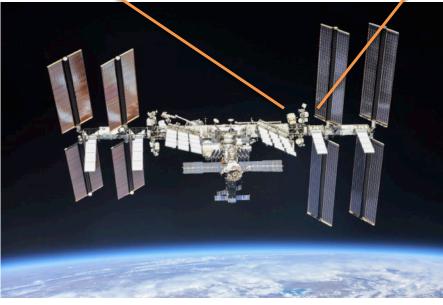
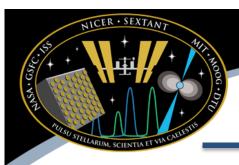
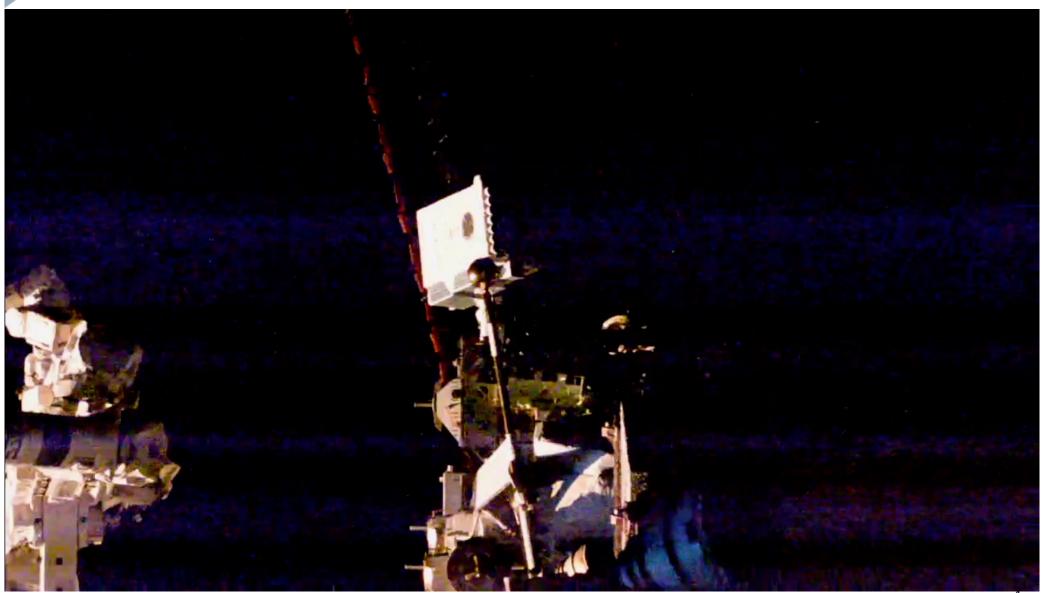


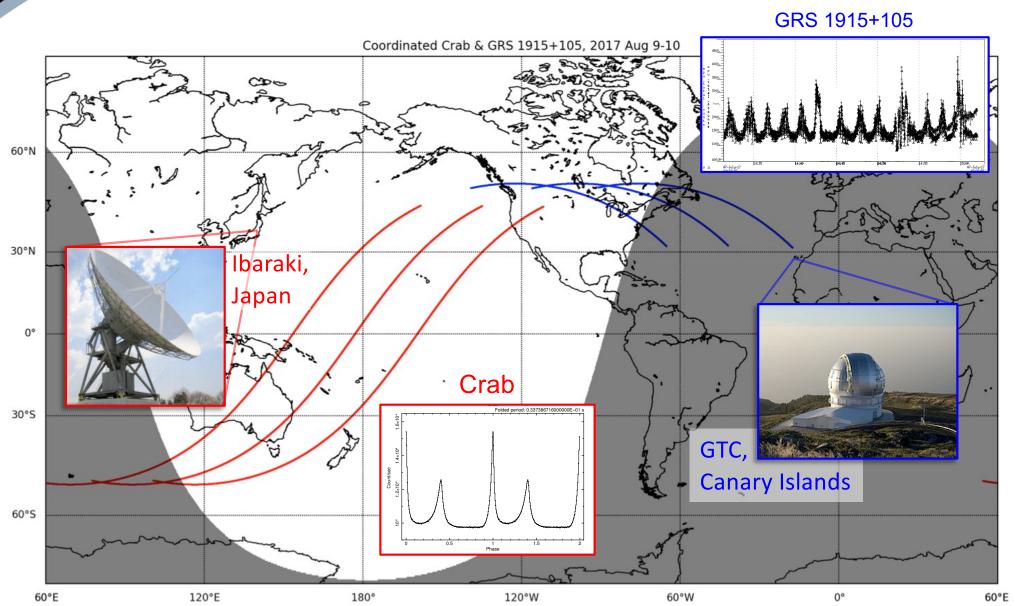
Outline

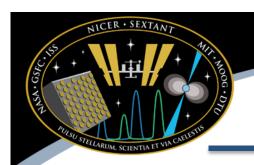

- Welcome and Introductions
- Mission overview Keith Gendreau
 - Introduction
 - Team
 - Science Program
 - Operations and Interactions with HQ/ISS
 - Instrument Performance and Calibration
 - Collaborations
 - NUG timeline
- NUG Chair Discussion Ed Cackett
 - NUG Charter
 - Logistics
- Questions and Discussion



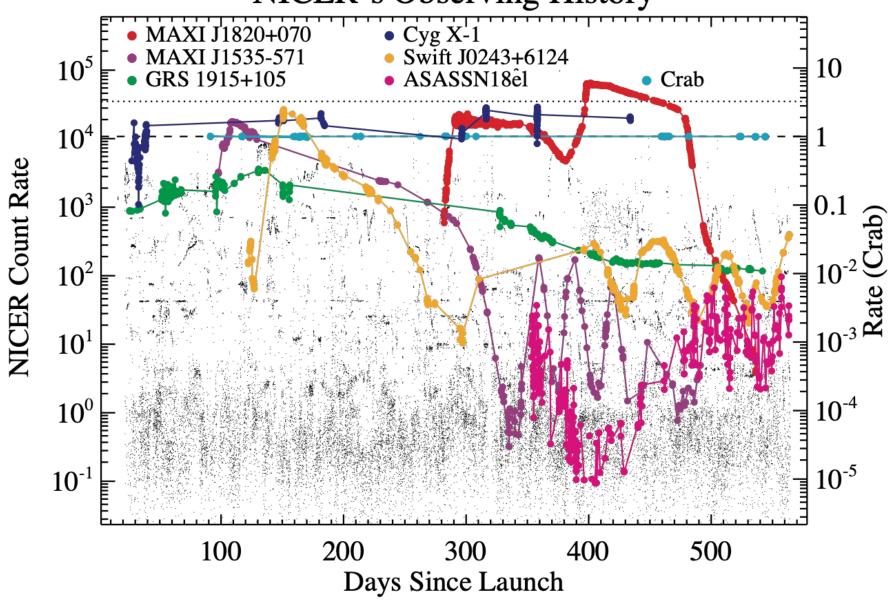
An X-ray Astrophysics Observatory on the International Space Station


- **Key science:** Understanding ultra-dense matter via observations of neutron stars in the soft X-ray band
- Launch: June 3, 2017, SpaceX-11 ISS resupply
- Platform: ISS ExPRESS Logistics Carrier (ELC), with active pointing over nearly a full hemisphere
- Instrument: X-ray (0.2–12 keV) "concentrator" optics and silicon-drift detectors; GPS position & absolute time reference
- Enhancements:
 - Guest Observer program
 - Demonstration of pulsar-based spacecraft navigation
 - OHMAN is active
- Status:
 - Payload performing with few issues
 - Successful demo of pulsar-based navigation
 - Rich archive of public data
 - Extended mission approved
 - GO Cycle 5 about to begin (some observations already begun)


