Search for the Missing Baryons

Takaya Ohashi Tokyo Metropolitan University

- 1. Science of WHIM
- 2. Suzaku search for WHIM
- 3. Future prospects

With Y. Takei, K. Sato, T. Tamura, A. Hoshino, and others

Thermal history of the universe

WHIM (warm-hot intergalactic medium) will tell us the evolution of the hot-phase material in the universe

Cosmic structure

<u>WHIM</u> (10⁵-10⁷ K) traces the cosmic large-scale structure = "Missing baryon"

Typical matter density: $\delta (=n/\langle n_B \rangle) = 10 - 100$

Yoshikawa et al. 2001, ApJ, 558, 520 size = $30 h^{-1}$ Mpc $\approx 5 \text{ deg at } z=0.1$

IGM (105-107K)

Galaxies (~10⁴K)

Cluster gas (10⁷K)

Image of Oxygen lines ($\Delta E=2 \text{ eV}$)

Significance > 5σ OVII line 10^5 sec

Effective area = 1000 cm^2 10^6 sec

5° z=0.24 Depth ~40 Mpc

Baryon phase

With X-ray absorption and emission lines, a wide area in the baryon phase space can be probed

EDGE consortium

Absorption in Mrk421 spectrum

RGS

Nicastro et al. 05,Nature & ApJ Kaastra et al. 06, ApJ Rasmussen et al. 06, ApJ Nicastro et al. 07, submitted

- LETG: OVII (z=0.011) detection significance = 3.9 σ (P*52bin=10⁻⁶)
- Not significant if behavior of Σ(Δχ²) for 7 lines with redshift trials is considered
- No absorption sign in RGS data
- LETG feature might be transient? (outflow from Mrk421?)
- Much more convincing evidence needed: with EDGE and XEUS

Suzaku clusters studied

Snowden et al. 1995,1997

A2218, Sérsic159 and A399/401

- A399/A401 (Fujita et al. 07 PASJ Suzaku #2): Binary cluster at z=0.072 before merging
 - OVII line < 1 x 10⁻⁷ cm⁻²s⁻¹arcmin⁻²
 - $\delta < 310 \ (0.1 Z_{\odot}, L = 2 \text{ Mpc}, 2 \times 10^{6} \text{K})$
- A2218 (Takei et al. 07): *z* = 0.1756
 - OVII line < 1 x 10⁻⁷ cm⁻²s⁻¹arcmin⁻²
 - δ < 270
- Sérsic 159-03 (Werner et al. 07, A10): z
 = 0.0564
 - Non-thermal excess over the cluster
 - OVII line < 1.7 x 10⁻⁷ cm⁻²s⁻¹arcmin⁻²
 - ♦ δ < 410

Coma outskirts

- XMM observation of Coma-11 field showed strong excess with OVII and OVIII lines, which are a few times stronger than the Galactic emission
- But, solar wind proton flux showed a flare-like feature during the XMM observation, which might be causing solar wind effect.

Takei et al. Poster A14 Coma-11 Suzaku result

- