Some Notes on Timing Analyses and NICER Data

- Doing barycentric corrections.
- Being mindful of the possibility of "fragmented" or "shredded" good time intervals (GTIs).

NICER observations of 38 min binary IGR J17062-6143 (Bult et al. 2021; Strohmayer et al. 2019).

Solar System Barycenter: Convenient "Inertial" Reference Frame

- For precise timing studies of pulsars, which often are members of a binary system, must correct NICER-measured arrival times to a local inertial frame (solar system barycenter).
- This "removes" time delays/advances associated with Earth's (and NICER's) orbital motions within our solar system.
- Also, to compare measurement times made with other observatories, often want "uniform" reference time.

Geometric delays (order of magnitude): LEO satellite orbits, +- 25 ms (~95 min timescale) There are smaller relativistic corrections as well. Earth – Sun, +- 8 min (year timescale)

Use *barycorr* tool to do barycenter correction

gs66-sable:/local/data/sable1/stroh/nicer_data/maxij1803(54) pset barycorr	Inputs for barycenter
<pre>Input file name:[maxij1803.evt]</pre>	colculation
[Output file name:[maxij1803_bary.evt]	
Orbit ephemeris file(s) (or @filename):[maxij1803.orb]	Source Position (Coorc
(Swift) Clock Correction File[CALDB]	
Right Ascension (decimal degrees):[-] 270.76171	PA and DEC 12000)
Declination (decimal degrees):[-] -29.83013	RA, and DLC, J2000J
Reference frame (ICRS or FK5):[FK5] ICRS	 Solar System EDHEMER
Ephemeris to use (or DEFAULT to use refframe):[DEFAULT] JPLEPH.430	Solar System LETTENTE
[Create/overwrite BARYTIME column in output file?:[no]	 NICER orbit file
Tolerance level (in seconds) for orbit file glitches (ignored for Swift)[3.0]	
Do you want to delete any existing output files?:[no]	 NICER Input (event dat
Write parameter history block?[yes]	Micel input (event dat
Verbosity level (0:5) [3]	
[Mode:[ql]	
gs66-sable:/local/data/sable1/stroh/nicer_data/maxij1803(55) 🗌	See: fhelp barycorr

. . . .

- dinates,
- RIS file
- ta) file.

Dury ľ

barycorr infile='maxij1803.evt' outfile='maxij1803 bary.evt' orbitfiles='maxij1803.orb' ra=270.76171 dec=-29.83013 refframe='ICRS' ephem='JPLEPH.430' barytime=no clobber=ves

Running barycorr from an OBSID Directory

barycorr infile='xti/event_cl/ni1034100101_0mpu7_cl.evt' outfile='xti/event_cl/ni1034100101_0mpu7_cl_bary.evt' orbitfiles='auxil/ni1034100101.orb.gz' ra=256.56770 dec=-61.71144 refframe='ICRS' ephem='JPLEPH.430' barytime=no clobber=yes

gs66-sable:/local/data/sable1/stroh/nicer_data/igrj1706v2/1034100101(115) barycorr infile='xti/event_cl/ni1034100101_0mpu7_cl.evt' outfile='xti/event_cl/ni1034100101_0mpu 7_cl_barv.evt' orbitfiles='auxil/ni1034100101.orb.az' ra=256.56770 dec=-61.71144 refframe='ICRS' ephem='JPLEPH.430' barvtime=no clobber=ves **** Running barycorr v2.13 **** barvcorr: shell ftcopy infile='xti/event_cl/ni1034100101_0mpu7_cl.evt' outfile='xti/event_cl/ni1034100101_0mpu7_cl_barv.evtworkfile14196' copvall=YES clobber=YES chatter= 0 history=N0 barycorr: running hdaxbary -i 'auxil/ni1034100101.orb.gz' -f xti/event_cl/ni1034100101_0mpu7_cl_bary.evtworkfile14196 -jpleph 430 -ra 256.56770 -dec -61.71144 -ref ICRS barycorr: shell hdaxbary -i 'auxil/ni1034100101.orb.gz' -f xti/event_cl/ni1034100101_0mpu7_cl_bary.evtworkfile14196 -jpleph 430 -ra 256.56770 -dec -61.71144 -ref ICRS 2>& ===> No barycenter correction applied to HDU 0 TIMESYS is <=== Finished after 11 HDUs hdaxbary: Using JPL Planetary Ephemeris DE-430 hdaxbary: Usina JPL Planetary Ephemeris DE-430 hdaxbary: Using JPL Planetary Ephemeris DE-430 hdaxbary: Usina JPL Planetary Ephemeris DE-430 hdaxbary: Using JPL Planetary Ephemeris DE-430barycorr: exited with status 0 barycorr: shell ftchecksum infile='xti/event_cl/ni1034100101_0mpu7_cl_bary.evtworkfile14196' update=yes datasum=YES chatter=0 barycorr: shell ftcopy infile='xti/event_cl/ni1034100101_0mpu7_cl_bary.evtworkfile14196' outfile='xti/event_cl/ni1034100101_0mpu7_cl_bary.evt' copyall=YES cha tter=0 historv=N0 barycorr: barycorr successfully completed

gs66-sable:/local/data/sable1/stroh/nicer_data/igrj1706v2/1034100101(116)

What Ephemeris Should I Use?