NICER on the ISS



Coordination across wavelengths and facilities

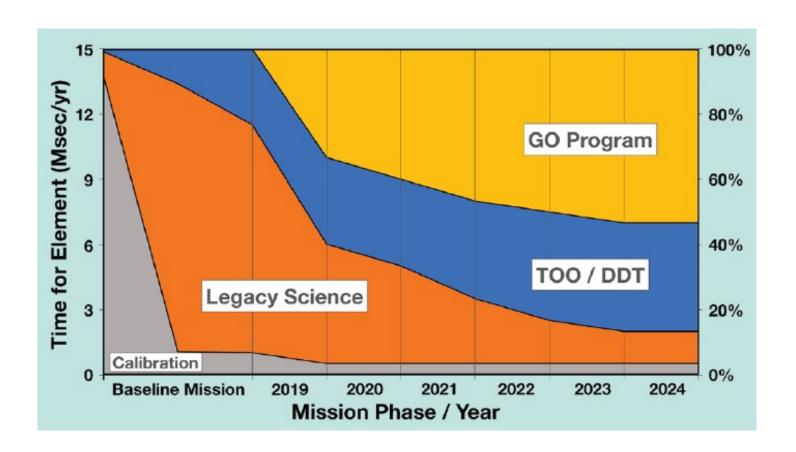

Two targets, two ground-based telescopes, three successive ISS orbits

NICER expands the dynamic range of X-ray astrophysics

NICER's Observing History

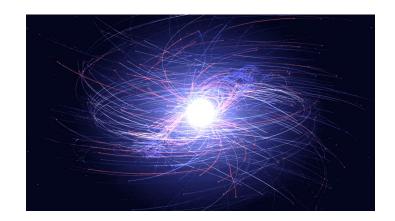
NICER Team: Most play multiple roles!

- Operations/Planning/Pipeline
 - Operations: J. Pope, M. Saylor, B. Kozon, IT staff: ~2 FTE
 - Planning: K. Gendreau, Z. Arzoumanian, E. Ferrara, K. Hamaguchi,
 Isiah Holt: ~2.75 FTE
 - Pipeline: C. Markwardt, K. Rutkowski: ~1.5 FTE
- GOF
 - E. Ferrara (Lead)
 - K. Hamaguchi, M. Corcoran, M. Loewenstein, S. Sturner, T. Strohmayer
- Instrument Team
 - C. Markwardt (calibration lead)
 - Jeremy Hare (calibration deputy)
 - T. Okajima (optics)
 - R. Remillard, G. Prigozhin, B. LaMarr, D. Pasham, J. Steiner, J. Doty (detectors)
 - B. Trout, J. Pope (FSW, OHMAN)
- Science Team


NICER Science Team

- Led by Zaven Arzoumanian
- Organized into 6 topical Working Groups
 - Lightcurve Modeling
 - Searches & Multiwavelength Coordination
 - Bursts & Accretion Physics
 - High-Precision Timing
 - Magnetars & Magnetospheres
 - Observatory Science
- Membership (80 members, plus ~17 students)
 - Instrument Team
 - Original mission proposal Co-ls and Collaborators
 - Affiliated Scientists (post-doc & higher seniority)
 - Students (under- & post-graduate)

NICER Science Program


- Legacy and Observatory Science
- Guest Observer (GO) Science Program
- Target of Opportunity (TOO) Enhancements

Legacy Science Program

- Neutron Star Interior Composition Explorer
- Deeper (and more) neutron star mass and radius measurement
 - 2019 papers on PSR J0030 mass and radius
 - Upcoming PSR J0740 radius (2 Vsun)
 - Upcoming PSR J0437, and more
 - => better constrain nuclear theory
- Finding new neutron stars with pulsation searches
 - TOO follow-ups from eROSITA, INTEGRAL, MAXI, and others
 - Fermi sources
- Bursting neutron star LMXBs
 - Based on TOO triggers, including OHMAN
- Magnetars
 - Connection to FRBs?
- Long term monitoring of "stable" pulsars

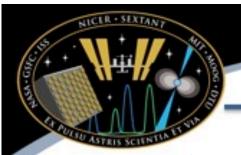
The golden age of neutronstar physics has arrived Nature feature article 4 March 2020



NICER Observatory Science

- During baseline mission, it became possible to schedule more targets than just neutron star targets
- HQ approved NICER to expand arget base to include a variety of other targets and form an "Observatory Science" working group (OSWG)
- OSWG lead by Ron Remillard @ MIT
- Has led to a combination of great science results as well as a fertile working ground for calibration and broader community interactions

 Nature cover story (Jan 2019) on NICER results from the black hole MAXI J1820+070


NICER Guest Observer Program

GO Cycle 3 Overview:

- 7 Msec of NICER time
- Multi-cycle and carryover time from Cycle 2 = 1 Msec
- 400 ksec of NuSTAR time (>3x oversubscribed)
- Up to \$1.5 M to help support US scientists using NICER for investigations through the GO program.

Timeline:

- 14-Feb-2020 : ROSES Announcement
- 17-Aug-2020 : AO Amendment released
- 17-Nov-2020 : Proposal deadline
- 23-Jan-2021 : Proposal review completed
- 1-Mar-2021 : Start of GO Cycle 3 observations
- 20-Apr-2021 : Phase 2 deadline (Budget)
- 28-Feb-2022 : End of GO Cycle 3


NICER-Cycle 3 Science Highlights – 1

X-ray Pulsars, Magnetars, and Neutron Star Binaries:

- Several studies of ultraluminous X-ray sources and other candidate pulsars, to determine pulsation periods and track accretion evolution
- TOO observations of magnetar outbursts and fast radio bursts (FRBs), many with coordinated observations
- Long-term timing of pulsars that are candidates for detection with LIGO of continuous gravitational-wave emission (continuation of Cycle 2 multi-cycle investigation)
- Investigating the changing spin behavior of PSR B0540-69 in the LNC.
- Intensive campaigns to further probe spectral lines in Type I (thermorphilear) bursts from 4U 1820–30 (coordinated with Chandra) and other well known systems
- High-precision timing of accreting and transitional millisecond pulsars in patburst, to track long-term spin and orbital evolution.

White Dwarfs and Cataclysmic Variables (CVs):

- Joint optical/X-ray timing of polar-like CVs to constrain accretion physics through quasiperiodic oscillations
- Studies of X-ray eclipses in several objects to determine their physical properties.

NICER-Cycle 3 Science Highlights – 2

Active Galaxies and Quasars:

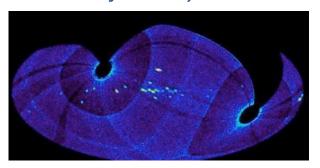
- Pathbreaking studies of the newly identified "quasiperiodic eruption" (QPE) phenomenon in AGN
- Multiple investigations of tidal-disruption events and "changing look" AGN objects
 with mysterious faster-than-expected evolution using dense spectroscopic monitoring
 and reverberation mapping
- Monitoring of AGN coordinated with 1) TESS continuous viewing to study the source of accretion disk variability, and 2) Hubble for reverberation mapping.

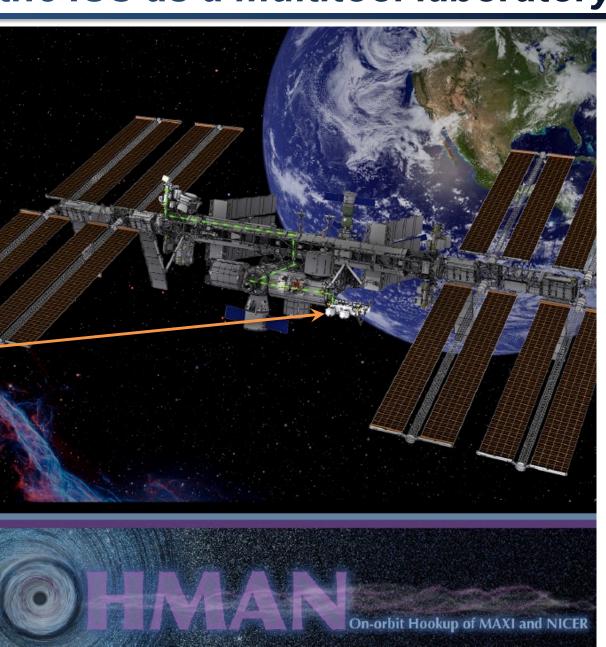
Black Holes:

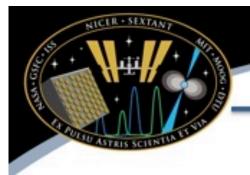
- Multiple TOO efforts to track Galactic black-hole binary outbursts, to improve understanding of outburst onset, state transitions, and strong-gravity accretion
- Coordinated observations for many of these with a variety of observatories both spaceand ground-based, including IXPE for polarization and high-speed optical cameras for simultaneous variability studies and to probe jet ejection.

