NICER Analysis Workshop May 2021

MOO

Neutron star Interior Composition ExploreR

NICER Screening Tutorial Craig Markwardt (NASA/GSFC) on behalf of NICER Team

NSTITUTE

- This presentation discusses the NICER-standard screening criteria
 - Why they are set the way they are
 - How you can cautiously change them, and some of the impacts of doing so
 - What we recommend to not change
 - How to run nicerl2 or nimaketime to get these changes

- The standard NICER pipeline uses standard, conservative, screening settings
- This reduces the chances of "bad" data getting mixed with good science data
- However, sometimes the screening is too conservative, and most or all of the data is lost
 - "Where's My Data?"
- Therefore, the analyst needs knowledge of ways to adjust the screening settings, and the impacts of doing so

- Detector resets ("Undershoots") a measure of leakage current and optical light
 - nicerl2 setting: underonly_range
- Overshoots resets a measure of high energy particle backgrounds
 - nicerl2 setting: overonly_range
- Cut-off Rigidity Screening
 - nicerl2 setting: cor_range

- NICER maintains a Filter File (also known as .mkf file)
 - NNNNNNNNN/auxil/niNNNNNNNNNN.mkf
 in your observation directory
- Filter file has MANY quantities that can be examined and screened on

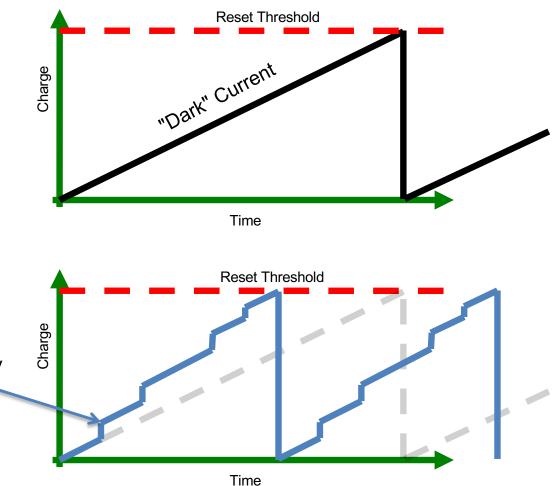
HDU 2 PREFILTER

BinTable 101 cols x 17827 rows

Col	Name H	Format[Units](Range)	Comment
1	TIME	1D [s]	seconds since mission epoch
2	POSITION	3E [km]	ECI position of satellite [X,Y,Z]
3	VELOCITY	3E [km/s]	ECI velocity of satellite [X,Y,Z]
13	ELV	1E [deg]	angle between pointing and earth limb
14	BR_EARTH	1E [deg]	angle between pointing and bright earth
15	SUNSHINE	11	1=in sunshine; 0=not
22	ANG_DIST	1E [deg]	angular distance of pointing from nominal
23	SAA	11	1=in SAA; 0=not
24	SAA_TIME	1E [S]	time since entering/exiting SAA
26	COR_SAX	1E [GeV/c]	magnetic cut off rigidity (IGRF map)
57	NICER_SAA	1B	NICER-specific SAA definition
85	FPM_OVERONLY_COUNT	1E	Per-FPM over-only reset count from events
86	FPM_UNDERONLY_COUNT	Г 1Е	Per-FPM under-only reset count from events
87	FPM_FT_COUNT	1E	Per-FPM forced trigger count from events
88	FPM_NOISE25_COUNT	1E	Per-FPM noise count <0.25 keV from events

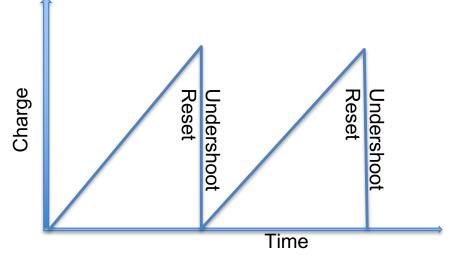
- Example of just a few of ~100 columns in filter file
- Command used: ftlist 3010080128/auxil/ni3010080128.mkf HC

- Use the 'nicerl2' processing task to process all NICER observations (part of standard HEASoft)
 - How to run nicerl2: nicerl2 indir=./1234567890 clobber=YES In this presentation, we will discuss additional command line options to expand or adjust screening of data
 - Some filter file columns have specific nicerl2/nimaketime options, but you can always use nimaketime_gtiexpr to screen on any column you wish
- Internally to 'nicerl2' is a task called 'nimaketime' which makes screening GTI
 - All nimaketime options are also bubbled up to nicerl2
 - You can re-run nimaketime, and do your own event screening with nicermergeclean later (more work)
 - Or, you can re-run nicerl2 with different options (more CPU time)


