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Abstract. A tsunami of astronomical data is fast approaching. New
survey programs will dwarf any data sets that have come before. Obser-
vatories’ data storage costs will threaten their budgets. Data transport
latency and bandwidth will threaten not just budgets, but available tech-
nology and human patience. Under such circumstances, projects will
increasingly rely on data compression as a technique necessary to meet
requirements of acceptable throughput and affordable data handling.

1. Introduction

The FITS Tile Compression Convention (Pence et. al. 2000) provides a general
framework for any compression algorithm that can operate on multidimensional
image sections, while preserving access to FITS (Hanisch et. al. 2001) headers
and individual FITS HDUs. This convention1 has been supported by CFITSIO2

for several years, including Rice, PLIO and gzip compression. The IRAF FITS
kernel also supports the PLIO format. Various projects have used these facilities,
but as interest in tile compression has grown, limitations have become clear:

• Implementations were not idempotent – even a losslessly compressed file
would suffer keyword changes upon decompression.

• The original tile compression convention covered only per-HDU issues. For
example, compressing a single HDU (SIF) image generated a binary table
indistinguishable from an MEF original.

1http://fits.gsfc.nasa.gov/fits_registry.html

2http://heasarc.gsfc.nasa.gov/fitsio/fitsio.html
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• The only tile compression application was the example imcopy program
with limited features. Copying actually increases total size.

Improvements to CFITSIO that address these issues are discussed, including
the introduction of the host level fpack compression tool. Fpack can compress
images in-place. Tile compression can work with other FITS tools to build large
multi-image archives to improve transport efficiency. Fpack (and funpack) are
idempotent, support the FITS Checksum (Seaman 1995), and applications lay-
ered on CFITSIO can access output files transparently without decompression.
Support for the Hcompress (White & Greenfield 1999) algorithm has been added
to CFITSIO, including an improved option for scaling floating point input.

2. Optimize throughput, not just storage

The challenges faced by the National Optical Astronomy Observatory’s Data
Products Program are representative of other major astronomical institutions.
Data flow rates, already large by historical standards, will soon grow by orders
of magnitude. NOAO and partner institutions operate telescopes on Kitt Peak
in Arizona, and on Cerro Tololo and Cerro Pachon in Chile. Major instruments
are being commissioned right now (e.g., NEWFIRM) whose nightly data outputs
will match any we currently operate. Two mountaintops will see new instruments
(the One Degree Imager at WIYN and the Dark Energy Camera at CTIO) that
will increase our data flow ten times in about three years. Another few years
beyond, LSST will raise the bar again by a factor of perhaps another thirty.

Table 1 shows the NOAO Science Archive data volumes3 estimated to ac-
cumulate through the end of the next few observing semesters, contingent on
the compression algorithm as well as the output datatype used by the NOAO
High Performance Pipeline. Varying these can have a large effect on storage
costs, for example, the additional cost for specifying 32-bit floating point output
and the gzip4 algorithm is $2.865 per input Mosaic-camera image versus Rice4

compressed short (16-bit) integers. Floating point output suffers from doubled
BITPIX, but is also less compressible than integer output. The NOAO test data
realized 57% integer gzip compression, but only a 74% benefit for floating point.

Static storage costs are only one consideration. Raw NOAO data streams
(see Figure 1 in Smith et. al. 2006) flow down from the three mountaintops to
data centers in Tucson, Arizona and La Serena, Chile. Data are mirrored across
the equator between the two data centers. Data from key instruments feed into
pipelines that may inflate sets of large multi-array input files by a factor of
several. All data are also forwarded to the NCSA in Illinois for permanent MSS
storage. Each data product that is ingested thus requires multiple replications
across a far-flung network. Any archive must also plan for success and one
hopes that each ingested data product will be retrieved many times over by

3These figures do not include data from instruments yet to be commissioned in the near-to-
midterm such as NEWFIRM, WHIRC, QUOTA, ODI and DEC, nor data from SOAR.

4gzip is the standard Unix gzip command, Rice is FITS tile compression with default settings.

5Accounts for the mirror archive in Chile and the wide variety of pipeline data products.
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Table 1. Cumulative NOAO Science Archive holdings in TBytes, both raw
and pipeline processed data, at the end of indicated semesters

comp. pipeline now 2006B 2007A 2007B 2008A 2008B
algor. BITPIX 1Aug06 1Feb07 1Aug07 1Feb08 1Aug08 1Feb09

none -32 30.6 40.1 47.8 57.3 65.0 74.5
gzip -32 20.3 26.6 31.6 37.9 42.9 49.2

none 16 22.4 29.2 34.8 41.6 47.2 54.0
gzip 16 13.8 18.0 21.4 25.6 29.0 33.2
Rice 16 11.5 15.0 17.8 21.3 24.1 27.6

users. In short, the value of data compression is multiplied many times over
when budgeting for network bandwidth.

For interactive applications, such as data access through an NVO portal,
minimizing network latency may be even more important. Users want instant
gratification – moreover, their real time science may demand it. Each network
copy operation is reflected in an increased data delivery delay. Each unneces-
sarily uncompressed byte adversely affects customer satisfaction.

The end-to-end goals thus become to support cradle-to-grave compression
(from “dome to home”), to retain easy FITS header access (no external caching
needed), to optimize pixel access (for inexpensive cutouts and mosaicing), and
to support read-write speeds as fast (or faster) than when uncompressed.

3. Compress once, decompress never

The alternative to FITS tile compression is not some host compression algorithm
like gzip, rather the alternative is no compression at all. No single host level
algorithm can generate enough interest to gain support across all classes of
astronomical applications. By building compression into FITS, FITS compliant
applications will evolve to suit the growing requirements of bold new projects.

No one compression type is best, but consider the familiar gzip (or bzip2)
tools. Support for these tools is ubiquitous, but so are their shortcomings. The
selection of any compression algorithm keys on three main points: the compres-
sion factor achieved, the speed of compression, and the speed of decompression.
As shown in table 1, FITS tile compression using the Rice algorithm beats gzip
file sizes by 17% for a large sample of short integer NOAO data products. But
Rice also beats gzip for speed of both compression (quite significantly) and of
decompression. For the same data sample, fpack using Rice compressed in only
39% of the time required by the Uniz gzip command. Gzip decompresses much
faster, a factor of about 30%, than it compresses, but Rice still edges it out at
28%, normalized to gzip compress. Data handling thoughput thus benefits from
both smaller size and quicker (de)compression.
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Logistical concerns may trump even these impressive benefits. When using
a host compression utility, the contents of each file are opaque. Headers and
other metadata, pixels and tabular data are all unreadable. For most purposes, a
compressed file must be decompressed before use. Software provides only limited
access to on-the-fly decompression for gzipped FITS files – e.g., libraries cannot
seek to extension headers without expanding intervening bytes. Paradoxically,
network transport is most efficient for large files, such that compressed files
must be assembled as collections, or contrarily that file collections themselves
be compressed (hence the familiar “.tar.gz”). Complexity and overhead result.

By contrast, the FITS tile compression convention provides a standard
framework that can support any algorithm that operates on multidimensional
image tiles (sections). With the addition of Hcompress, this now includes very
high compression factors through lossy techniques. Most importantly, a tile
compressed image (while represented as a binary table) looks exactly like an
uncompressed image to CFITSIO for both reading and writing – in fact, a new
image can be created already compressed. In addition:

• FITS headers remain readable and writable
• access is preserved to individual FITS HDUs
• the files are still FITS and any FITS operation is legal
In short, while funpack may be used as a host level tool similar to gunzip,

better yet, data need never be decompressed for CFITSIO applications.
For example, it is trivial to assemble mixed collections of compressed and un-
compressed HDUs into arbitrarily large FITS MEF files.

4. New features supported by CFITSIO and fpack

• compression is now idempotent (decompression restores verbatim original)
• applications layered on CFITSIO access compressed files transparently
• both lossy and lossless Hcompress algorithms are supported
• the input scaling of floating point data can be adjusted
• f(un)pack (de)compresses files in-place or via a pipe
• memory consumption has been optimized for per-HDU operations
• fpack and funpack update the FITS Checksum
• works with multi-file, multi-extension archives for transport efficiency
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