Non-compact Stellar Objects:

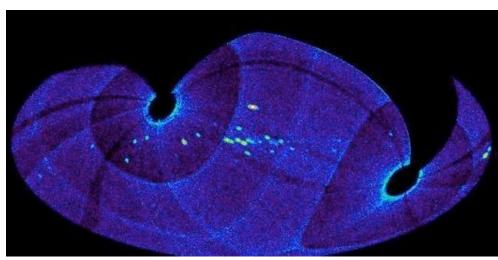
- Observations of planet-hosting stars, coordinated with TESS, to determine impact of stellar flares on habitability
- Understanding the physics of massive-star, colliding-wind binaries.

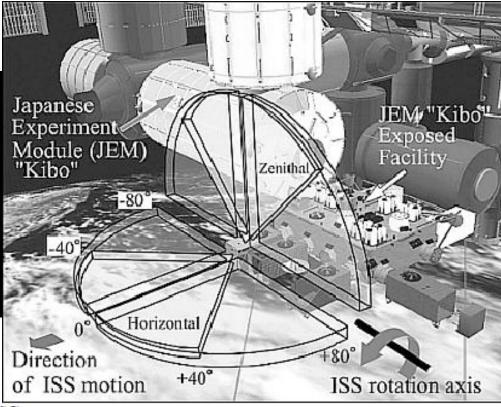

OHMAN: the ISS as a multitool laboratory

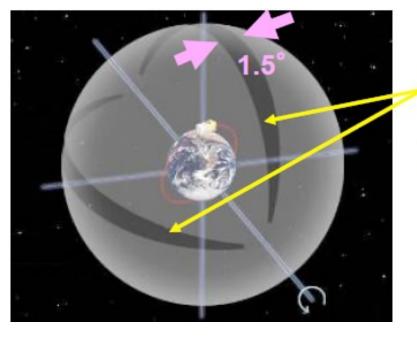

OHMAN: Connecting two ISS payloads using ISS infrastructure to enable science of fast transients that would otherwise be inaccessible



JAXA's Monitor of All-sky X-ray Image (MAXI)


- > 900 deg² instantaneous
- > 95% of the sky each orbit





MAXI Sky Coverage

View of GSC (1.5°X 160° arch)

Observations in two directions; in the moving direction of the ISS and toward the zenith

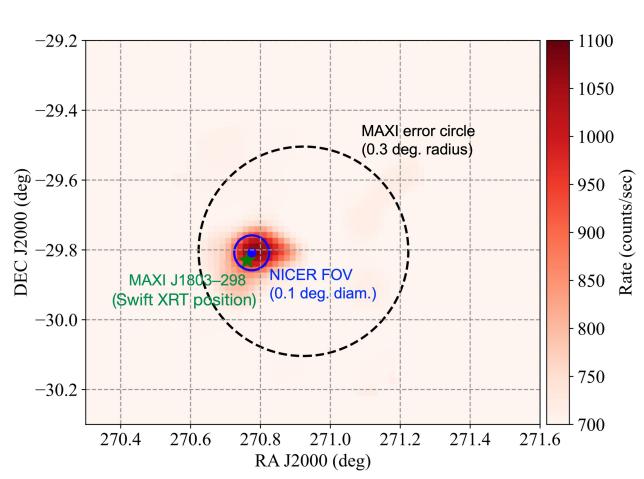
- Instantaneous coverage of 960 deg² of sky (2%)
- 95% of entire sky each orbit
- 80 mCrab sensitivity

OHMAN Basic Concept

- Use an existing laptop computer already on ISS to monitor live data from the MAXI instrument
- Communicate to NICER information about transients worth following up
- Use NICER's rapid slewing capability to bring 15 times the collecting area of Swift XRT onto the transient within minutes of the MAXI trigger
- Make full use of all existing infrastructure on ISS as well as in the NICER and MAXI ground systems and data processing pipelines.

OHMAN operations began in Summer 2022

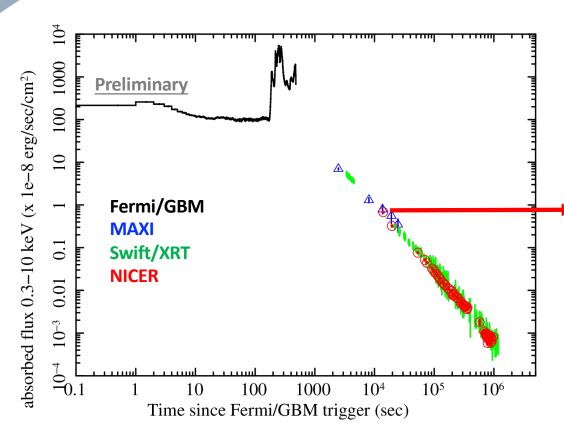
- New Error Box Scanning mode in NICER FSW that works with OHMAN as well as from the ground
- ~ 1-2 good triggers per month
 - E.g. GRB221009A
- ~<10 false triggers per month
 - Solar flares
- Occasionally, MAXI capture software hangs up

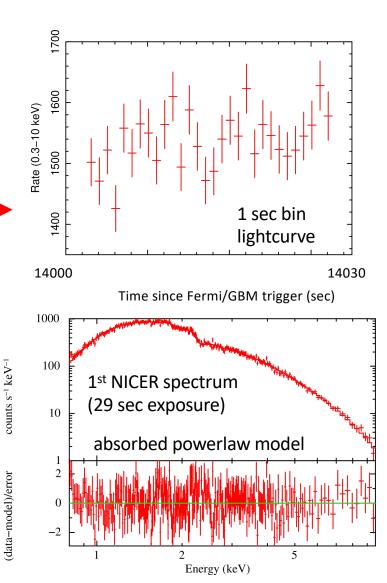


OHMAN Concept

MAXI
OHMAN
Computer
NICER
OHMAN Components
ISS Infrastructure

- A laptop computer monitors live data from MAXI to identify transients and computes NICER visibility
- Communicates location of transient to NICER using ISS infrastructure
- NICER slews to target within minutes
- If it is a new transient, NICER scans the MAXI error box to localize the source


OHMAN became operational in Summer 2022



GRB221009A observation triggered by OHMAN

Credit: W. Iwakiri

NICER enables sensitive studies of the afterglow decay and searches for spectral lines and periodicities.

NICER Operations

- Ground System led by John Pope, supported by Maxine Saylor
- Three weekly tag-ups
 - Planning
 - ISS product status
 - Hot issues (e.g., ISS operations)
 - Pipeline status
 - GO status
- Two regular command loads a week
 - Tuesdays and Fridays
 - plus, as needed
- TOO planning and commanding
 - ARK submission
 - Scientist planning
 - Commanding by engineers or scientists
 - One silver lining of COVID

NICER Programmatic Scheduling

- Weekly tag-ups with NASA HQ
 - Program Executive: Janet Letchworth
 - Program Scientist: Roopesh Ojha
 - Thursday mornings
 - Covers: instrument status, ISS issues, key science results, GO status, program issues and concerns
- Monthly Communications tag-up
- ISS processes later on...

