NICER updates on Accreting Millisecond X-ray Pulsars

Andrea Sanna University of Cagliari

in collaboration with:

L. Burderi - A. Riggio (Unica) - T. Di Salvo (Unipa), D. Altamirano -A. C. Albayati (Univ. Of Southampton), P. Bult - T. Strohmayer -K. Gendrau - Z. Arzoumanian (NASA/GSFC), P. Ray (NRL), ...

NICER ANALYSIS WORKSHOP - 11 May 2021

Accreting millisecond X-ray pulsars

Accreting Millisecond X-ray pulsars

Name	P_spin (ms)	P_orb (h)	Ref
SAX J1808.4-3658	2.5	2.0	Wijnands & van der Klis 1998
XTE J0929-314	5.4	0.73	Galloway et al. 2002
XTE J1751-305	2.3	0.7	Markwardt et al. 2002
XTE J1814-338	3.2	4.0	Markwardt et al. 2003
XTE J1807-294	5.3	0.67	Markwardt et al. 2003
IGR J00291+5934	1.7	2.5	Galloway et al. 2005
HETE J1900.1-2455	2.7	1.4	Kaaret et al. 2005
SWIFT J1756.9-2508	5.5	0.9	Markwardt et al. 2007
Aql X-1	1.8	19	Casella et al. 2007
SAX J1748.9-2021	2.3	8.8	Altamirano et al. 2007
NGC 6440 X-2	4.8	0.96	Altamirano et al. 2010
IGR J17511-3057	4.1	3.5	Markwardt et al. 2009
SWIFT J1749.4-2807	1.9	8.8	Altamirano et al. 2010
IGR J1749.8-2921	2.5	3.84	Papitto et al. 2011
IGR J18245-2452	3.9	11.03	Papitto et al. 2013
XSS J12270	1.7	6.9	Bassa et al. 2014
PSR J1023+0038	1.7	4.75	Archibald et al. 2015
MAXI J0911-655	2.9	0.74	Sanna et al. 2017
IGR J17062-6143	6.1	0.63	Strohmayer & Keek 2017
IGR J16597-3704	9.5	0.77	Sanna et al. 2017
IGR J17379-3747	2.1	1.9	Strohmayer 2018 - Sanna et al. 2018
IGR J17591-2342	1.9	8.8	Sanna et al. 2018
IGR J17494-3030	2.7	1.2	Ng et al. 2020

Accreting Millisecond X-ray pulsars

Name	P_spin (ms)	P_orb (h)	Ref
SAX J1808.4-3658	2.5	2.0	Wijnands & van der Klis 1998
XTE J0929-314	5.4	0.73	Galloway et al. 2002
XTE J1751-305	2.3	0.7	Markwardt et al. 2002
XTE J1814-338	3.2	4.0	Markwardt et al. 2003
XTE J1807-294	5.3	0.67	Markwardt et al. 2003
IGR J00291+5934	1.7	2.5	Galloway et al. 2005
HETE J1900.1-2455	2.7	1.4	Kaaret et al. 2005
SWIFT J1756.9-2508	5.5	0.9	Markwardt et al. 2007
Aql X-1	1.8	19	Casella et al. 2007
SAX J1748.9-2021	2.3	8.8	Altamirano et al. 2007
NGC 6440 X-2	4.8	0.96	Altamirano et al. 2010
IGR J17511-9057	4.1	3.5	Markwardt et al. 2009
SWIFT J1749.4-2807	1.9	8.8	Altamirano et al. 2010
IGK J1749.8-2921	2.5	3.84	Papitto et al. 2011
IGR J18245-2452	3.9	11.03	Papitto et al. 2013
XSS J12270	1.7	6.9	Bassa et al. 2014
PSR J1023+0038	1.7	4.75	Archibald et al. 2015
MAXI J0911-655	2.9	0.74	Sanna et al. 2017
IGR J17062-6143	6.1	0.63	Strohmayer & Keek 2017
IGR J16597-3704	9.5	0.77	Sanna et al. 2017
IGR_I17270-2747	2.1	1.9	Strohmayer 2018 - Sanna et al. 2018
IGR J17591-2342	1.9	8.8	Sanna et al. 2018
IGK J1/494-3030	2.7	1.2	Ng et al. 2020