- *barycorr* works with a number of JPL planetary ephemerides. Controlled with parameters refframe and ephem.
- Recommend using modern ephemeris, such as DE430 or DE405. Set,
 - refframe='ICRS' ephem='JPLEPH.430' or refframe='ICRS' ephem='JPLEPH.405'
- Can still use older version DE200, for comparison with previous work or historical results. Set,

refframe='FK5' ephem='JPLEPH.200'

^{10⁴} Defaults: if refframe='ICRS' and ephem='default', you get DE405. If refframe='FK5' and ephem='default' you get DE200.

Running *barycorr:* barytime option

<pre>TREFPOS = 'BARYCENTER' / Time reference pos TREFDIR = 'RA_OBJ,DEC_OBJ' / Keywords of refere More?[] PLEPHEM = 'JPL-DE430' / Solar system ephen HISTORY TOOL :axBary - 2.14 HISTORY PARM :infile=maxij1803_bary.evtworkfile727 HISTORY PARM :outfile=maxij1803_bary.evtworkfile727 HISTORY HISTORY START PARAMETER list for barycorr_2.13 at 2 HISTORY HISTORY P1 infile = maxij1803.evt HISTORY P2 outfile = maxij1803_bary.evt</pre>	sition ence direction Meris used for baryctr corr. ASC0000 33 ASC0001 733 ASC0002 2021-05-06T15:15:22	Recommend: barytime='no' Updates TIME column in new file (don't overwrite the old file!). Also updates time keywords and GTI extensions! barytime='yes' will add new column
HISTORY P3 orbitfiles = maxij1803.orb HISTORY P4 clockfile = CALDB HISTORY P5 ra = 270.76171 HISTORY P6 dec = -29.83013 HISTORY P7 refframe = ICRS HISTORY P8 ephem = JPLEPH.430 HISTORY P8 barytime = no HISTORY P10 tolerance = 3.0 HISTORY P10 tolerance = 3.0 HISTORY P11 clobber = yes HISTORY P12 history = yes HISTORY P12 history = yes HISTORY P13 chatter = 3 HISTORY P14 mode = ql HISTORY END PARAMETER list for barycorr_2.13	OBJECT = 'MAXI_J1803-298' EQUINOX = 200 RADECSYS= 'ICRS ' RA_NOM = 270.5 DEC_NOM = -29.80 RA_OBJ = 2.70761710E DEC_OBJ = -2.98301300E TIMESYS = 'TDB ' MJDREFI = 56 [More?[Yes]	<pre>/ Object/target name 00.0 / [yr] Equinox of celestial coord system / Coordinate Reference System 5723 / [deg] R.A. of nominal aspect point [J2000] 0504 / [deg] Dec. of nominal aspect point [J2000] E+02 / Right Ascension used for barycenter corrections E+01 / Declination used for barycenter corrections / All times in this file are TDB 5658 / TDB time reference; Modified Julian Day (int)</pre>
Time-related keywords updated in	MJDREFF = 0.000777592592592 TIMEREF = 'SOLARSYSTEM' TASSIGN = 'SATELLITE'	<pre>2593 / TDB time reference; Modified Julian Day (frac)</pre>

Barycenter Correction Applied to MAXI J1803 Data

THE PERSON D DE 345340T (sec) 335 T_{bary} 330 \diamond^\diamond 325320 3 0 Time (days)

Bonus light curve! Source shows absorption dips (Atels #14588, 14606)

Difference between barycenter time and local (spacecraft) time. Magnitude set by Earth – Sun separation (in It-sec), and drift due to Earth orbital motion.

Fragmented GTIs and Timing Analysis

Light curve (histogram) from binning events in 1/512 s bins in a bright segment of data from MAXI J1820+070 (obsid: 1200120107).

- For bright targets (see MAXI J1820+070, left) telemetry saturation can limit the data throughput, leading to many short GTIs.
- Optical loading ("undershoots") and high background event rates can also result in selection criteria being violated frequently.
- These conditions can lead to so-called GTI "fragmentation" or "shredding," meaning there are, perhaps many, very short GTIs.
- For very bright targets can turn off some detectors on each MPU (but has to be planned).
- Can vary selection criteria to try and obtain fewer, longer GTIs.

Fragmented GTIs and Timing Analysis

5.04.54.0Leahy Power 3.5incorrect 3.02.5correct 2.0 10 100 Frequency (Hz)

OBSID: 1200120107. Extreme case with 5912 GTIs! Above shows a histogram of the time separations between the GTIs.

Timing analysis must consider the "window function." Power spectrum of light curve which includes data gaps can show spurious peaks due to the presence of nearly periodic gaps.

Considerations for Timing with NICER

- Be mindful of and check your GTIs! If you are used to long, uninterrupted Chandra and/or XMM-Newton exposures, then NICER may sometimes come as a surprise with sometimes shortish exposures.
- If timing is your *primary* goal, and not spectroscopy, then you may be able to live with the small variations in the energy spectral calibration that could result from less stringent selection criteria. So, experiment with different selections, these could perhaps reduce issues with GTI fragmentation.
- Be cautious of observations of "new" sources where the target position may not yet be precisely known. Typical pointing jitter when the target is not on-axis could introduce spurious modulation of the observed count rate.

Can review thread on definition of TIME in NICER data files.

https://heasarc.gsfc.nasa.gov/docs/nicer/analysis_threads/time/