TESTING GENERAL RELATIVITY WITH X-RAY BINARIES

Ashutosh Tripathi

FUDAN UNIVERSITY, SHANGHAI

Collaborators : Cosimo Bambi, Jack Steiner, Victoria Grinberg, Lijun Guo Sourabh Nampalliwar, Javier Garcia, Thomas Dauser

NICER Analysis Workshop 2021

14th May 2021

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Outline of the talk

- Introduction
- Motivation
- X-ray Reflection Spectroscopy
- Continuum fitting
- Spin measurement with NICER

2/25

• Summary and future work

General Relativity and Black Holes

- 1915 \rightarrow General Relativity (GR) by Albert Einstein
- First test of $GR \rightarrow$ Deflection of light by the Sun in 1919
- 1960-present → Experiments to test weak field limit (Solar System and Binary Pulsar)
- Experiment to test strong field limit → Black holes (BH).
- Black hole \rightarrow strong gravity \rightarrow 4D solutions of Einstein's equation.
- "no-Hair theorems" \rightarrow (M,J,Q) ($a_* = J/M^2$)
- Uncharged spinning $BH \rightarrow Kerr$ solution.
- Describes the spacetime around astrophysical BH.
- Accretion disk, nearby stars, electric charge \rightarrow negligible.

・ロト・(国ト・ヨト・ヨト・日) つくで

Stellar Mass BH

- Mass \approx 3-100 M_{\odot} .
- Compact → mainly in our Galaxy.
- Spectral states → Hardness Intensity Diagram.
- Disk temperature
 → soft X-rays.

Why is testing GR important?

- Cosmological observations (Daniel et al. 2010) \rightarrow dark energy
 - Breakdown of GR at large scales.
 - Existence of some other fields with peculiar properties.
- Increasing interest \rightarrow deviations from predictions.
 - Kerr BHs \rightarrow prediction of GR.
 - Direct observational confirmation \rightarrow testing GR in strong field regime.

◆□ → ◆□ → ◆三 → ◆三 → ● ◆ ● ◆ ●

- Theoretically, deviations from GR is expected
 - classical extension of GR (Berti et al. 2015).
 - Macroscopic quantum gravity effects (Giddings 2014).
- In Accretion disk physics, the existing models assume GR is correct.
- Kerr metric \rightarrow photon trajectories around the black hole.

- Top-down approach: we test a specific alternative theory of gravity against Einsteins theory of General Relativity.
 - A large number of theories of gravity...
 - Usually we do not know their rotating black hole solutions...
- Bottom-up approach: parametric BH spacetimes in which deviations from the Kerr geometry are quantified by a number of "deformation parameters".

イロト (四) (日) (日) (日) (日)

Bottom-up Approach : Johannsen metric

• In Boyer-Lindquist coordinates, the line element reads (Johannsen (2013))

$$ds^{2} = -\frac{\tilde{\Sigma} \left(\Delta - a^{2}A_{2}^{2}\sin^{2}\theta\right)}{B^{2}} dt^{2}$$
$$-\frac{2a \left[\left(r^{2} + a^{2}\right)A_{1}A_{2} - \Delta\right]\tilde{\Sigma}\sin^{2}\theta}{B^{2}} dt d\phi$$
$$+\frac{\tilde{\Sigma}}{\Delta A_{5}} dr^{2} + \tilde{\Sigma} d\theta^{2} + \frac{\left[\left(r^{2} + a^{2}\right)^{2}A_{1}^{2} - a^{2}\Delta\sin^{2}\theta\right]\tilde{\Sigma}\sin^{2}\theta}{B^{2}} d\phi^{2}$$

• Other components are defined as

$$\begin{aligned} A_1 &= 1 + \alpha_{13} \left(\frac{M}{r}\right)^3, \quad A_2 &= 1 + \alpha_{22} \left(\frac{M}{r}\right)^2, \\ f &= \epsilon_3 \frac{M^3}{r} \qquad A_5 &= 1 + \alpha_{52} \left(\frac{M}{r}\right)^2. \end{aligned}$$

◆□ → ◆□ → ◆三 → ◆三 → ◆□ → ◆□ →

- Deformation parameters $\rightarrow \epsilon_3$, α_{13} , α_{22} , and α_{52}
- Vanish for Kerr metric.

- Two leading techniques to probe strong gravity region.
 - Continuum fitting method
 - 2 Reflection method
- Continuum fitting \rightarrow thermal spectrum of thin accretion disk.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Depends on BH mass and distance.
- Reflection method \rightarrow relativistically smeared reflection spectrum of thin accretion disk.
 - Independent of mass and distance.

X-ray Reflection Spectroscopy

¹Bambi et al. 2017

Reflection Signatures

- Reflection Component (in rest frame of gas) \rightarrow xillver.
- xillver \rightarrow radiative transfer \rightarrow XSTAR.
- Detailed treatment of K-shell atomic properties of ionized ions.
- relconv → relativistic convolution code.
- Spectrum measured by distant observer given local spectrum at any emission point in the disk.

12/25

• relxill \approx relconv*xillver \rightarrow BH spin measurements.

relxill_nk

- relxill→ Kerr solution.
- relxill_nk → Alternate theories of gravity.
- Johannsen metric $\rightarrow \alpha_{13}$
- Constraints with observations.

