

HXD Operation and Calibration status

K. Nakazawa (U. Tokyo) on behalf of the Suzaku-HXD team

Status Report of HXD

1: Introduction & Operation status

-Introduction and high-lights

-status report

→ all channel is working fine, as of 21 Sep. 2009

-PIN noise cut threshold update

2: Calibration updates

-Recent Crab spectra-GSO gain correction update status-NXB reproducibility *revisiting*

3: Comments on Analysis

-hxdarfgen for off-bore sight sources *revisiting* -comments on GSO analysis

1: Introduction & Operation status

1-1: The Hard X-ray Detector

The power of wide-band spectra

1-2: HXD Status

Normal operation for ALL 64 PINs and 16 GSOs continues

3 Operational Events taken place within 1 year, 2 impacts on observations, no effect on current observation

A: WPU-1 PIN Analog LD + Anti-unit gain correction

12 Feb 09:30 UT PIN = No impact on data was observed (because of proper soft-LD). Anti = No impact (doing almost annually)

B: DE (CPU) halt at 27 June – 1 July 2009 : "Otaru-event"

Jun.27 (A1795_NEAR_WEST) 17:27- A sudden halt of HXD-DE occurred during a SAA passage. HXD observation was stopped till 18:09 July 1. Caused by register SEU. Reason resolved. No permanent impact.

1-2: HXD Status

C: WPU-01 PIN-3 out-burst

A sudden LD and UD rate rise of W01-PIN3 at 13 Sep. 2009.
-calmed down within 8 hours
-the 3rd case in the whole HXD life.

- the same PIN, which showed similar behavior at May 2006 (the 2nd case).

-Still monitoring, i.e. no need to switch off trigger. No after-effect observed to date

→ Now at normal observation

2-1: Annual PIN software-threshold update

2-1: Annual PIN software-threshold update

6 sets of ae_hxd_pinthr_YYYYMMDD.fits in CALDB. epoch 1) 2005-08-17 epoch 2) 2006-05-25 epoch 3) 2006-10-03 ←automatically s eopch 4) 2007-07-28 eopch 5) 2008-08-31 eopch 6) 2009-10-01

←automatically selected by *hxdpi*.

2-2: Crab spectra (PIN)

PIN Crab spectra unchanged within 5%

2-2: Crab spectra (PIN)

2008 Crab observation compared to the 2005+2006 Crab best fit model

 $\label{eq:linear} \begin{array}{ll} \Gamma &= 2.10 \pm 0.004, \\ \text{Norm} = 11.1 \pm 0.12 & \text{photons cm}^{-2} \, \text{s}^{-1} \, \text{keV}^{-1} \, \text{at 1 keV} \end{array}$

2-2: Crab spectra (GSO)

PIN-GSO Crab spectra (1)

S. Yamada+

-response stable within 10% below <300 keV -at > 350 keV, NXB systematic error is non-negligible

2-2: Crab spectra (GSO)

PIN-GSO Crab spectra (2)

PIN-GSO spectra up to 300+ keV, OK

2-3: GSO gain updates

GSO gain correction

Feb. 2010 to be released

Resolved the origin of the gain fudge in GSO

2-3: GSO gain updates

GSO gain correction

Feb. 2010 to be released

Resolved the origin of the gain fudge in GSO
 → try eliminating the Eff. Area fudge (arf) from GSO

Much confident fitting

2-4: NXB revisited (PIN)

Please use "tuned (LDFITDT)" NXB for analysis of dark objects

Night Eearth 15-40 keV, 10ks PIN data vs. model gaussian fit av. -0.43% σ: 2.27% σ_{stat}: 1.93% 0.3 σ_{svs}: 1.19% 0.25 0.3 0.35 bgd model (c/s) -5 0 5 (data-model)/model (%) Sky Obs. 15-40 keV, 10ks gaussian fit av. 7.15% σ⁵: 3.30% σ_{stat}: 1.95% 2.66% region used for the fitting 0.3 0.35 bgd_model (c/s) 0.35 0.4 0.45

Reproducibility distribution

"tuned" NXB needs ~ 2 month to generate. Temporary, quick NXB can be used, but with worse systematic error

not new

still good

"tuned" PIN NXB WILL BE reliable with 2.7% (1σ) sys-error, while 3.3% *or worse* in "quick (PINUDLCUNIT)" NXB

From Fukazawa+09, PASJ 61, Mizuno et al. Cal document 2008.

