Black hole accretion flows

Chris Done University of Durham

Modelling the behaviour of accretion flows in X-ray binaries or Everything you always wanted to know about accretion but were afraid to ask

Chris Done, Marek Gierlinski, Aya Kubota Astronomy & Astrophysics Reviews 2007 (DGK07)

Stellar mass black hole binaries

- Appearance of BH depends only on mass and spin (black holes have no hair!)
- M~3-20 M_☉ (stellar evolution)
 very homogeneous
- Plus mass accretion rate, giving observed luminosity *L*
- Maximum luminosity $\sim L_{Edd}$ where radiation pressure blows further infalling material away
- Get rid of most residual mass dependence by scaling $L/L_{\rm Edd}$
- Form observational template of variation of flow with $L/L_{\rm Edd}$

Transients

- Most transient due to H-ionisation disc instability
- Single object changes L/L_{Edd} by factor of ~10⁶!

Spectral states

- Dramatic changes in continuum – single object, different days
- Underlying pattern in all systems
- High L/L_{Edd} : soft spectrum, peaks at kT_{max} often disclike, plus tail
- Lower L/L_{Edd} : hard spectrum, peaks at high energies, not like a disc (McClintock & Remillard 2006)

Gierlinski & Done 2003

Transients

- Most transient due to H-ionisation disc instability
- Single object changes L/L_{Edd} by factor of ~10⁶!
- Low L/L_{Edd} outbursts remain hard, high go soft

Spectra of accretion flow: disc

- Differential Keplerian rotation
- Viscosity B: gravity \rightarrow heat
- Thermal emission: $L = A \sigma T^4$
- Temperature increases inwards until minimum radius $R_{\rm lso}(a_*)$ For $a_*=0$ and $L\sim L_{\rm Edd} R_{\rm lso}=6R_g$ $T_{\rm max}\sim 1$ keV (10⁷ K) for 10 M_{\odot}
- Extreme Kerr a*=0.998 (ang. mom of photons from disc spins down from maximal a*=1) R_{lso}=1.23 R_g T_{max} is 2.2x higher

Spectra of accretion flow: disc

- Differential Keplerian rotation
- Viscosity B: gravity \rightarrow heat
- Thermal emission: $L = A \sigma T^4$
- Temperature increases inwards until minimum radius $R_{\rm lso}(a_*)$ For a_{*}=0 and $L \sim L_{\rm Edd} R_{\rm lso} = 6R_g$ $T_{\rm max} \sim 1$ keV (10⁷ K) for 10 M_{\odot}
- Extreme Kerr a*=0.998 (ang. mom of photons from disc spins down from maximal a*=1) R_{lso}=1.23 R_g T_{max} is 2.2x higher

- Pick ONLY ones that look like a disc!
- $L/L_{Edd} \propto T^4_{max}$ (Ebisawa et al 1993; Kubota et al 1999; 2001)
- Constant size scale last stable orbit!!
- Proportionality constant gives a measure R_{lso} i.e. spin
- Consistent with low to moderate spin not extreme/maximal Kerr (see also Shafee et al 2006)

Done Gierlinski Kubota 2007

2005

Blaes (

8

Davies, Done

- Quantify by fitting with best models of disc including vertical structure of disc and GR radiation transport (Davis et al 2006)
- Depends on system parameters distance, mass etc. inclination not necessarily same as binary! Also depends on viscosity....(???)
- Nonetheless, very difficult to get maximal spin

Accretion flows without discs

- Disc models assumed thermal plasma not true at low $L/L_{\rm Edd}$
- Instead: hot, optically thin, geometrically thick inner flow replacing the inner disc (Shapiro et al. 1976; Narayan & Yi 1995)
- Hot electrons Compton upscatter photons from outer cool disc
- Few seed photons, so spectrum is hard
- Large region so slow variability
- Jet from large scale height flow velocity linked to launch radius

- Truncated disc/hot inner flow geometry very successful in explaining:
 - Range of low/hard spectra

DGK07

Ibragimov et al 2005

- Truncated disc/hot inner flow geometry very successful in explaining:
 - Correlated change in reflection strength (Fe EW)

- Truncated disc/hot inner flow geometry very successful in explaining:
 - Correlated change in Fe width relativistic smearing

- Truncated disc/hot inner flow geometry very successful in explaining:
 - Correlated change in PDS frequencies

And the radio jet...

- No special µQSO class they ALL produce jets
- Steady jet in low/hard state, power depends on accretion rate! i.e. L/L_{Edd} (Merloni et al 2003; Falke et al 2004)
- Bright radio flares in rapid low/hard to high/soft associated with outbursts. (Fender et al 2004)
- Jet strongly quenched in high/soft disc dominated spectra....!!
- Need hot inner flow for jet launching – B fields

Accretion flows without discs

- Disc models assumed thermal plasma not true at low $L/L_{\rm Edd}$
- Instead: hot, optically thin, geometrically thick inner flow replacing the inner disc (Shapiro et al. 1976; Narayan & Yi 1995)
- Hot electrons Compton upscatter photons from outer cool disc
- Few seed photons, so spectrum is hard
- Large region so slow variability
- Jet from large scale height flow velocity linked to launch radius

No inner disc

- Disc models assumed thermal plasma not true at low L/L_{Edd}
- Instead: hot, optically thin, geometrically thick inner flow replacing the inner disc (Shapiro et al. 1976; Narayan & Yi 1995)
- Hot electrons Compton upscatter photons from outer cool disc
- More seed photons, so spectrum is softer
- Smaller region so higher freq.
- Jet from large scale height flow velocity linked to launch radius

No inner disc

- Disc models assumed thermal plasma not true at low L/L_{Edd}
- Instead: hot, optically thin, geometrically thick inner flow replacing the inner disc (Shapiro et al. 1976; Narayan & Yi 1995)
- Hot electrons Compton upscatter photons from outer cool disc
- More seed photons, so spectrum is softer
- Smaller region so faster freq.
- Jet from large scale height flow velocity linked to launch radius

Collapse of hot inner flow

- Disc models assumed thermal plasma not true at low L/L_{Edd}
- Instead: hot, optically thin, geometrically thick inner flow replacing the inner disc (Shapiro et al. 1976; Narayan & Yi 1995)
- Flow collapses so no tail
- Disc dominated spectra
- Jet from large scale height flow collapse of flow=collapse of jet
- Do transitions fast enough and get non-steady state flow – hysteresis!

