Cyg X-1 or 12 00 00, 4 12 6 or Cyg X-2; 12.235, 15.345 (Note use of semi-colons (;) to separate multiple object names or coordinate pairs)		File should contain objects and/or coordinate pairs one per line or separated by semi-colons.
Coordinate System:	J2000 ᅌ		
Search Radius:	Default	arcmin 🗘	
	Default uses the optimum radius for each catalog se	arched.	
and/or search by date?			
Observation Dates:		YYYY-MM-DD h	h:mm:ss or MJD: DDDDD.ddd
	Not all tables have observation dates. For those that semicolons (;). Range operator is "". (e.g. 1992-12-	t do, the time por 31; 48980.5; 199	rtion of the date is optional. Separate multiple dates/ranges with 5-01-15 12:00:00; 1997-03-20 2000-10-18)
2. What missions and catalogs do you want	to search? (Bold text indicates mission is	active)	
Most Requested Missions			
Chandra [CXC,CSC]	i HaloSat		Hitomi

• You can also enter coordinates, alternate names, etc.

Swift

NuSTAR [Caltech]

ROSAT

WMAP

• Submit search with "Start Search" button

NICER

Suzaku

MAXI [JAXA]

XMM-Newton [XSA]

RXTE

NICER + SEXTANT SUST VILLARIAL SCIENTIA ETVIN CARUSTIS NICER + SEXTANT WILLING CARUSTIS NICER + SEXTANT WILLING CARUSTIS CARUST	ery Sea	rch Res	sults	
Query Information Query Images generated by <u>SkyView</u> Click on image to see full SkyView im	Results Data P	roducts Retrieval	Help	
DSS Optical image, 2.83'	Search was base Object/Coordinates: Using the coordina WARNING! The pu Requery with coor Coord. System: Maximum Rows:	cas a resolved by SIMBAD ates from the SIMBAD ositions returned by SI rdinates found by NED Equatorial, equinox 2 1000	D (local cache) to [23 23 24.00, +58 48 54.0] resolver for cas a. MBAD and NED for cas a differ by 0.5 arcminutes! 2000	

Search Radius: Reissue Query

RASS X-ray image, 75.0' Images centered on requested position

Browse Tip: Do you know how to generate a script of commands to retrieve data products? Learn more on this topic or See all tips

Default

arc minutes

Save Query to File

	Table Name and Bow Count: 1	table queried. A total of 118 rows returned.	
(nicermastr:NICER Master Catalog	118	

Click "nicermastr" highlighted text ("NICER Master")

118 rows retrieved from nicermastr

- There are many available data sets, and we will select the first one
- Click "Retrieve Data Products for selected rows"

Data Products Download Options and Other Services

Create Download Script for data products for selected rows	
Preview and Retrieve	data products for selected rows
Retrieve	data products for selected rows
Save to Hera What is Hera	data products for selected rows
Optionally, add a file name e.g., */hri/*.gif* Use a semi	constraint to specify product types, colon (;) for multiple contraints, e.g., *fits*;*gif*

- Click "Retrieve"
- Wait until TAR Complete message appears before clicking the download link

Advanced Usage

- You can use "Preview and Retrieve" to look at data sets before downloading them
- "Create Download Script" will create a script using "wget" that you can use on your own computer
- Use the "download_wget.pl" script to download multiple data sets to your computer https://heasarc.gsfc.nasa.gov/docs/nicer/archive/nicer_archivestart.html

- Data are delivered in a "tar" archive, which needs to be expanded
- Place the .tar file you downloaded in the directory you plan to work in
- Extract the archive

tar xvpf filename.tar

- NICER Observations are archived with an observation ID called an OBS_ID. Example 3010080128
- 3010 proposal number
- 08 target number listed in proposal
- 01 visit number listed in proposal
- 28 segment number (visits are broken into daily segments)
 - This is what you download!
- Proposal, target, and visit are driven by the science of the proposal
- The segment number is driven by the convenience of the data processing pipeline