NICER GOF Activities

- GO Program lead by Elizabeth Ferrara
- Bi-weekly GOF meeting
 - Updates on observatory status, observation planning, pipeline, software development, helpdesk, and webpage development
- Annual GO proposal cycle preparation
 - Revise AO as needed, send solicitations and reminders
- Annual GO proposal review
 - GOF lead defines panels, recruits and assigns reviewers
 - GOF members provide mission expertise for each panel
- NICER HEASARC web content documentation, tools, etc.
 - Recent addition: Analysis threads
 - TOO and OHMAN tables
- NICER Helpdesk

NICER ISS Interactions

- All commands go through established ISS infrastructure
 - Payload Operations Integration Center (POIC) at MSFC is the hub for all payloads to command through
 - Voice loops for command enabling
- Multiple email exploders communicate ISS operations to payloads
 - Not reliable for some critical information (examples coming)
 - Recent progress for External payloads
- Twice a year ISS-wide Payload Operations Integration Working Group (POIWG) meeting
 - Tend to be "crew"-centric
- ISS manifesting schedule is completely independent to the SMD Senior Review Cycle and requires constant attention
 - ISS may decide to replace NICER with another payload
 - MiPROM meeting every few months
- OHMAN
 - Weekly Payload Integration Manager (PIM) meetings
 - Regular interactions with JAXA and MAXI team
 - Requirement verifications and ISS processes
- Weekly ISS "Science Nuggets"
 - High-level timely science result sent to ISS program
 - Typically, an ATel, recent peer-reviewed publication, or exciting TOO
 - Read by ISS management, engineers, and astronauts
 - NICER's "soft power" on ISS program
 - https://heasarc.gsfc.nasa.gov/docs/nicer/science_nuggets/

Example ISS Science Nugget

Spectrum with 150 eV blackbody model

- ISS Science Nugget submitted each week
- Read by many people in ISS program, including astronauts
- NICER stands out in these inputs compared to nearly all other payloads
- Useful tool to keep track of NICER science highlights

NICER / ISS Science Nugget for May 24, 2018

Target of Opportunity observations of new transient ASASSN-18el

This week, NICER responded to an extreme nuclear transient associated with a known active galaxy (of the "Seyfert 2" class). This extreme accretion event may be due to a "tidal disruption event" (TDE), where a star has ventured too close to the galaxy's central black hole. TDEs are near-pristine laboratories of relativistic accretion.

NICER observed the target ASASSN-18el, discovered by the All Sky Automated Survey for SuperNovae (ASAS-SN) collection of telescopes distributed around the world. NICER investigations can help us understand the nature of this extreme accretion event, and can yield black hole masses, spins, and inclinations from TDEs, together with the structure of the extreme gravitational field just outside the event horizon of a black hole that was previously unobservable.


ASASSN-18el Target of Opportunity Offset = 58260 1924-40.1840 (Sc. lime: 138482613.000000) Binaize = 16.0000 s /export/home/kgendrec/work/ASASSN-18el/seet-fits_curve.xal

Figure: The X-ray spectrum (left) and light curve (right) of ASASSN-18el as observed by NICER.

Both are consistent with a 150 eV blackbody.

X-ray Light Curve

NICER will continue to observe this object and the science team is analyzing the data to determine the nature of this unusual X-ray activity.

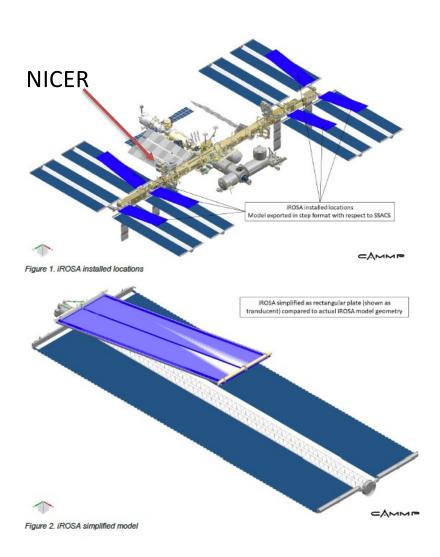
NICER on the ISS: Pros and Cons

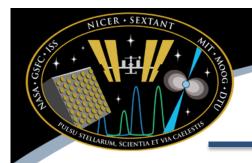
Pros

- Nearly continual contact enables rapid TOO response and feedback
- High data-volume capacity and power availability
- Low-cost operations
- Integration possibilities (e.g., OHMAN)

Cons

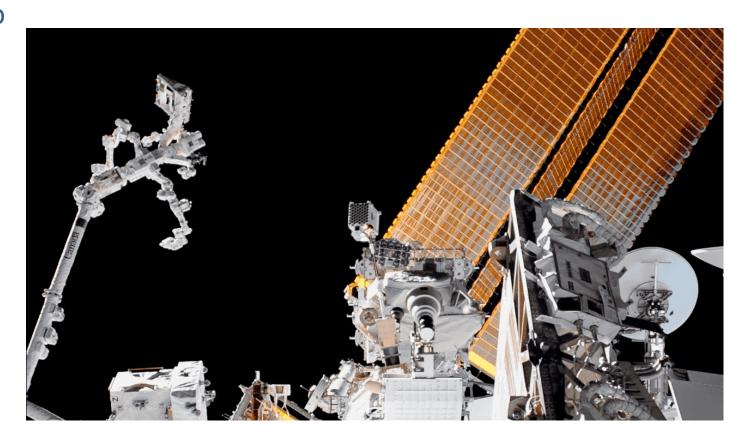
- Accommodating other payloads (e.g., MISSE)
 - "Science" has a broad definition on ISS, which hosts payloads by SMD, NASA STMD/HEOMD, DoD, Commercial, International
- EVAs and EVRs
 - Rarely impact NICER at ELC2
- ISS structure avoidance
 - Reduces the length of continuous observations of targets
- Occasional poor communication from ISS program to payloads
 - MISSE operations
 - iROSA solar panels
- Recent Contamination Concerns



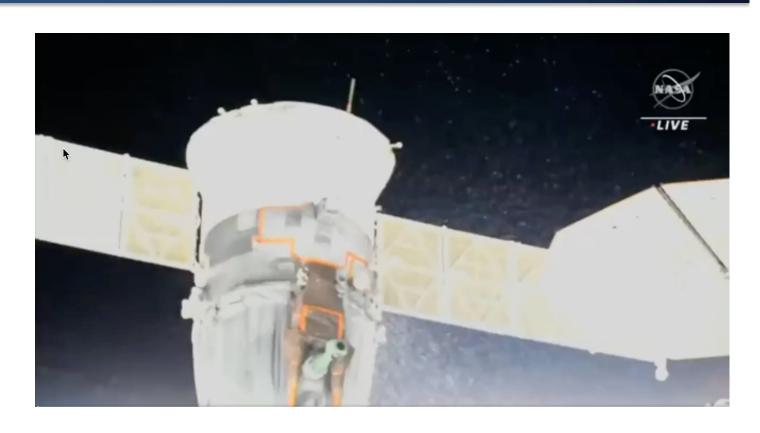

NICER on the ISS: Pros and Cons

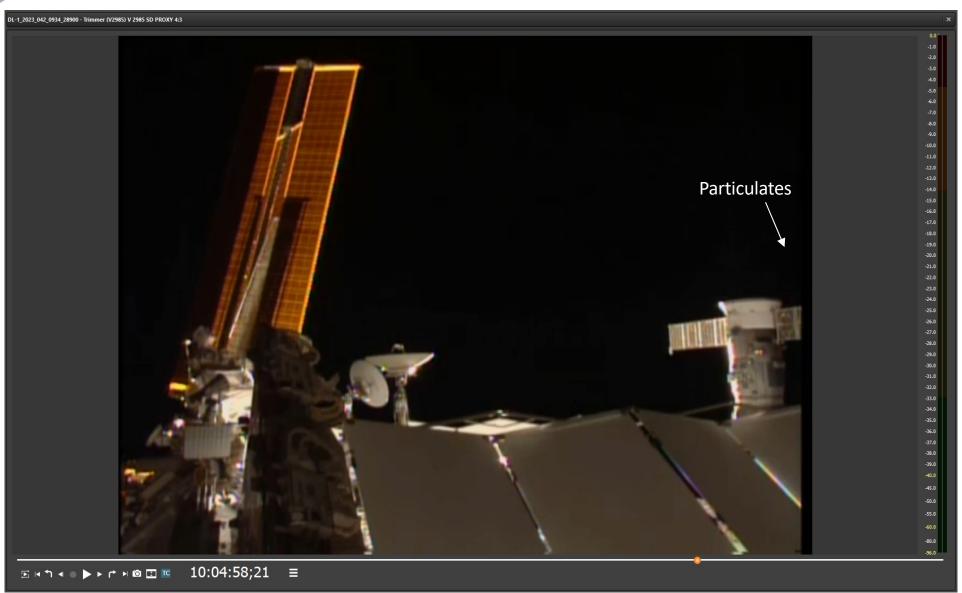
iROSA Solar Panels

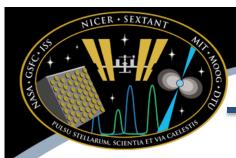
- Attempt to make up for aging solar arrays
- Will be installed beginning as soon as this summer (starboard side)
- NICER team was not informed until after we found an article in a public magazine
- Will affect planning
- Will slightly reduce availability of sky to NICER at low beta angles
- This incident is unlike other ISS upgrades where NICER (and other payloads) were consulted/informed well in advance
- Led to an "Externals" payload forum after NICER team talked with HQ and some in ISS program