 NICER detectors are known as Silicon Drift Detectors (SDDs)

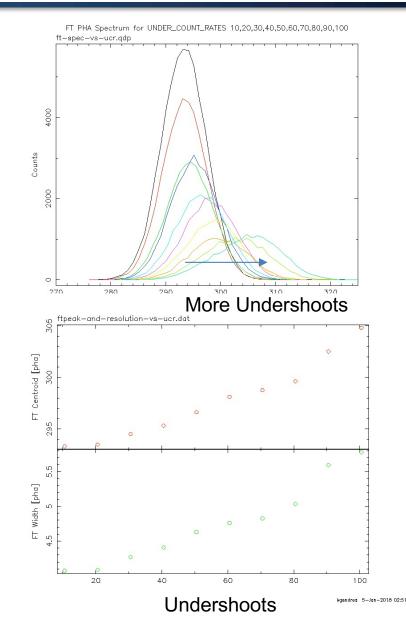
- As a part of normal operation, charge gradually builds up at the anode, and must occasionally be discharged
 - Detector reset, "Undershoot"

- Amplified charge appears on capacitor and resets when full capacity reached (Undershoot)
- Unfiltered event files contain a mix of X-ray events, background events, and resets
- All of these are completely normal



What Causes Detector Charging Current?

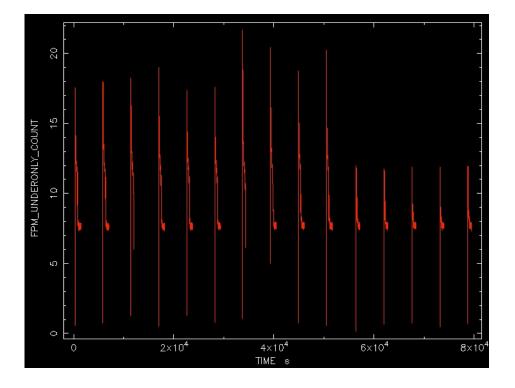
- X-rays
- Background charged particles
- Detector leakage currents
- Optical photons ("optical loading")
 - This is typically the dominant source of charging and thus resets


Typical Undershoot Rates

- Internally, detector system behaves as a charging capacitor
 - Charging rate (2-200 Me⁻/s):
 - Leakage current (dark current)
 - Electrons injected by optical photons (optical loading)
 - Charged particles
 - X-rays (few hundred electrons/event)
 - Discharge rate: when full-well charge is reached, detector is reset, registered in filter file as an "undershoot" reset
 - Dark undershoot rate ~5-10 ct/s; brightest conditions >1000 ct/s (per detector)

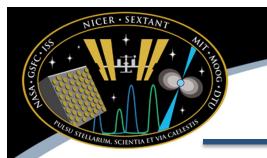


- Impacts
 - Energy scale is shifted
 - Narrow peaks are broadened
- Current Calibration
 - Energy scale variations calibrated in undershoot range 0-200 ct/s
 - There is no undershoot dependence in released RMF
- This is why we recommend limiting undershoots to 0-200 ct/s range (default)



- Not always, but most probable issues when
 - Target is near the sun (SUN_ANGLE < 60 [deg])
 - Observatory is in orbit day (SUNSHINE = 1)
 - Near the full moon

Checking Undershoots


Look to see if undershoot rate exceeds 200 ct/s, which is the default maximum.

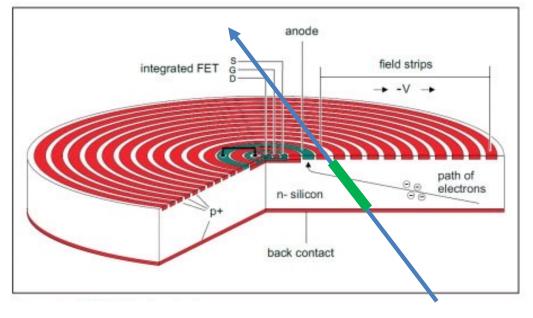
In our example dataset, the undershoots are low (0-20), so they are not a problem

- Command used: fplot 3010080128/auxil/ni3010080128.mkf offset=YES X Axis: TIME
 - Y Axis: FPM UNDERONLY COUNT

- Detector Undershoot resets primarily indicate optical light loading
 - Filter file quantity FPM_UNDERONLY_COUNT (mean per-FPM undershoot)
 - Calibrated range 0-200 ct/s/FPM (CALDB xti20200722)
 - Going outside that range will lead to degraded energy scale assignment (~25 eV) and degraded resolution (~10 eV FWHM added in quadrature)
- Sometimes default screening excludes all data
 - Cautiously expand the range (example 0-300 instead of 0-200) nicerl2 ... underonly_range=0-300

