X-ray Studies of Classical Novae

Suzaku 2011 Workshop, 2011.07.21

Dai Takei
—Rikkyo University—
Harvard-Smithsonian Center for Astrophysics
An X-ray Study of Classical Novae

Dai Takei

Department of Physics, Graduate School of Science, Rikkyo University
3-34-1, Nishi-Ikebukuro, Toshima, Tokyo, 171-8501, Japan
takei@ast.rikkyo.ac.jp

Thesis submitted to the Department of Physics,
Graduate School of Science, Rikkyo University
on November 26, 2010
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Physics
Acknowledgement

• Shunji Kitamoto (Rikkyo University)
• Masahiro Tsujimoto (JAXA/ISAS)
• Jan-Uwe Ness (ESA/ESAC)
• Jeremy J. Drake (Harvard CfA)

and all concerned ...

X-rays : Suzaku, XMM-Newton, and Swift operation teams
Chandra, Beppo-SAX, ASCA, ROSAT, and Einstein
Infrared : Kanata TRISPEC team in Hiroshima University
Optical : Variable star databases (AAVSO, VSNET, VSOLJ)
Worldwide amateur astronomers
Summary of the Ph.D. thesis

Scope: Classical novae are important in astrophysics
X-ray studies are necessary for understanding
But, it was difficult by their transient nature...

Method: 1. Data archive search
2. Target-of-Opportunity (ToO) observations
Point: Collaboration with amateurs and multi-satellites
Agenda: Five important challenges in astrophysics

Result: X-ray studies of five novae (~20% of the total)
Both expected and unexpected scientific results

Goal: Understanding the nature of classical novae!!
Classical Novae and X-rays

- **Classical Novae (CNe)**
 - Binary (WD and Late-Type)
 - Sudden hydrogen fusion
 - Energy: $10^{45} \sim 10^{46}$ erg
 - $M_{\text{ejecta}}: 10^{-4} \sim 10^{-6} \, M_\odot$
 - $V_{\text{ejecta}}: 10^{2} \sim 10^{4} \, \text{km/s}$
 - Rate: 10/yr (discovered)

- **X-rays from CNe**
 - Soft X-rays ($< 1 \, \text{keV}$) from WD surface (a.k.a. SSS)
 - Hard X-rays ($> 1 \, \text{keV}$) from shocks in the ejecta
 - The system returns to a quiescent phase over time
Advent of Swift era

- **X-ray studies of CNe were quite difficult**
 - Rare event in post CNe explosions
 - Faint, variable, and transient behaviors
 - ToO observations were risky
- **Swift changed the game, completely !!**
 - X-ray snapshots for discovered CNe
 - Monitoring campaigns at a high cadence
 - Risk reduction for other observatories

Road to X-ray spectroscopy has opened
The golden age of CNe has arrived
Advent of Swift era

- X-ray studies of CNe were quite difficult
 - Rare event in post CNe explosions
 - Faint, variable, and transient behaviors
 - ToO observations were risky
- Swift changed the game, completely!!
 - X-ray snapshots for discovered CNe
 - Monitoring campaigns at a high cadence
 - Risk reduction for other observatories

Road to X-ray spectroscopy has opened
The golden age of CNe has arrived
Suzaku View : Classical Novae

③ V2491 Cyg (2008.04)
- Takei et al. (2009), ApJL, 697, 54
- Takei et al. (2010), AN, 331, 183

④ V2672 Oph (2009.08)
- Takei et al., in prep.

⑤ U Sco (2010.01)
- Takei et al., in prep.

⑥ V1280 Sco (2007.02)
- Observed in AO-5

⑦ RS Oph (2006.02)
- Planned in AO-6

② V458 Vul (2007.08)
- Tsujimoto et al. (2009), PASJ, 61, S69

① Suzaku J0105-72 (2005.08)
- Takei et al. (2008), PASJ, 60, S231

http://skyview.gsfc.nasa.gov/cgi-bin/query.pl
ROSAT ALL-Sky X-ray Background Survey (0.73-1.56 keV)
Objectives of Research

1. Classification of X-ray Emission
2. WD Atmosphere
3. Ejecta Chemistry
4. Reestablished Accretion
5. Discovery of Non-thermal Process
Reestablished Accretion

• **How early does an accretion proc. resume?**
 - An accretion process stops after a nova outburst
 - But, it is reestablished in the binary evolution

• **Get the evidence of an accretion proc.**
 - Some CNe occur in magnetized WDs (i.e., Polar, IP)
 - IPs are strong emitters of Fe lines (talk by T. Yuasa)

Fe XXV, Fe XXVI

White Dwarf
(CO-Type or ONe-Type)

$R_{\text{WD}} \sim 5000$ km

Fe I
Reestablished Accretion

- How early does an accretion process resume?
- An accretion process stops after a nova outburst.
- But, it is reestablished in the binary evolution.

- Get the evidence of an accretion process.
- Some CNe occur in magnetized WDs (i.e., Polar, IP).
- IPs are strong emitters of Fe lines (talk by T. Yuasa).

Fe XXV, Fe XXVI

White Dwarf (CO-Type or ONe-Type)

$R_{\text{wd}} \sim 5000$ km

Result and Discussion:

- Radiation pressure inhibits an accretion proc.
 - Bright soft X-rays from the WD surface
- Accretion resumes when the fuels consumed
 - Inverse correlation between soft and Fe light curve
 - We confirmed the time-line of the binary evolution
Summary

1. Dawn of a golden age of classical novae
2. Recent studies impact on astrophysics
3. Suzaku brought me the Ph.D. degree!!

Please let me know if you are interested
dtakei@head.cfa.harvard.edu