iROSA Solar Panels

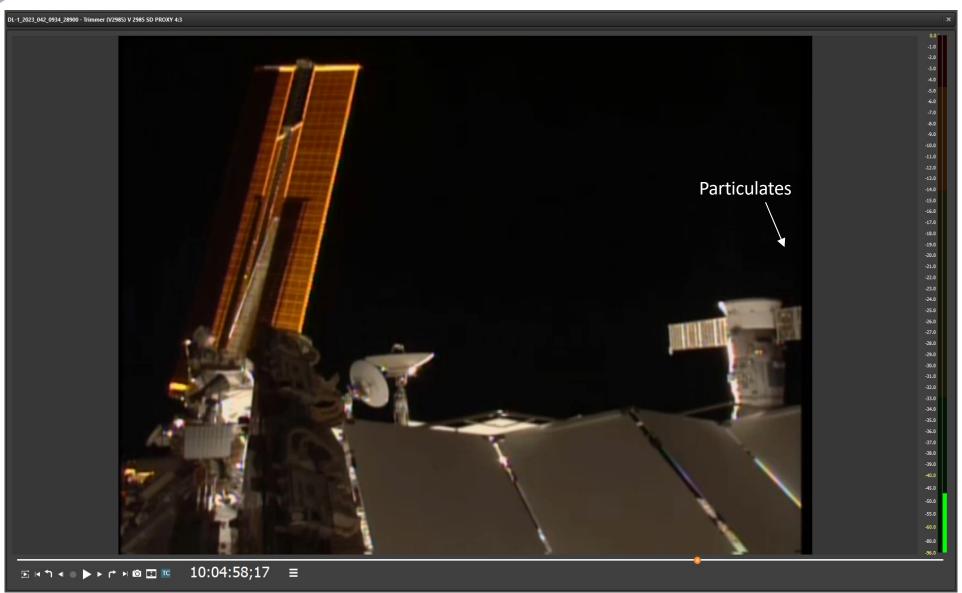
NICER on the ISS: Pros and Cons

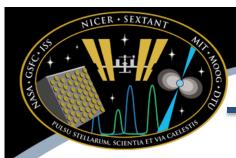

- Down in front!
- ISS obstructions do happen, but are relatively rare
- During ISS day, NICER star tracker can be blinded by glint off structures in unexpected places
- During ISS night, NICER star tracker may function fine, but XTI is blocked, leading to false eclipses

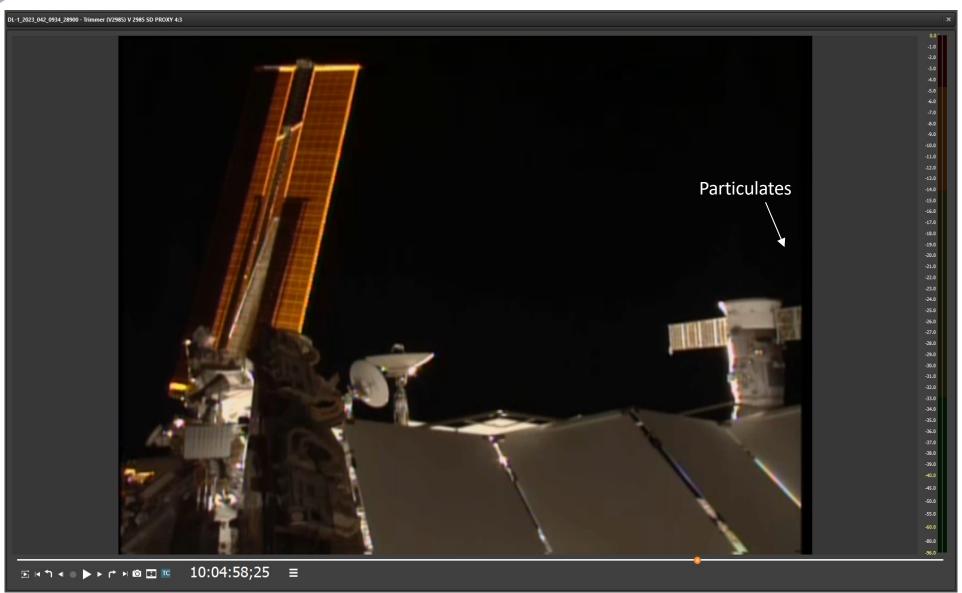

Potential Contamination Events

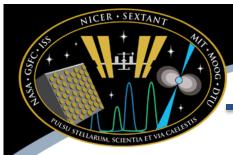

- Soyuz MS-22 vehicle incident
- Progress M82 vehicle incident
- NICER stopped observations and looked in opposite direction
- SAGE payload measured contamination on QCMs
- So far, no evidence in NICER data
 - More observations of 1E 0102 in work

December 14th 2022 Soyuz MS-22 Leak

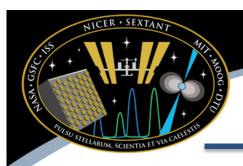






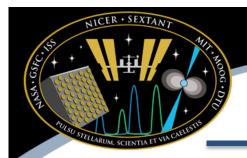








Potential Contamination Events


NICER Instrument Performance and Calibration

- Instrument has suffered very minor degradation since on orbit
 - Radiation damage has led to dark current growth in SDDs
 - Radiation damage has made inoperable nearly every SDD cold-side temperature sensor
 - This was initially confused with expected radiation damage of SDDs
 - For past ~2 years, NICER has been running SDDs at max TEC current, and dark current has been significantly reduced with no noticeable loss of calibration
- Overall performance (gain, energy resolution, timing performance) has been within specifications and captured in calibration
 - Optical loading is more difficult to account for, but calibration improving
 - · Leads to gain shifts (calibrated) and energy resolution degradation
 - Leads to extra noise at lowest < 400 eV (typical) channels
 - Standard processing can yield "0" events, while there may be plenty of useful data
- One incident where NICER actuator became "sticky"
 - 3 physical "knobs" to turn before operational hit
 - Graceful degradation through operational constraints, if needed.
- Calibration effort led by Craig Markwardt
 - Jeremy Hare is new Calibration Deputy

Sticky Actuator Incident

- On January 4th, 2023, we noticed the Azimuth actuator was not moving despite being commanded to move as part of normal operations
- After manually commanding the Az actuator at slower rates than normal, the actuator began moving. Slow actuation was practiced until normal operating speeds could be used and normal operations began after ~< 5 hours of down time
- It is the opinion of Garry Brown (Actuator lead for NICER) and Alice Liu (Pointing Systems Lead for NICER) that grit from normal wear and tear produced a local resistance in the actuator bearings, something seen previously on RXTE (to be confirmed).
- Context: NICER had a SAFE condition a few hours earlier due to a Sun angle violation (not a hardware safety concern), which may have fundamentally been due to the same condition for the Az actuator. Also, on Jan 3rd, NICER had a SAFE condition due to an unrelated (non-hardware) situation. The Jan 3rd SAFE condition lasted ~10 hours and may have contributed to actuator grit solidifying and enabling the later SAFE conditions.

