Spectral and Timing Studies of the X-ray transient MAXI J1348-630 using NICER and AstroSat

### Jithesh Vadakkumthani IUCAA, Pune\*

With Ranjeev Misra, Bari Maqbool and Gitika Mall MNRAS, Accepted on 5 May 2021 (arXiv: 2105.03066) <u>https://doi.org/10.1093/mnras/stab1307</u>

Thanks to : Diego Altamirano, Liang Zhang and Sunil Chandra

Spring 2021 NICER Analysis Workshop, 14 May 2021

# **BH Transients & Rapid Variability**



Energy (keV)

Energy (keV)

QPO Frequency (Hz)

# **Broadband Rapid Variability**

- The soft X-ray (< 4 keV) rapid timing properties were largely unknown.
- Now explored using the X-ray Timing Instrument (XTI) onboard *NICER*.
- Broadband (0.3–30 keV) fast timing properties have been relatively less studied.

Swift J1658: HXMT & NICER

**Broadband Rapid Variability** 



## **MAXI J1348-630**

- New X-ray transient discovered by the MAXI/GSC on 2019 January 26 (Byatabe et al 2019).
- Swift XRT position: R.A. = 13:48:12.73, Decl. = -63:16:26.8 (Kennea & Negoro 2019). MAXI/GSC HID
   NICER Light Curve



# **AstroSat & NICER Observations**



- LAXPC (3-80 keV): Timing resolution ~ 10 microseconds
- SXT (0.3-8 keV)

LAXPC

#### **NICER**

- International Space Station payload installed in 2017.
- X-ray Timing Instrument (XTI): Operate in the soft X-ray band, 0.2-12 keV
- Effective area: 1900 cm<sup>2</sup>
- Absolute timing precision of ~100 ns.

**AstroSat** 

UVIT

<u>NICER</u>



#### **Observation Log**

|       |                                                               | Sunshades and X-Ray                                           |           |                                     |                                         |                        |
|-------|---------------------------------------------------------------|---------------------------------------------------------------|-----------|-------------------------------------|-----------------------------------------|------------------------|
| SXT   | (structure is IOB)                                            | Possible TMD Locatio<br>Detector Radi                         | Data      | ObsID                               | Date                                    | Exposure<br>(ks)       |
|       | GPS Antenna Bracket<br>Star Tracker (DTU)                     | Focal Plane Module<br>(MIT/Amptek/GSFC<br>with SDD Shields (5 | AS1<br>N1 | T03_083T01_9000002722<br>1200530118 | 2019 February 19–20<br>2019 February 19 | 5.5(L)/1.9(S)<br>5.0   |
| ZTI — | Electronics (MBR, MIT, DTU)<br>ectronics Radiator (not shown) |                                                               | AS2<br>N2 | T03_083T01_9000002728<br>1200530121 | 2019 February 22<br>2019 February 22    | 20.2(L)/11.1(S)        |
|       | Gimbal Bracket<br>HiPoS Box                                   | Actuators (Moog)                                              | AS3       | T03_083T01_9000002742               | 2019 February 28                        | 23.2(L)/12.2(S)        |
|       |                                                               | Contamination Shield                                          | N3<br>AS4 | 1200530127<br>T03_112T01_9000002896 | 2019 February 28<br>2019 May 8–9        | 2.8<br>13.8(L)/6.8(S)  |
|       | Frangibolt Launch Lock Mounts<br>(x4, 3-2-2-1 constraints)    | AFRAM                                                         | N4        | 2200530133 2019 May 9               | 1.9                                     |                        |
| SM    | 2                                                             | Adapter Plate                                                 | AS5<br>N5 | T03_120T01_9000002990<br>2200530154 | 2019 June 14–15<br>2019 June 14         | 35.0(L)/14.9(S)<br>1.8 |
|       |                                                               |                                                               | N6        | 2200530155                          | 2019 June 15                            | 1.6                    |
|       |                                                               |                                                               |           |                                     |                                         |                        |

# **Broadband X-ray Spectral Properties**



#### Broadband Timing: Soft State AstroSat LAXPC and NICER Light Curves



## **RMS Spectra**



The disk emission is non-variable while the Comptonized component rapidly varies.