- A single observation segment is what you download from the archive
 - Should contain no more than a ~day's worth of data (broken at UTC midnight)
- A segment may contain more than one contiguous pointing at the target. Each is known as a snapshot. Example:
 - 01:31-01:55 snapshot 1
 - 03:57-04:15 snapshot 2
 - 23:49-00:07 snapshot 3 (spans midnight)
- The data set you download only has data corresponding to the target of interest, not snapshots of other targets observed on the same day

- Snapshots are primarily driven by International Space Station orbit and visibility constraints
- Command used: <u>fplot 3010080128/auxil/ni3010080128.mkf.gz</u> offset=yes X axis: TIME Y axis: ANG_DIST

 The summary to this discussion is that your "science" observation will almost always be broken into smaller pieces called segments (daily) and snapshots (multiples of ~90 minute cadence)

NICER Observation Layout

- niNNNNNNNN_cl.evt "cleaned" and calibrated event file contains every event that passes the screening criteria
 - This is the file you will most often use for science
- niNNNNNNNN_ufa.evt calibrated but unfiltered event list
- niNNNNNNNNNN.mkf filter file (.mkf) which contains quantities to screen on
- Note that by default these files are gzip-compressed when you retrieve them from the archive. In the case of very large files, this may interfere with data processing and you will need to uncompress them before processing

FITS Event Files ("ufa" and "cl")

SEXTAN

ARUM, SCIENTIA E

HDU 2	EVENTS BinTable 9 cols x 16744802 rows			
Col	Name	<pre>Format[Units](Range)</pre>	Comment	
1	TIME	1D [s]	Time of events	
2	RAWX	1B [pixel] (0:7)	Event X position RAW coordinates	
3	RAWY	1B [pixel] (0:6)	Event Y position RAW coordinates	
4	PHA	1I [chan] (0:4095)	Slow Pulse Height Analyzer	
5	PHA_FAST	1I [chan] (0:4095)	Fast Pulse Height Analyzer	
6	DET_ID	1B	Detector ID number - 10*MPU+FPM	
7	DEADTIME	1B [s]	Event dead time	
8	EVENT FLAGS	8X	MPU Event Flags - Events	
9	TICK	1K	MPU tick count of event	
10	PI	11	Slow Pulse Invariant	
11	PI FAST	11	Fast Pulse Invariant	GREEN =
12	MPU_A_TEMP	1E	MPU Analog Temperature	Calibration Additions
13	MPU UNDER COUNT	1J	MPU undershoot rate	
14	PI_RATIO	1E	Ratio PI/PI_FAST	
HDU 3	GTI	BinTable 2 col	s x 13 rows	
Col	Name	Format[Units](Range)	Comment	
1 2	START	1D [9]	GTT stop time	GTI – Good Time Intervals
2	0101		OIT DOD CINC	

Command used: ftlist 3010080128/xti/event_cl/ni3010080128_0mpu7_cl.evt.gz HC

- There are 56 modules arranged as follows (see following page):
 - seven MPUs labeled 0-6
 - eight FPMs per MPU, labeled 0-7
- The modules are labeled with a single integer DET_ID in the event list:
 - DET_ID = $10 \times MPU + 1 \times FPM$
 - Example: 27 means MPU2, FPM7

Detector Layout

Running Standard NICER Pipeline Processing

- The next section discusses how to run standard NICER pipeline processing for yourself
- Why would you want to do this?
 - New software may be available
 - New calibration data may be available
 - Applying screening is a scientific judgement; you may need to alter the defaults
- The standard pipeline processing tool is called: nicerl2
- See https://heasarc.gsfc.nasa.gov/docs/nicer/analysis_threads/nicer12/ for more information

- Applies standard processing to a single observation segment data set
 - Standard calibration ("nicercal" task)
 - Merges per-MPU event files into single "ufa" file
 - Generates filter file (.mkf file)
 - Applies screening ("nimaketime" and "nicerclean" tasks)
- End result is a cleaned event list in xti/event_cl/niNNNNNNNNN_0mpu7_cl.evt
- Note that any existing cleaned event file may be clobbered if you set clobber=YES!