NICER Collaborations

- Joint GO programs with NICER
 - NuSTAR
 - TESS
 - Swift
 - NRAO
 - IXPE (in work)
- NICER and MAXI are collaborating as part of OHMAN
 - OHMAN mailing list has already resulted in multiple fruitful science returns (e.g., MAXI J1820)
 - OHMAN automatic ops began in summer
 - MAXI mission extended in part thanks to this arrangement
- Sellers Exoplanet Environment Collaboration (SEEC)
 - NICER works in conjunction with TESS and other observatories to provide high-energy probe of exoplanet systems to understand habitability
- Radio Collaborations
 - DSN and others for a variety of pulsar science
 - NRAO MOU
- IACHEC (International Astronomical Consortium for High Energy Calibration)
 - NICER participates in coordinated cross-calibration observations with nearly all other high-energy missions, sends representatives to IACHEC meetings
- Integrated NICER-Swift Soft X-ray TOO mechanism in work
 - Looking to hire a person to work both NICER and Swift operations to better integrate TOO operations

Additional Community Engagement

- New Level 3 product deliveries from pipeline to archive are improving accessibility of NICER results to broader community
- Working with GSFC and HQ Communications teams to establish NASA-approved way of posting science analysis how-to videos
- Jeremy Hare participated in 2-week IAU Capacity Building X-ray astrophysics Summer School in South Africa, demonstrating NICER science, HEASARC archive, and FTOOLS
- Isiah Holt represented NICER at annual NSBP conference
- Anticipate multiple interns (undergrad and grad) during Summer 2023, including from Howard University, who will learn NICER and broader X-ray data analysis techniques
- New DEIA statement on NICER HEASARC homepage.

NICER User Group Timeline

- Kickoff meeting February 2023
- NICER's 3rd (??) public workshop- summer 2023?
- NUG Spring meeting
- NUG Fall Meeting

Backup

NICER Policy for Target of Opportunity Requests

NICER is committed to maximizing science yield in time-domain X-ray astrophysics. Building on real-time data acquisition and commanding capabilities, pointing agility, and increasing automation, NICER's dynamic operations enable rapid response to transient and otherwise unpredictable phenomena.

The NICER operations team aims to react promptly to all time-sensitive requests for "target of opportunity" (ToO) observations, such as for unfolding astrophysical events or coordination with dynamically scheduled observations at other facilities. ToO requests, which must be submitted via the online form, may originate from within the NICER team, from a Guest Observer (GO) with an approved peer-reviewed proposal, or from the general community. In keeping with the goal of maximum science return – in particular, to avoid missed opportunities – the NICER operations team evaluates, and may choose to act on, all ToO requests as they are received, whatever their origin. NICER staff also endeavor to deliver "quick look" data to ToO requesters, on a best-effort basis; in any case, all non-GO data enter the public NICER archive within two weeks of acquisition.

There are special implications of this policy for GO ToO investigations. It is the GO investigator's responsibility to notify NICER, via the online form, that ToO triggering criteria have been satisfied and to request that observations be scheduled. It is possible, however, that an independent ToO request for the same target will have already been received, approved, and executed, or that an existing monitoring program for the same target will have resulted in a recent set of observations. In such cases, implementation of the GO trigger will take place at the next reasonable observation scheduling opportunity. Data acquired from any observations scheduled prior to implementation of the GO trigger will be considered "public" – i.e., will enter the public archive within two weeks, but with quick-look data likely available to any initial ToO requester. Data acquired subsequent to a GO trigger notification will be assigned to the GO project and will be subject to any exclusive-use period granted to that project.

Occasionally, an independent ToO request received <u>after</u> a GO trigger notification will offer enhanced science return – e.g., through coordination with another observatory or because prompt analysis of the data suggests a modified observing strategy not anticipated by the GO effort. In such cases, NICER will consider this information in planning additional observations of the ToO, and will reach out to both the GO investigator and the independent ToO requester to foster collaboration where possible.

NICER GO Cycle 3 – Proposal Responses

The NICER Cycle 3 announcement of opportunity resulted in:

- Submission of 112 proposals (+21 over Cycle 2)
- By **370** unique proposers (+8)
- From **27** countries (-1)

Oversubscription:

- NICER time requested: **12.7** Msec = factor of **2.1** oversubscription
- NuSTAR time requested **1.325** Msec = factor of **3.3** oversubscription

Global interest in NICER:

• 40 proposals were submitted by principal investigators affiliated with non-US institutions (35%)

NICER GO Cycle 3 – Response Statistics

Number of submitted proposals = 112 Number of submitted proposals with likely female PIs = 25 (22%)

Submissions by topic:

- Rotation Powered Pulsars & Magnetars = 17 proposals
- White Dwarfs = 5 proposals
- X-ray Binaries = 58 proposals
- Active Galaxies and Quasars = 23 proposals
- Other = 9 proposals (ULXs, FRBs, comets, transients, etc.)

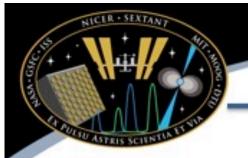
Percentage of proposals requesting:

- TOO = 57 = 50.8% Average Trigger Probability = 0.59
- Exclusive-use period = 33 = 29.4%
- NuSTAR observations = 18 = 16% (13 are TOOs)
- Coordinated with other facilities = 49 = 43.7% (29 are TOOs)
- Multi-cycle observations = 6 (2x Cycle 2 req.)

NICER GO Cycle 3 – Proposal Review

Cycle 3 was NICER's first dual-anonymous proposal review. It was also the first virtual review for the mission.

34 panel members across 5 panels


- 6 or 7 members per panel
- 22-24 proposals per panel
- 2 non-voting members to provide technical and logistical support

Diversity

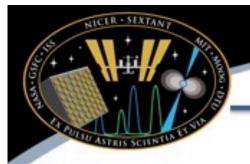
- 13 minority voting panelists (38%)
 - 2 middle eastern, 4 asian, 2 hispanic, 5 indian
 - 1 non-voting minority panelist
- 10 female voting panelists (29%)
 - 2 non-voting female panelists

Panel Leadership

- Effort was made to recruit younger reviewers and female reviewers
- 2 "first-time" chairs
- No ethnic minority chairs
- 1 female chair

NICER GO Cycle 3 – Proposal Recommendations

Selection process:


- One proposal eliminated because of non-compliance with ROSES
- Panels provide rank-ordered list from each panel
- Chairs defined 3 ranges: important, worthy, average
- Feedback from panels considered: NuSTAR allocation, Exclusive Use, Target Prioritization, etc.
 - 12 Exclusive Use and 1 NuSTAR request deemed "Not Justified"
- Proposals that are meritorious and provide for a balanced science program are recommended for time allocation

After reviewing the recommendations and evaluations by the review panels, the NICER Mission recommended **81** proposals for inclusion in NICER's Cycle 3 Guest Observer Science Program:

- **51** are from PIs affiliated with US-based institutions
- 45 are TOO proposals, with a maximum of 4.1 Msec (2.8 Msec when scaled by prob)
 - Based on prior cycles, this is likely an overestimate
- In order to maximize science, low-priority target time allocations have been zeroed out
- Expected NICER time in program is 7.1 Msec (not including carryover)
 - Priority A time = 6570 ksec
 - Priority B time = 570 ksec
 - Priority C time = 0 ksec (was 800 ks)

Here, priority indicates the importance of the target to the success of the proposed investigation.

• Allocated NuSTAR time in program is **393 ksec** (7 programs)

NICER GO Cycle 3 – Statistics

Number of recommended proposals = 81

Number of unique targets in program = 122 known, up to 82 unknown Number of recommended proposals with female PIs = 20 (24.6%)


- Female PI submissions = 22%

Recommended proposals by topic:

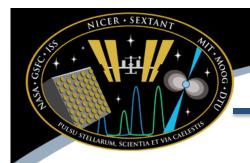
- Rotation Powered Pulsars & Magnetars = 12 proposals
- White Dwarfs = 3 proposals
- X-ray Binaries = 40 proposals
- Active Galaxies and Quasars = 18 proposals
- Other = 8 proposals (ULXs, FRBS, comets, transients, etc.)