# **Broadband Timing: Faint Hard State**



### **Broadband Timing: Bright Hard State**

#### LAXPC and NICER Light Curves

0.05

0.02

0.01

5×10-3

1.1

0.9

/\*Power

Ratio



### **Broadband Timing: Bright Hard State**

**RMS Spectra of QPO and sub-harmonic** 



- Strength of the primary QPO is nearly energy independent.
- For the sub-harmonic rms decreases with energy.
- •The slight difference in the temporal behaviour seen between LAXPC and *NICER*.

**PDS from Strict Simultaneous Data** 



## **RMS and Lag Spectra**



• The rms is seen to decrease with energy for  $\sim 0.1$  and  $\sim 1$  Hz.

- For ~ 10 Hz, rms marginally increases with energy.
- Lag increases with energy: Hard time lag.

# **Single Zone Stochastic Propagation** Model



Hot Disk

Maqbool et al 2019

- The primary model to explain the energy dependent variability.
- Geometry: A truncated standard disk characterised by a inner disk temperature  $T_s$ , with a hot inner flow having a single uniform temperature T
- The inner flow Componitonizes photons from the truncated disk to produce the observed hard X-ray emission.
- An oscillation which originates in the outer regions causes the temperature of the truncation radius to vary causing variations in the Comptonized spectrum.
- The perturbation reaches the inner region after a time delay causing a change in the electron temperature of the inner region and hence a variation in the spectrum.

#### **Modelling RMS & Lag Spectra using Stochastic Propagation Model**



- Quantify the energy dependent fractional rms and time-lags.
- Three parameters: The normalised variations of
- a) The Seed Photon Temperature  $\delta T_{in}$
- b) The hot inner flow temperature  $\delta T_e$
- c) The Phase-angle between them  $\phi_D = 2\pi f \tau_D$
- For fitting, we have used the parameters:  $\delta T_e$ ,  $\tau_D$ ,  $\delta T_{\rm in}/\delta T_{\rm e}$
- Model is applicable only to the thermal Comptonized component.
- Formally fit the LAXPC data alone.
- Extrapolate the predicted variability to low energies to compare with the *NICER* results.
- The predicted rms and time lag are qualitatively similar but quantitatively different from *NICER* results, especially at  $\sim 1$  Hz.

| Freq                         | $\delta T_{\rm in}/\delta T_{\rm e}$                                                           | $	au_D$                                                                                           | $\delta T_{ m e}$                                                                                     | $\chi^2_{ m r}/{ m d.o.f}$ |
|------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------|
| 0.08-0.12<br>0.8-1.2<br>8-12 | $\begin{array}{c} 1.09\substack{+0.10\\-0.09}\\ 0.86\\ 0.52\substack{+0.05\\-0.05}\end{array}$ | $\begin{array}{r} 342.26\substack{+60.77\\-60.51}\\71.86\\9.07\substack{+1.21\\-1.23}\end{array}$ | $\begin{array}{c} 0.011\substack{+0.001\\-0.001}\\ 0.024\\ 0.021\substack{+0.001\\-0.001}\end{array}$ | 0.8/17<br>2.9/17<br>1.2/17 |



- Investigated the broadband spectro-timing properties of the new black hole binary MAXI J1348-630 using *NICER* and *Astrosat*.
- The source to be in the soft and hard spectral states.
- Detected QPOs at frequencies of ~ 6.9 (type-A) and 0.9 (type-C) Hz in the soft and bright hard states, respectively.
- Estimated the energy-dependent fractional rms and time lag in the unprecedented 0.5-80 keV energy band using the *NICER*/XTI and *AstroSat*/LAXPC for a range of frequencies and for the QPOs.
- The hard time lags are clearly detected at different frequencies.
- Quantified the energy-dependent fractional rms and time lag mainly in the LAXPC band using a single zone stochastic propagation model.
- Variation of the temperature of the disk and the corona with a time lag between them can explain the energy-dependent temporal behaviour.
- Extending the single-zone stochastic model to lower energies, we find that the predicted rms and time lag are qualitatively similar but quantitatively different from *NICER* results.
- This discrepancy could be because the *NICER* and LAXPC data are not strictly simultaneous and/or the model does not take into account disk emission which contributes in the low energy band.

#### **Thank You!**