What To Look For When Increasing Undershoot Range

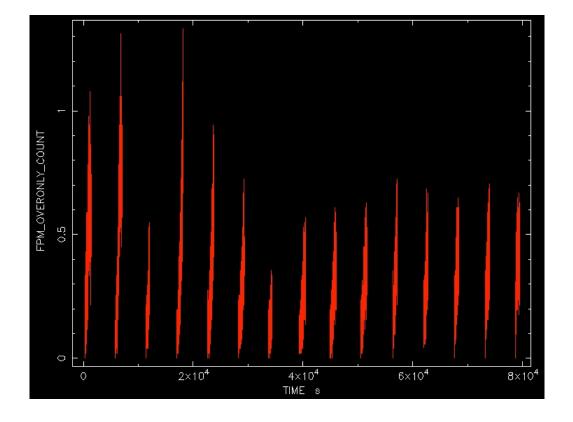
- Beware that the energy of features like lines and edges may be shifted from true Energy (10s of eV)
- Beware that narrow features like lines and edges may be broadened more than the released RMF indicates
- Discussion of improvements to situation in next presentation!



- If you find yourself with minimal (or zero) data after the default screening, check the filter file
- If most (or all) of undershoots are above 200 ct/s, consider increasing nicerl2's underonly_range parameter to 0-300, or higher
- Beware of the impact of doing this
 - Shift of features in energy
 - Broadening of features

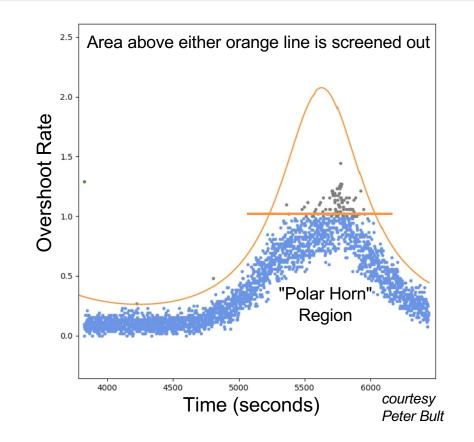
- Another of type of detector reset is known as an "Overshoot"
- These are events where the pulse height exceeded the maximum allowed value




- Typically charged particle passes through detector and deposits energy
 - Cosmic rays and solar energetic particles
 - Trapped charges (electrons in polar horns and protons in SAA)
 - Typical kinetic energies of ~GeV for protons

- Typical Overshoot rate is < 1 ct/s per detector
- Higher rates indicate higher detector background due to charged particles

Checking Overshoots


Look to see if undershoot rate exceeds 1 ct/s, which is the default maximum.

In our example dataset, the undershoots are exceed 1 in a few cases, but most values are below that threshold

 Command used: fplot 3010080128/auxil/ni3010080128.mkf offset=YES X Axis: TIME Y Axis: FPM_OVERONLY_COUNT

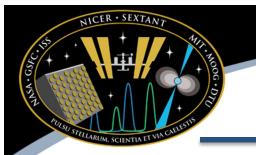
Default Overshoot Screening

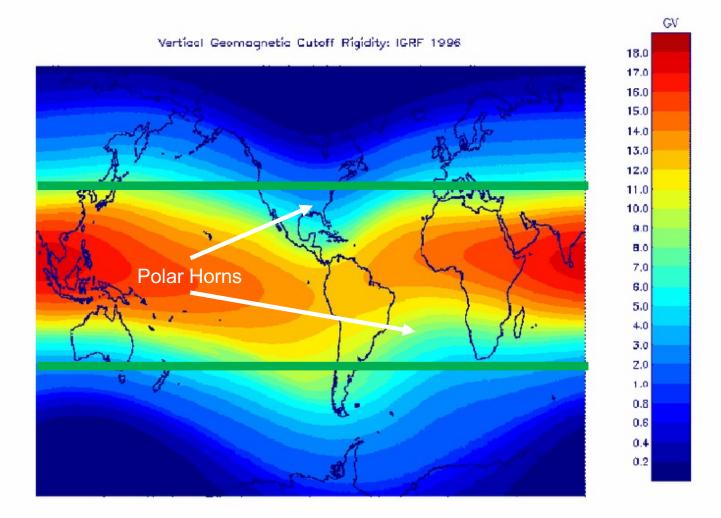
- The overshoot screening is actually two different screenings
 - Overall range (0-1.0 default), set by overonly_range
 - COR_SAX based expression, set by overonly_expr