Qualitative and quantitative models: geometry

- Also see evidence for winds!!
- Highly ionised H and He Fe Ka in BHB and NS systems at high inclination in high states, $N_h \sim 10^{23}$, $v\sim 500$ km/s - accretion disc wind!

Kubota et al 2007

Modifies optical continuum

- X-rays illuminate outer disc where intrinsic flux is low so reprocessed can dominate (van Paradijs 1996)
- SWIFT/XMM X-opt simultaneously
- XTE J1817-330 trace scattered fraction through outburst SWIFT+RXTE
- $L_{opt} \sim 0.002 L_{disc}$ in high/soft state.
- Big changes at transition to low/hard state....

Does the disc radius move out?

- Key aspect of truncated dsic models is radius of disc at last stable orbit in high/soft state, then increases in low/hard
- XTE J1817-330
- RXTE data covering outburst E>3 keV
- Disc dominated state with $L_{disc} \propto T_{in}^{4}$
- Constant radius
- But disc is out of RXTE band when kT < 0.4keV so no constraint on disc radius in low/hard state

Radius from RXTE

- Key aspect of truncated dsic models is radius of disc at last stable orbit in high/soft state, then increases in low/hard
- XTE J1817-330
- RXTE data covering outburst E>3 keV
- Disc dominated state with $L_{disc} \propto T_{in}^{4}$
- Constant radius
- But disc is out of RXTE band when kT < 0.4keV so no constraint on disc radius in low/hard state

Radius from SWIFT

- Monitoring also with SWIFT E>0.4 keV so can constrain low temperature disc radius
- Fit parameters (diskbb+po or comp) give disc inner radius increasing in transition (Rykoff et al 2007)
- But low/hard state consistent with same inner radius as disc dominated though errors big so also consistent with truncated disc (Rykoff et al 2007)

But not simple in low/hard state

- Disk emission DOES NOT dominate bolometric flux
- Irradiation of the inner edge of the truncated disc especially if overlap of disc and hot flow
- Compton models PREDICT overlap for spectra Γ>1.7 (Poutanen et al 1997)

• Energy
$$L_{bb} = \Omega/2\pi (1-a) L_{comp}$$

= 0.3 x 0.7 L_{comp}
= 0.2 L_{comp}
= 0.2 x 3 $L_{disc} \sim L_{disc}$

• Irradiation as powerful as intrinsic disc emission

Simple truncated disk

Irradiated truncated disc

Radius from SWIFT MKII

- Inferred disc radius moves larger with irradiation
- Also same stress-free inner boundary condition
- Still assuming same colour temperature correction – but irradiation (and conduction) from above so may not thermalise.
- Photons in comptonisation come originally from disk
- So real radius larger in low/hard state by some unknown amount...

Radius from SWIFT MKII

- Inferred disc radius moves larger with irradiation
- Also same stress-free inner boundary condition
- Still assuming same colour temperature correction – but irradiation (and conduction) from above so may not thermalise.
- Photons in comptonisation come originally from disk
- So real radius larger in low/hard state by some unknown amount...

Other low/hard states

Makishima et al 2007

- Complex continuum clearly seen with good data over broad bandpass
- Suzaku (& BeppoSAX)
- Continuum softens at low energies so spectrum concave
- Could be irradiated disc as expected – emission may not thermalise to blackbody
- Makes radius larger....
- $L/L_{Edd} \sim 0.01$ and 0.005 respectively

Other low/hard states

- Complex continuum clearly seen with good data over broad bandpass
- Suzaku (& BeppoSAX)
- Continuum softens at low energies so spectrum concave
- Could be irradiated disc as expected – emission may not thermalise to blackbody
- Makes radius larger....
- $L/L_{Edd} \sim 0.01$ and 0.005 respectively

Fe line as inner disc tracer

Makishima et al 2007

- Fe line width around σ=0.7 keV for Gaussian in Suzaku CCD's for both Cyg X-1 and GRO 1655-40
- Cyg X-1 at 45° $R_{in} = 13^{+6} R_g$
- Consistent with truncated inner disc and so no constraint on spin
- NB diskbb+po+laor to xis gives R_{in}=2.5 ±0.5 R_g

Alternative geometries for partially ionised, smeared material

Conclusions

- LMXB very homogenous at ~10 M_{sun} variable L/L_{Edd}
- Last stable orbit (ONLY simple disc spectra) $L \propto T_{max}^4$
- Low to moderate spin in LMXB as expected
- Accretion flow NOT always simple disc X-ray tail. Ratio of disc/tail, shape of tail (+ jet) change with L/L_{Edd}
- Hard tail in low/hard state Hot flow replacing inner disc
- Disc progressively moves outwards to give correlated spectral + variability signatures and state transition as L/L_{Edd} decreases.
- Can track using disk spectrum! See radius increase during transition! Low/hard state consistent with even larger radius as expected when include irradiation.
- Suzaku low/hard state shows complex curvature (irradiation?) and moderately broad Fe line. Consistent with truncated disc.