< □ > < □ > < □ > < □ > < Ξ > < Ξ > < Ξ

NuSTAR data of Galactic black holes

- X-ray Binaries \rightarrow advantages over AGNs.
- NuSTAR → most suitable for study reflection.
- Not affected by pileup \rightarrow suitable for bright sources.
- 3-79 keV energy range \rightarrow Iron line and Compton hump.
- Published spin measurements of NuSTAR \rightarrow simple spectrum.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 めへで

14 / 25

• Accepted to ApJ. arXiv:2012.10669

Summary of the sources and the observations analyzed

Source	Observation ID	Observation Date	Exposure (ks)	Counts [s ⁻¹]
4U 1630–472	40014009001	2013 May 9	14.6	77.5
EXO 1846-031	90501334002	2019 August 3	22.2	148.7
GRS 1739–278	80002018002	2014 March 26	29.7	127.8
GS 1354–645	90101006004	2015 July 11	30.0	51.8
GX 339–4	80001015003	2015 March 11	30.0	208.5
	00081429002	2015 March 11	1.9	35.4
Swift J1658-4242	90401307002	2018 February 16	33.3	34.5
	00810300002	2018 February 16	3.0	4.9

・ロト・(アト・ミト・ミト ミックので 15 / 25

Reflection features present in the observations

Summary of α_{13} from various sources

Sources

◆□→ ◆圖→ ◆国→ ◆国→

≣ ∽∝ 17 / 25

Combined α_{13} measurements

α₁₃

<ロ> (四) (四) (日) (日) (日)

18 / 25

 $\alpha_{13} = -0.04^{+0.93}_{-0.91} (3\sigma)$

Continuum Fitting Method

- Analysis of thermal spectrum of accretion disk.
- Based on Novikov Thorne model.
- Thin disk $\rightarrow L/L_{Edd}$ is in the range 0.05 0.3.
- Thermal spectrum Kerrbb \rightarrow M, \dot{M} , i, D, a_* .
- $M, i, D \rightarrow \text{independent measurement.}$
- Simple shape \rightarrow not much information.
- Extended to non-Kerr \rightarrow nkbb
- Bottom-up approach, Johannsen metric $\rightarrow \alpha_{13}$.

・ロト ・日 ・ モー・ モー・ うへの

LMC X-1 (Tripathi et al. 2020, ApJ, 907:31)

- Discovered in 1969 as the first extragalactic X-ray binary.
- $M = 10.91 \pm 1.54 \ M_{\odot}$, $i = 36^0 \pm 2^0$, $D = 48 \pm 2 \ kpc$.
- Stable bolometric luminosity \rightarrow 16 % of Eddington limit.

- 17 RXTE observations \rightarrow thermal dominant state.
- tbabs*simpl*nkbb
- f \rightarrow 1.55, returning radiation.
- $a_* = 0.998_{-0.44}$, $\alpha_{13} = 0.32_{-3.10}^{+0.04}$

Constraints in a_* - α_{13} plane

(1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1)

Observational Uncertainties

- statistical uncertainty dominates observational uncertainty.
- Opposite to the Kerr case.
- Strong degeneracy between a_{*} and α₁₃.
- Can be broken if *R_{in}* is very close to compact object.

・ロト ・回ト ・ヨト ・ヨト

22

MAXI J1535-571 : Preliminary Results

- CALDB v20200722
- Energy : 2.3-10 keV.
- Model : tbabs*(diskbb+relxill_nk+relline_nk)
- Tripathi et al. (in prep.)

- NICER observation $\rightarrow 2017$ Sept. 13 \rightarrow Intermediate or very high state.
- broad asymmetric iron line from the ISCO \rightarrow relxill_nk
- Narrow asymmetric line → radii larger than ISCO (Miller et al. 2020).
- Xu et al. 2018 (2017 Sept. 7) \rightarrow NuSTAR \rightarrow distant reflection.

• $a_*=0.985^{+0.012}_{-0.020}, \alpha_{13}=0.11^{+0.07}_{-0.38}$

・ロン ・四 と ・ ヨ と ・ ヨ と

Spin measurement with NICER

- Narrow asymmetric line \rightarrow NICER resolution \rightarrow better than NuSTAR.
- The precision in measuring $a_* \rightarrow$ sensitivity.
- Low energy coverage \rightarrow absorption and soft excess.
- Simultaneous NuSTAR observations \rightarrow soft excess, Iron line and Compton hump

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 めへで

- Advantageous for AGNs.
- Successor of RXTE → stacked analysis → a_{*} from both methods.

Summary and Future Work

- We present constraints on deformation parameter α_{13} using both continuum fitting and reflection spectroscopic methods for various X-ray binaries.
- NICER, RXTE, Swift, NuSTAR, Suzaku etc.
- The results are consistent with Kerr hypothesis.
- Systematic Uncertainties.
- Testing gravity for other modified theories.
- NICER, combined with NuSTAR, would result in coverage of all reflection signatures throughout the broad energy range of 0.25-80 keV.

イロト イヨト イヨト イヨト 三日

25 / 25

• Yet to explore more with NICER.

Email : ashutosh_tripathi@fudan.edu.cn