How to Change Overshoot Screening

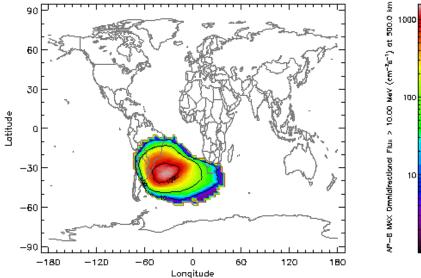
- Default screening was designed early in mission
 - We now know that solar modulation potential has changed since we developed this cut
 - Perhaps only data is in polar horn region
- Cautiously expand the range (example allow 150% of default)
 nicer12 ... overonly_range=0-1.5
 overonly_exp(="1.5*1)52*COR_SAX**(-0.633)"
 - Note the "1.5" in both overonly_range and overonly_expr
 - This will increase default 0–1 range to 0-1.5

- Beware that higher overshoots usually indicate higher background levels
- Use caution when subtracting background


- If you find yourself with minimal (or zero) data after the default screening, check the filter file
- If most (or all) of overshoots are above 1 ct/s, consider increasing nicerl2's overonly_range and overonly_expr parameters to higher values
- Beware of the impact of doing this
 - Shift of features in energy
 - Broadening of features


- Cutoff Rigidity filtering
- SAA filtering
- Pointing filtering

- Cosmic rays, and to some extent trapped magnetospheric charges, are governed by cut-off rigidity (COR) of magnetic field
 - Measured in units of GeV/c
 - Fewer charged particles survive to higher cutoffs
 - HIGH LOW Background
 - Typical range: 0.8 15 GeV/c
 - Filter file column COR_SAX
- At low CORs, backgrounds will be higher, and more variable than at high cut-offs

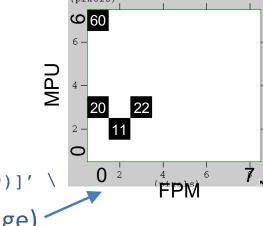

Cut-Off Ridigity Around the Globe

• Aside from SAA, "Polar Horns" have highest bkg

- Cut-off rigidity (COR) tends to indicate regions of high cosmic ray and trapped electron populations
 - Lowest COR ("polar horns") has highest background rates
- South Atlantic Anomaly (SAA) is a specific geographic region, composed of mostly trapped protons
 - Typically highest
 COR values

Screening on COR

- By default, NICER screening does not screen on COR
 - We now rely upon overshoot screening instead
- If you want to be more conservative, you can try narrowing the range nicerl2 ... cor_range=1.5-*
 - This will exclude COR in 0-1.5 range, which has highest and most variable background


- There are actually two SAA contours calculated by NICER software
 - "SAA" calculated by prefilter based on ASCA data (bigger contour)
 - "NICER_SAA" derived from post-launch background data (smaller contour; default)
- By default, NICER_SAA is used, which results in more data, but potentially more background
- If you want to be more conservative (exclude more data) you can try the SAA contour instead nicerl2 ... nicersaafilt=NO saafilt=YES

- The standard screening attempts to make sure the target is on-axis for science analysis
 - trackfilt=YES (enable following screening checks)
 - ang_dist=0.015 (pointing offset allowed)
 - elv=15 (elevation above earth limb)
 - br_earth=30 (bright earth angle)
 - st_valid=YES (ensure good star tracker solution)
- The NICER team used to be more conservative with these screening cuts to avoid bright earth/ISS/sunlight, but now relies more on undershoot filtering
- The only reason to expand these cuts is if you would lose a time-sensitive event like a burst near earth limb

Common Issues: Disabled Detectors

- While NICER has 52 operational detectors not all detectors are enabled for every observation. This is occurring more often now compared to post-launch
 - Occasionally, a detector auto-disables itself
 - NICER operators may disable detectors for high-rate targets
 - Detectors may be disabled for maintenance activities ("annealing")
- How to check using your filter file (.mkf file)
 - Number of detectors:
 - ftstat niNNNNNNN.mkf
 (and check median of NUM_FPM_ON column)
 - Which detectors disabled: fsumrows infile=niNNNNNNN.mkf'[1][col F=(FPM_ON?1:0)]' outfile=fpm_on.fits cols=F rows=- operation=sum (and use 'fv' to view resulting fpm_on.fits table image)' DET_ID = (MPU x 10) + FPM

- DET_ID's 11, 20, 22 and 60 are always disabled, as shown in figure
- When making ARFs and RMFs for spectra, be sure to follow instructions on NICER Response thread to include only enabled detectors

- If you have less than expected data, it is most likely due to
 - High optical loading
 - Change underonly_range parameter
 - High background
 - Change overonly_range and overonly_expr
- Check the filter file for these conditions, and loosen the filtering ranges with caution