2-4: NXB revisited (GSO) not new still good

Only "tuned (LDFITDT)" NXB is provided

GSO NXB reliable on 0.8% (1 σ) sys-error

From Fukazawa+09, PASJ 61 and Suzaku web GSO bgd page

HXD, figure of merits, with these NXBs

What means <1% sys. err?

Calculated Sensitivity for point source (10 ks exp.)

With relatively short (~10 ks) exposure, not only HXD-PIN, but also HXD-GSO provides highest sensitivity

>> a tool for variability

The HXD is 4 times faster than Integral at 200 keV for 20 mCrab source, and 4 times faster than the RXTE-HXTE at 30 keV for 1 mCrab source.

2-5: Calibration Updates (2009)

Error Budgets of Scientific Instrument Calibrations

	Calibration Item	Oct 2008	Requirement	Goal
HXD	Absolute effective area	20%	20%	5%
	Relative effective area	10%	10%	5%
	Vignetting	5%	10%	5%
	Background modeling (PIN) ^g	$3\sim 5\%$	10%	1%
	Background modeling (GSO) ^g	$1.5 \sim 2\%$	10%	3%
	Absolute timing ^h	300 µs	300 µs	100 µ s
	Relative timing ^h	1.9 × 10 ⁻⁹	10 -8	10 -10
	GRB absolute timing	\sim_{2ms}	10ms	1 ms

3: Comments on Analysis

3-1: "hxdarfgen" ready from 2007

HXD alignment calibration

Ken-ichi Tamura, Kazuhiro Nakazawa (ISAS / JAXA) Naomi Kawano, Ayumi Hirasawa (Hiroshima Univ.)

Note: combine "hxdnominal response" with arf from *hxdarfgen*

e.g. ae_hxd_pinhxnome?_20YYMMDD.rsp

3-1: "hxdarfgen" ready from 2007

Crab scan observation vs "hxdarfgen" prediction

"hxdarfgen" is accurate within 9% pk-pk over +/- 20 arcmin

Notes: GSO angular arf from *hxdarfgen* is not well calibrated yet. Since scattering is non-negligible, not easy and not recommended. (Existing "GSO arf" is for response fudge correction at the two aimpoints)

3-2: Diffuse source

3-3: Simple comments on GSO analysis

rule of thumb

Only 4+1 differences to PIN

1: reprocess needed (long-term gain correction with good stat.).

2: NXB has the same exposure to the data (in PIN, is x10),

3. data should have the same grouping as the NXB

4: use of "fudge arf" in analysis.

(5: *hxdarfgen gso-arf* not calibrated well. No problem for hxd/xis-nominal point-sources)

Please enjoy GSO spectra !!

3-4: WAM status

Not for proposal, but can be used via web

- Lateral large BGO shield of the HXD
- Work as not only a shield but also an allsky monitor
- •Scientific objectives: GRBs, SGRs, solar flares & blackhole candidates

	The WAM key parameters			
E	nergy range : 50-5000 keV			
Fi	eld of view : ~2π			
Geometrical area : 800 cm ²				
E	ffective Area : 400 cm ² @1 MeV			
E	nergy resolution: ~30%@662 keV			
Ti	me resolution : 1 s (TRN)			
	15.625 msec (BST)			

3-4: WAM status

- Suzaku XIS and HXD also observed X-ray afterglows of this burst (Nakagawa et al. GCN 9737)
- A QPO at 0.124 Hz is found in its power spectrum.
 - \rightarrow SGR ? but X-ray afterglow properties are typical as GRBs.

3-4: WAM status Status of prompt emission observations

3-4: WAM status

WAM Web site:

http://www.astro.isas.jaxa.jp/suzaku/HXD-WAM/ WAM-GRB

- Light curve data are already publicly available, and response matrices and spectra for some GRBs will be available within this year.
- The software package related with WAM data analysis are already included in current version of FTOOLS.
- Contact: suzaku-wam@astro.isas.jaxa.jp