IGR J17591-2342

- Discovered on 2018 Aug 10 by INTEGRAL IBIS/ ISGRI
- 12th of Aug 2018 Swift/ XRT starts monitoring the source
- 14th/15th of Aug 2018
 NuSTAR and NICER
 detect coherent X-ray
 pulsation

 $\nu \simeq 527 \ Hz$ $m2 \ge 0.42 \ M_{\odot}$

Sanna et al. 2018, A&A, 617, L8

IGR J17591-2342

Parameters	S18	This work				
RA (J2000)	$17^{\rm h}59^{\rm m}02^{\rm s}.86\pm0.04^{\rm s}$					
Dec. (J2000)	$-23^{\circ}43^{'}08^{''}3\pm0.1^{''}$					
Orbital period $P_{\rm orb}$ (s)	31684.743(3)	31684.7503(5)				
Projected semimajor axis asin i/c (lt-s)	1.227716(8)	1.227714(4)				
Ascending node passage T_{NOD} (MJD)	58345.1719787(16)	58345.1719781(9)				
Eccentricity (e)	$< 6 \times 10^{-5}$	$< 5 \times 10^{-5}$				
χ^2 /d.o.f.	123.75/99	876.4/355				
Fun	Fundamental					
Spin frequency v_0 (Hz)	527.42570042(8)	527.425700578(9)				
Spin frequency 1st derivative $\dot{\nu}_0$ (Hz s ⁻¹)	$2.0(1.6) \times 10^{-13}$	$-7.4(4) \times 10^{-14}$				
First Harmonic						
Spin frequency v_0 (Hz)	_	527.42570056(1)				
Spin frequency 1st derivative $\dot{\nu}_0$ (Hz s ⁻¹)	_	$-7.1(4) \times 10^{-14}$				

 $\dot{\nu} \simeq -7 \times 10^{-14} Hz/s$ SPIN DOWN

Sanna et al. 2020, MNRAS, 495, 1641

Accretion Torque

 $\tau_{acc} = \ell M =$ $=\sqrt{GMR_m}\dot{M}$ $R_m \propto \mu^{4/7} \dot{M}^{-2/7} M^{-1/7}$

 $\tau_{acc} = I\dot{\Omega} = 2I\pi\dot{\nu}$

 $\dot{\nu} \propto \mu^{2/7} \dot{M}^{6/7} M^{3/7} I^{-1} > 0$ SPIN

Torque on threaded discs

Ghosh&Lamb (1979), Wang (1987): for R_m≃R_{CO} the field lines are able to thread the disc in regions where they are faster than matter → negative torque on the NS
 Rappaport et al. (2004):

$$\tau = \ell \dot{M} - \gamma \frac{\mu^2}{9R_{CO}^3}$$

IGR J17591-2342

SWIFT J1749.4-2807

- Discovered on 2006 June 2 by Swift/BAT
- 10th of April 2010 detection of 2nd outburst
- 14th of April 2010 RXTE detects coherent X-ray pulsation at $v \approx 528$ Hz
- First and only AMXP to show X-ray eclipses from which inclination is constrained in the range 74-77 degrees