Running nicerl2

- Basic command: cd /path/to/data nicerl2 indir=3010080128 clobber=YES
- What does it do
 - Change working directory to your work area
 - Run nicerl2 with the observation directory 3010080128 to be processed
 - clobber=YES means to overwrite existing .mkf and .evt files (Note that if you set clobber=NO, you will need to rename or move the changed files before running nicerl2)

Things You May Want to Change

- Consider background modeling
 - You may need to add additional columns in order to make the background models work properly.
 See the "nicerl2" thread for more information.
 Example for 3C50 model: nicerl2 ... niprefilter2_coltypes=base, 3c50
- Consider if the screening is too conservative, and most of your data disappeared
 - See next talk for tips on how to improve this

- The key output of nicerl2 is a cleaned event file.
- This is the key product you can use to
 - Extract light curves
 - Extract spectra
- Next section discusses these tasks

- NICER is compatible with the HEASoft environment called xselect.
- xselect is an interactive console environment that allows you to perform various selection operations, and extract products

- In this example we will start xselect and read our cleaned event file
- Start xselect
 cd 3010080128/xti/event_cl
 xselect
 - Change to directory with cleaned events
 - Run xselect
- Read events

read events ni3010080128_0mpu7_cl.evt Event Directory: . Reset the Mission? Y

 The file name is the cleaned event file produced by nicerl2

- In this example we will extract a light curve with 16 second time bins and plot it
- Extract light curve set binsize 16.0 extract curve
 - Set time bin size to 16 seconds
 - Extract light curve
- Plot the light curve plot curve
- Save the light curve for future use save curve mylightcurve.lc

- In this example we will extract a spectrum and plot it
- Extract spectrum
 - Set time bin size to 16 seconds
 - Extract light curve
- Plot the spectrum
 - plot spectrum log y on log x on r x 20 1000
- Save the spectrum for future use save curve myspectrum.pha

Example Spectrum

ICER + SEXTAN

NSA + G.S

 Note PI Channel = (Energy/10 eV). Example PI=150 is the same as E=1.5 keV

- The next step can be spectral analysis
- You will need response data for your observation
- NICER responses are composed of
 - ARF "Ancillary Response File" total detector throughput information
 - RMF "Redistribution Matrix File" detector resolution and redistribution information
- Both files are required for analysis

- NICER has an analysis thread describing how to do this in more detail: https://heasarc.gsfc.nasa.gov/docs/nicer/analysis_threads/arf-rmf/
- You will be required to download additional data, and extract the tar file as described
- Then you can use the included nicer-add-arfs and nicer-avg-rmfs scripts to generate response files for your data
- Please note that if you use the default 52-detector array, you do not have to edit any of the files.

- XSPEC is the supported spectral fitting package for NICER data
- To load NICER data:

data 1:1 myspectrum.pha
arf 1:1 nixtiaveonaxis20170601v003.arf
rmf 1:1 nixtiref20170601v001.rmf
ignore **-0.25,10.-**

- Read spectrum, ARF and RMF
- Set default energy range to 0.25-10 keV by ignoring <0.25 and >10.0 (may depend on signal to noise and science needs)

- Unlike an imaging detector NICER does not have a way to select a different background region.
- NICER provides two different background modeling approaches
 - The "3C50" model (Remillard et al.)
 - The "space weather" model (Gendreau et al.)
- More will be discussed in future presentations

- We have taken NICER analysis from beginning to end
 - Software, Calibration data
 - Archive searching
 - Download and extraction of observation data
 - Running standard processing
 - Extracting high level products
 - Spectra
 - Light curves

- Future presentations will give more information about finer points, tips and caveats of NICER analysis
 - Changing screening criteria to retrieve "more" data
 - New NICER software changes expected shortly
 - NICER calibration status
 - NICER timing and barycentering
 - Background modeling
 - Spectral fitting best practices