Percentage of recommended proposals with these attributes:

- TOO = 45 (55%)
- Exclusive Use period requested = 21 (26%), 15 deemed "justified"
- NuSTAR observations = 7 (9%), 6 are TOOs
- Coordinated with other facilities = 28 (34%), 18 are TOOs
- Multi-Cycle observations = 4
 - Will carry over 570 ksec into Cycle 4

NICER GO Cycle 3 – Fair Share

Budget for GO support = \$1.5M

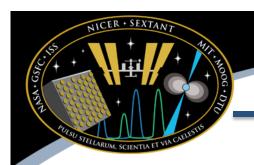

- Desire is for awards to be sufficient to provide meaningful support
- Also desire success to have financial benefit

Rely on past experience:

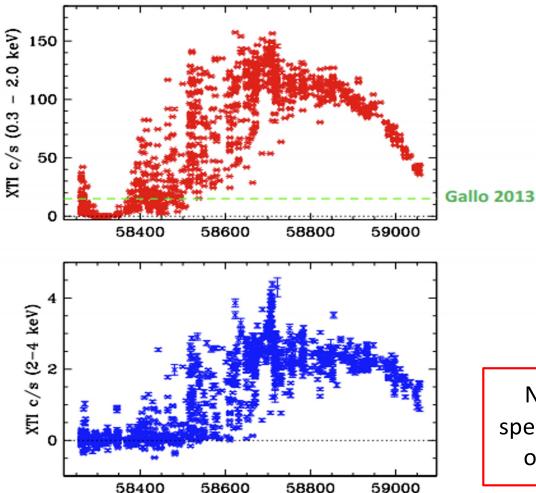
- In Cycle 2, only 15 of 34 (44%) of the selected TOO proposals have triggered so far.
- Funds were allocated for all selected proposals with US-based PIs, but for TOO proposals funds are only sent once the program has triggered observations.
- Result is that funds have been reserved, but are never sent to the PI
- We want to avoid this situation going forward

For Cycle 3:

- Of 51 proposals with US-based PIs, 29 are standard proposals, and 22 are TOOs
- If we anticipate a 50% trigger rate, then 40 awards should be planned (29+11)
- Implies average award of \$37.5k
 - At \$38k, total of \$1.52M
- If all 22 triggers happen, over-obligated by \$412k
 - Should additional funds be needed, underrun from Cycle 2 TOOs can mitigate this concern.
- Plan to award \$38k to each successful proposal once observations have begun


NICER Follow up of Optical Transients

- NICER has a large effective area like XMM-Newton/EPIC with very flexible maneuvering capabilities like Swift
 - Rapid response
 - Long-term monitoring of transients (months to years)
 - High-cadence monitoring of transients (several exposures per day)
 - Best timing accuracy in soft X-rays
 - Ability to handle a huge dynamic range in flux
- These give NICER a great vantage point to chase X-ray transients
- Roughly 2 Msec of NICER time observing ~20 optical transients
 - Mostly TDE events
- ZTF targets in the northern hemisphere typically have good visibility and plenty of unconflicted availability



NICER Optical Transient Observations

Target Name	Туре	Notes	NICER Detection?	Total Exposure (seconds)
	Changing-look			
ASASSN-18el	AGN/TDE?	> 2 year campaign; Ricci et al.	Yes	1000000
ASASSN-18ul	TDE	> 2 year campaign	Yes	315000
AT2020ocn	TDE candidate	Ongoing active monitoring	Yes	140000
AT2020nov	TDE candidate	Detects something but not sure what? (definitely not diffuse emission)	Yes	14000
AT2018jcp	AGN in outburst		Yes	8300
AT2018cow	SN	Evidence of compact object	Yes	40000
ASASSN-18fv	Nova	V906 Carinae, Nova Carinae 2018 detected only at high energies (NuSTAR, Fermi)	No	18000
ASASSN-18pg	TDE	Large optical/X-ray	Yes	12000
ASASSN-19yt	CV?	Evidence of lines in X-ray spectrum	Yes	30000
ASASSN-20hx	TDE	GO Cycle 2 target	Yes	
AT2018dyk	Changing-look LINER?	Soft x-ray source	Yes	21000
AT2019ebg	Unknown	Possible LIGO counterpart	No	5000
ZTF19aassfws	Unknown	This is a LIGO target??	No	10000
AT2019dsg	Unknown	Coincident with IceCube neutrino alert; Soft Source that decayed with time	Yes	29000
AT2019ehz	TDE Candidate	Can see decay in X-rays	Yes	6000
AT2019osy	Unknown	Possible LIGO counterpart	No	2500
AT2019pev	AGN flare	Initial flare and then settled to steady flux and spectrum, large X-ray/optical	Yes	91000
AT2019qiz	TDE Candidate	Closest TDE	No	19000
SN2019qyl	SN Candidate		No	18000
AT2019azh	TDE	Caught late-time X-ray brightening	Yes	173000
AT2020neh	IMBH TDE	Prompt follow-up after optical discovery	No	21000

Changing-look AGN ASASSN-18el (z=0.017)

Time (MJD)

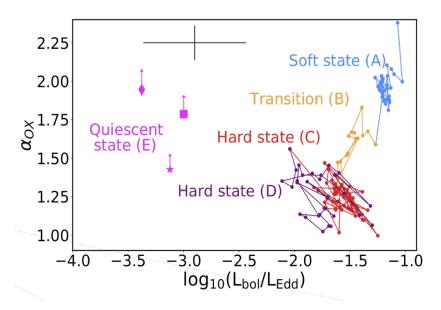
1200+ NICER exposures over the last 22 months

(Note: initially wrongly classified as SN II)

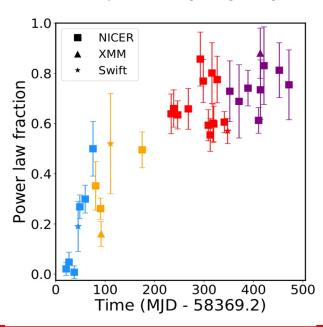
Dedicated NICER monitoring revealed the most compelling evidence (spectrally) to-date of the disappearance and the reappearance of an X-ray corona in an AGN

NICER can provide high SNR X-ray spectra over a long period of time and over a wide dynamic range in flux

Ricci, + NICER team members 2020, ApJL

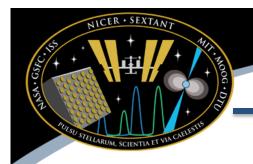


ASASSN-18ul

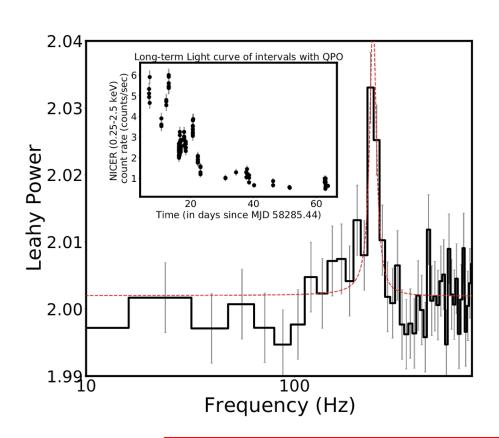

Tidal Disruption Event ASASSN-18ul: Multiple accretion state transitions analogous to stellar-mass black hole X-ray binaries

NICER monitored ASASSN-18ul for 500 days

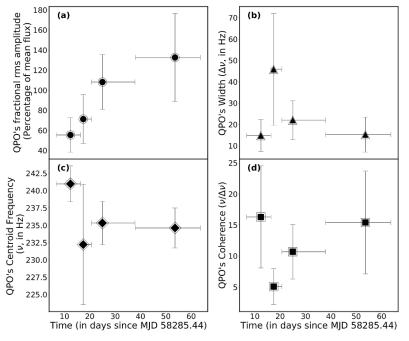
Equivalent to hardness-intensity diagram of X-ray binaries: α_{ox} tracks the relative strengths of disk and the corona