Altaminaro et al. 2010, Markwardt & Strohmayer 2010

SWIFT J1749.4-2807

X-ray pulsations

X-ray bursts

X-ray eclipses

SWIFT J1749.4-2807

Phase-coherent timing

Parameters	Fundamental	Second Harmonic
R.A. (J2000)	$17^{h}49^{m}31^{s}.73 \pm 0.6^{s}$	
Decl. (J2000)	$-28^{\circ}08'05''.08 \pm 0.6''$	
Orbital period P_{orb} (s)	31740.84(1)	31740.8417(27)
Projected semi-major axis $a \sin i/c$ (lt-s)	1.89956(3)	1.899568(11)
Ascending node passage T_{NOD} (MJD)	59274.494176(5)	59274.4941787(14)
Eccentricity (e)	$3.7(3.3) \times 10^{-5}$	$4.1(1.1) \times 10^{-5}$
χ^2 /d.o.f.	1001.6/84	97.8/60
Spin frequency v_0 (Hz) Spin frequency 1st derivative \dot{v}_0 (Hz/s)	517.92001572(25)* -4.0(5)×10 ⁻¹² *	$517.92001385(16)^*$ -0.6(1.1) × 10 ^{-13*}

Long-term (secular) orbital evolution

Parameters	2010	2021	
Asin(i)/c (lt-s)	1.899494(12)	1.899568(11)	
TASC (MJD)	55300.6522542(5)	59274.4941787(14)	
Porb (s)	31740.719(8)	31740.8417(27)	
Ecc	4.2(1.5)e-5	4.1(1.1)e-5	
Spin frequency (Hz)	517.920013925(65)	517.92001385(16)	
Spin freq. derivative (Hz/s)	<1.2e-12	-0.6(11)e-13	

Long-term (secular) orbital evolution

Parameters	2010	2021	
Asin(i)/c (It-s)	1.899494(12)	1.899568(11)	
TASC (MJD)	55300.6522542(5)	59274.4941787(14)	
Porb (s)	31740.719(8)	31740.8417(27)	
Ecc	4.2(1.5)e-5	4.1(1.1)e-5	
Spin frequency (Hz)	517.920013925(65)	517.92001385(16)	
Spin freq. derivative (Hz/s)	<1.2e-12	-0.6(11)e-13	

$\Delta P_{orb} = 0.123(8) \, s$

Theory of Dynamical (Orbital) evolution 1. J_{TOT} conservation 2. Kepler's third law 3. Contact condition $\dot{R}_{L2}/R_{L2} = \dot{R}_2/R_2$ 4. Companion well described by $R_2 \propto M_2^n$ 5. \dot{J}/J driven by GR and MB

 $\dot{P}_{ORB} = -1.4 \times 10^{-12} \, m^{5/3} \, q (1+q)^{-1/3} \, P_{2h}^{-5/3} \left[\frac{n-1/3}{n-1/3+2g} \right] \left[1 + T_{MB} \right]$

assuming

 $m_{NS} = 0.8 - 2.2 M_{\odot}$

 $m_c = 0.45 - 0.8 M_{\odot}$

we estimate

 $-\frac{1}{3} \le n < \frac{1}{3}$

Secular orbital evolution

Source	Pspin (ms)	Porb (h)	dPorb/dt (s/s) (u.l. at 3 σ c.l.)	Ref.
SAX J1808.4-3658	2.5	2	1.7(5) 10 -12	Bult+19 Sanna+17
IGR J00291+5934	1.7	2.5	(-6.6÷6.5) 10 ⁻¹³	Patruno+16 Sanna+17
SAX J1748.9-2021	2.3	8.8	(-0.7÷8.4) 10 ⁻¹¹	Sanna+21
SWIFT J1756.9-2508	5.5	0.9	(-4.1÷7.1) 10 ⁻¹²	Sanna+18 Bult+18
IGR J17379-3747	2.1	1.9	(-9.4÷4.4) 10 ⁻¹²	Sanna+18
XTE J1751-305	2.3	0.7	(-2.7÷0.7) 10 ⁻¹¹	Riggio+11

see also Marino+17, 19 for an alternative method

The Radio-Ejection hypothesis

Outburst: accretion phase

Quiescence: radio ejection

(Burderi et al. 2001, Di Salvo et al. 2008)

Thanks for the attention!