Progenitor Metallicity of Kepler’s Supernova

Sangwook Park
Department of Physics
University of Texas at Arlington

Carles Badenes (Pittsburgh)
John Hughes (Rutgers)
Patrick Slane (CfA)
Koji Mori (Miyazaki)
Ryohei Kaida (Miyazaki)
David Burrows (Penn State)
Jae-Joon Lee (KASI)
Outline

1. Motivation: Nucleosynthesis study of Type Ia SN
2. Progenitor Metallicity of SNe Ia: Why Kepler?
3. Initial Suzaku Results of Kepler (100 ks, AO2)
4. **Suzaku Key Project of Kepler (AO4-5)**
 - Preliminary results
Type Ia Supernova

- Thermonuclear explosion of C/O white dwarf (WD) in a close binary:
 complete destruction of a star
 → Major source of Fe-group elements: galactic chemical evolution
 → “Standard candles” for cosmology
- Type Ia SNe are not homogeneous:
 Various physical mechanisms of explosion & nucleosynthesis (e.g.,
 Iwamoto+ 1999): Detonations, deflagrations, delayed detonations etc.
 => yield diverse compositions of burning products.
 Various evolutionary paths or ages (prompt, delayed) related to progenitor
 mass, metallicity, and circumstellar structure (e.g., Scannapieco & Bildsten
 2005; Aubourg+ 2007; Matteucci+ 2009)
 => affect SN light curve and luminosity (e.g., Timmes+ 2003).
 Various nature of the WD binary system: normal or WD companion.
 => accretion vs merger.
Type Ia SN Populations

Prompt: Younger progenitors, brighter SNe Ia (e.g., 1991T), SN rate \propto star-formation rate

Delayed: Older progenitors, dimmer SNe Ia (e.g., 1991bg), SN rate \propto total stellar mass

Actual progenitors have never been identified: Tycho (SN 1572) might have been a prompt pop with a non-subsolar metallicity? (Badenes+ 2008).

Model by Scannapieco & Bildsten (2005)
Metallicity of SN Ia Progenitor

- Metallicity (Z) of SN Ia progenitor is a key parameter to affect age/mass CSM (prompt vs delayed SN Ia populations) of the progenitor.

- C/O WDs born from intermediate mass stars that burn H through the CNO cycle which ends up with 14N.

- Neutron excess ($\eta = 1 - 2Y_e = 1 - 2[Z_A/A]$, $Z_A =$ atomic number, $A =$ atomic mass) is dominated by e-capture at the core ($M < 0.2 \, M_{\odot}$) (e.g., Brachwitz+ 2000).

- At $M \sim 0.2-0.8 \, M_{\odot}$, 14N $\rightarrow ^{18}$F $\rightarrow ^{18}$O $\rightarrow ^{22}$Ne (He-burning), thus η is directly related to Z: $\eta = 0.101 \times Z$ (Timmes+ 2003).

- η is efficiently stored in trace elements with unequal numbers of p, n (55Co $\rightarrow ^{55}$Mn).

- An abundant element Mn is useful. Cr is an ideal reference element: it is the same incomplete Si-burning product as Mn, but insensitive to η, (52Fe $\rightarrow ^{52}$Cr).
Z vs M_{Mn} / M_{Cr} in SN Ia

Mn to Cr mass ratio is an excellent tracer of metallicity of the progenitor:

$$M_{Mn} / M_{Cr} = 5.3 \times Z^{0.65}$$

(Badenes+ 2008)
Measuring $M_{\text{Mn}} / M_{\text{Cr}}$ Ratio

SN Ia nucleosynthesis study of trace elements

- X-ray data of young SNRs effectively reveal SN nucleosynthesis products directly from the stellar interior.
- **Line flux measurements** Cr & Mn in the X-ray spectrum of young Type Ia SNR *(Tamagawa+ 2008).*

\[
M_{\text{Mn}} / M_{\text{Cr}} = 1.057 \times \left(\frac{f_{\text{Mn}}}{f_{\text{Cr}}} \right) / \left(\frac{\varepsilon_{\text{Mn}}}{\varepsilon_{\text{Cr}}} \right),
\]

\[f = \text{line flux}, \ \varepsilon = \text{specific emissivity per ion} \ (Badenes+ 2008)\]

- Extragalactic SNe are not useful:
 - Long half-life of ^{55}Fe (~2.7 yr): parent nucleus of ^{55}Mn
 - Difficult to reveal/study CSM and ambient environment
 → Must be young Type Ia SNRs
Why Kepler?

- SN 1604, Type Ia:
 - Fe-rich ejecta, No O-rich ejecta
 - Balmer-dominated shocks
 - No central point source

- Shock-CSM interaction (e.g., Dennefeld 1982; Reynolds+ 2007):
 - Wind-modified CSM due to progenitor (or companion) star?