NICER spectral monitoring shows independently that the X-ray corona is getting energized at late times


NICER data can work in-conjunction with other wavelengths to maximize the science output

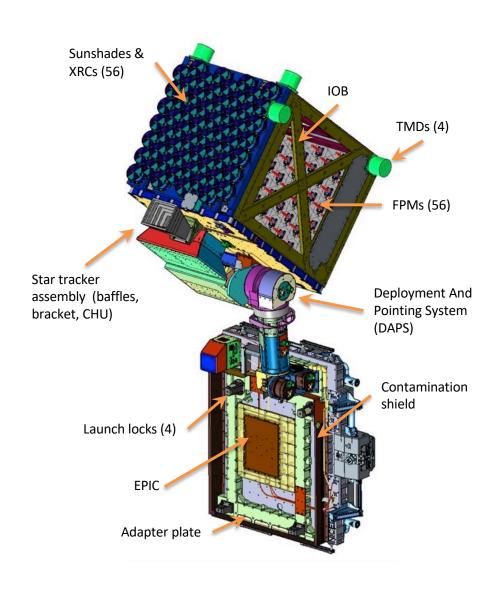
Wevers + NICER team members 2021, ApJ



The "Wow in the Cow" AT2018cow

A high-amplitude quasi-periodic oscillation (QPO) in soft X-rays

Fractional rms amplitude appears to increase as the source fades


Affirms that AT2018cow was powered by a compact object

Pasham + NICER team members, in prep.

The NICER Payload

An innovative combination of high-heritage components

X-ray Timing Instrument (XTI)

- Assembly of 56 X-ray concentrators (XRCs) and Focal Plane Module detectors (FPMs)
- Detects individual X-ray photons, returns energy and time of arrival
- Held together in the Instrument Optical Bench (IOB)

Thermal system

Maintains thermal-mechanical alignment

Pointing System

- Composed of high-heritage components
- Enables XTI tracking of targets, and slewing between them
- Stabilized by tuned mass dampers (TMDs)

· C&DH

- Digital interface to ISS for commands, data
- Supports pointing system


Flight Releasable Attachment Mechanism

- Electrical & mechanical interface to ISS and transfer vehicle
- Provided by ISS program

Focal Plane Module (FPM)

Flight-lot detector in flight housing

NICER XTI temp-corrected Fe-55 spectrum cycle 3 TVAC (8 oct 2015)

10⁸

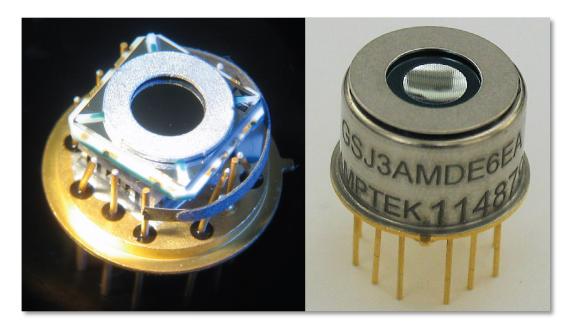
10⁸

Spectral Resolution FWHM:

Si-escape
130 eV

10³

Al 107 eV

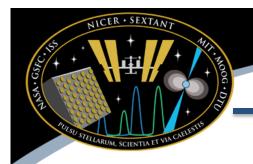

99 eV

125 eV

10⁸

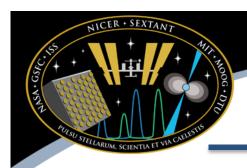

PI [10 eV bins]

- Commercial silicon drift detectors (SDD) from Amptek Inc. provide CCDlike energy resolution and < 100 ns time resolution with built-in thermoelectric cooling
- Detector window consists of 40 nm of Si₃N₄ and 30 nm of Al. Transmits very low energy X-rays (better than 200 eV) while maintaining a hermetic seal.



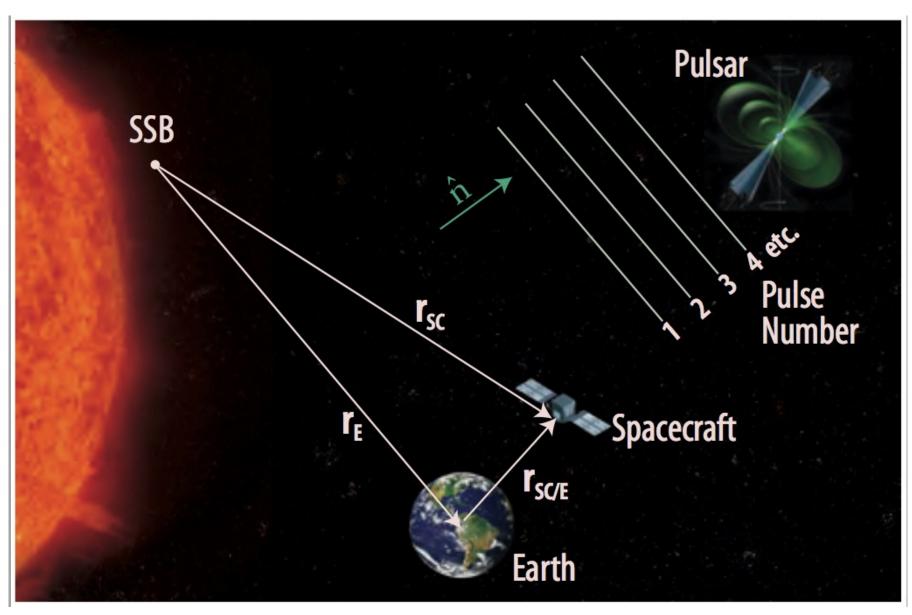
Concentrator optics




- Thin-foil optics with heritage from ASCA, Suzaku, and Astro-H
- Single-reflection optic to maximize throughput, with limited mass, for isolated point-like sources
- Advances compared to previous GSFC optics:
 - Single shell, not quadrants
 - Parabolic shape, not conical approximation
 - Improved replication and alignment techniques


Publications

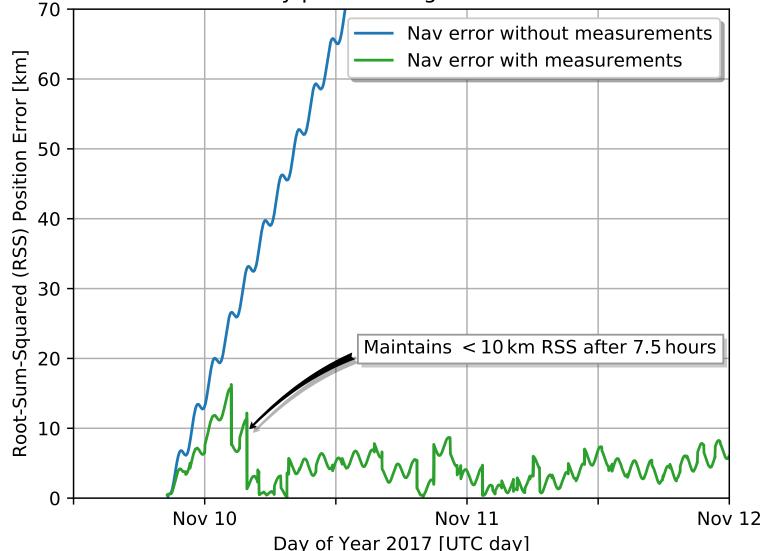
- Through FY19, ISS has produced
 ~1500 peer-reviewed publications
- NICER has published 56 peerreviewed papers — and counting, at about one per week — as well as 47 Astronomer's Telegrams
- NICER is already a significant contributor, will have a *major* impact on the science productivity of ISS as a national laboratory!


Initial NICER Slew Survey



SEXTANT — Method

Inverting traditional pulsar-timing techniques



SEXTANT success!

First demonstration of autonomous pulsar-based navigation

SEXTANT successfully demonstrates fully autonomous, real-time X-ray pulsar navigation on-board NICER

