HEH

Neutron star Interior Composition ExploreR

NICER 2021 Analysis and Science Workshop

Keith Gendreau (NASA/GSFC)

MIT KAVL

INSTITUTE

MOOG

BROAD

REAC

NA S

GSF

Date	Time	Subject
Monday, May 10	9:00-10:50	Tutorial 1
	10:50-11:10	Break
	11:10-13:00	Tutorial 2
Tuesday, May 11	9:00-10:50	Tutorial 3
	10:50-11:10	Break
	11:10-13:00	Isolated Neutron Stars
Wednesday, May 12	9:00-11:00	Analysis Q&A
Thursday, May 13	9:00-11:15	Accreting Neutron Stars
	11:15-11:30	Break
	11:30-13:00	Main Sequence and Other Stars
Friday, May 14	9:00-10:00	AGN and Galaxies
	10:00-10:20	Break
	10:20-13:00	Accreting Black Holes

NICER + SEXTANT

STELLARUM, SCIENTIA ET N

ALSA · GSFC.

- X-ray Timing Instrument (XTI)
 - Assembly of 56 X-ray concentrators (XRCs) and Focal Plane Module detectors (FPMs)
 -> 52 are functioning
 - Detects individual X-ray photons, returns energy and time of arrival
 - Held together in the Instrument Optical Bench (IOB)
- Pointing System
 - Enables XTI tracking of targets, and slewing between them

Science-enabling capabilities

• Spectral band: 0.2–12 keV

NSA + GSH

- Well matched to neutron stars
- Overlaps RXTE and XMM-Newton
- Timing resolution: < 100 nsec RMS absolute
 - 50x better than RXTE
 - >~100x better than XMM-Newton
- Energy resolution: 2.5% @ 6 keV
 - 10x better than RXTE
- Angular resolution: ~6 arcmin (non-imaging)
 10x better than RXTE
- Sensitivity, 5σ: 7 x 10⁻¹⁴ erg/s/cm²
 - 0.5–10 keV in 10 ksec (Crab-like spectrum)
 - 10x better than RXTE
 - 3x better than XMM-Newton's timing capability

Concentrator optics

- Thin-foil optics with heritage from *ASCA*, *Suzaku*, and *Astro-H*
- Single-reflection optic to maximize throughput, with limited mass, for isolated point-like sources
- Advances compared to previous GSFC optics:
 - Single shell, not quadrants
 - Parabolic shape, not conical approximation
 - Improved replication and alignment techniques

Focal Plane Module (FPM)

Flight-lot detector in flight housing

- Commercial silicon drift detectors (SDD) from Amptek Inc. provide CCDlike energy resolution and < 100 ns time resolution with built-in thermoelectric cooling
- Detector window consists of 40 nm of Si₃N₄ and 30 nm of Al. Transmits very low energy X-rays (better than 200 eV) while maintaining a hermetic seal.

NICER on the ISS

Operating on ISS since June 2017

- 24/7 Science except for relatively rare interruptions due to nearby EVA/EVR operations or ISS anomalies
- Flexible Scheduling that enables multiwavelength coordination as well as overlapping short term and long term monitoring science programs
- Improving Target of Opportunity Capabilities that include ground and in –flight capabilities (e.g. OHMAN)

NICER Science Program

- Legacy Science and Observatory Science
- Guest Observer (GO) Science Program

+ SEXTAN

ANSA + GSFC

• Target of Opportunity (TOO) Enhancements

Legacy Science Program

- Neutron Star Interior Composition Explorer
- Deeper (and more) neutron star mass and radius measurement
 - 2019 papers on PSR J0030 mass and radius
 - Just Released PSR J0740 radius (2 Msun)
 - Upcoming PSR J0437, and more
 - => better constrain nuclear theory
- Finding new neutron stars with pulsation searches
 - TOO follow-ups from eROSITA, INTEGRAL, MAXI, and others
 - Fermi sources
- Bursting neutron star LMXBs
 - Based on TOO triggers, including OHMAN
- Magnetars
 - Connection to FRBs?
- Long term monitoring of "stable" pulsars

The golden age of neutronstar physics has arrived Nature feature article 4 March 2020

Using the ISS as a multitool laboratory

OHMAN: Connecting two ISS payloads using ISS infrastructure to enable science of fast transients that would otherwise be inaccessible.

© NASA

JAXA's Monitor of All-sky X-ray Image (MAXI)

- > 900 deg² instantaneous
- > 95% of the sky each orbit

Thank you for your participation!

• This is NICER's 1st workshop

ASA+ GSA

- We would like to hear from you about what we did right and what we could improve upon
- Please fill out the survey form that Elizabeth Ferrara will email to all participants
- Presentations will be recorded when permitted
- Please enjoy the workshop