- High $z \sim 500$ pc, a runaway massive progenitor?
 - Unique opportunity to study nature of the progenitor with both metallicity and CSM structure!

750 ks Chandra
(Reynolds+ 2007)

Red: 0.3-1.72 keV
Green: 0.72-1.7 keV
Blue: 1.7-8 keV
Kepler: Initial Suzaku Results

- Mn & Cr lines are detected:
 cf. It is unclear with Chandra 750 ks.
 → Suzaku XIS is uniquely efficient!
 But faint. Large statistical uncertainties.

- Due to the bright emission of Kepler, source-free regions on the same XIS are not fully reliable to estimate the background. Thus, we tested Mn and Cr line flux measurements with several background spectra.
 → Large systematic uncertainties.
$M_{\text{Mn}} / M_{\text{Cr}} < 1.5$.

Metallicity (Z) is not constrained because of poor photon statistics & systematic uncertainties in the background estimates.
Suzaku Key Project of Kepler

- The initial results are limited by poor photon statistics and uncertain background estimates. Both a deep exposure of Kepler and a background pointing are essential to constrain the metallicity of progenitor.

- **Suzaku Key Project (AO4-5):**
 620 ks source + 240 ks background observations were performed in 9/2009 – 4/2011: to minimize both statistical (due to poor photon statistics) and systematic (due to background characterization) uncertainties. The goal was to place a tight constraint on $M_{\text{Mn}} / M_{\text{Cr}}$ ratio, thus on the progenitor metallicity (Z) within a factor of ~ 2 to distinguish solar vs supersolar abundances.
Suzaku Key Project of Kepler

- Four background pointings of nearby source-free regions within ~1.5° of Kepler were performed:

<table>
<thead>
<tr>
<th>l, b (deg)</th>
<th>Exp (ks)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>bg_N 5.2 8.1</td>
<td>60</td>
<td>2009-10</td>
</tr>
<tr>
<td>bg_S 3.5 5.7</td>
<td>60</td>
<td>2009-10</td>
</tr>
<tr>
<td>bg_E 6.0 6.8</td>
<td>50</td>
<td>2009-9</td>
</tr>
<tr>
<td>bg_W 3.0 6.8</td>
<td>50</td>
<td>2009-9</td>
</tr>
</tbody>
</table>
Kepler KP Results: Preliminary

\(f_{\text{Mn}} = 4.99 \pm 1.15 \times 10^{-6} \text{ ph cm}^{-2} \text{ s}^{-1} (2\sigma) \)

\(f_{\text{Cr}} = 8.31 \pm 1.20 \times 10^{-6} \text{ ph cm}^{-2} \text{ s}^{-1} \)

[Also, Ni K\(\alpha \) \((E = 7.53 \text{ keV}, \sim 12\sigma)\) and Fe K\(\beta \) \((E = 7.12 \text{ keV}, \sim 16\sigma)\) lines are detected.]

\[
\frac{M_{\text{Mn}}}{M_{\text{Cr}}} = 1.057 \left(\frac{f_{\text{Mn}}}{f_{\text{Cr}}} \right) \left(\frac{\varepsilon_{\text{Mn}}}{\varepsilon_{\text{Cr}}} \right) = 0.92^{+0.55}_{-0.36}
\]

(where \(\varepsilon_{\text{Mn}}/\varepsilon_{\text{Cr}} = 0.69 \pm 0.14 \), for \(kT \sim 5 \text{ keV} \))

\[
M_{\text{Mn}} / M_{\text{Cr}} = 5.3 Z^{0.65} \quad (\text{Badenes} + 2008)
\]

\[\Rightarrow \quad Z = 0.068 \]

With \(Z_{\odot} = 0.017 \quad (\text{Anders & Grevesse 1989}), \)

\[\Rightarrow \quad \frac{Z}{Z_{\odot}} = 4.0^{+4.2}_{-2.1} \]
$M_{\text{Mn}}/M_{\text{Cr}}$ ratio in Kepler reveals a significantly overabundant $Z/Z_\odot \sim 4$.

→ This high metallicity of the progenitor supports a young, prompt SN Ia for Kepler.

(“C-simmering” unlikely affects Kepler because it was a high-Z star with no evidence of sub-luminous SN.)

More to come: Test with other spectral models (measuring T, abundances etc)
Implications by Fe and Ni
Better constraint on ion emissivity?
Comparison with update from Tycho (400 ks XIS):
→ $Z_{\text{Kepler}} > Z_{\text{Tycho}}$?
→ Different or same population(s)?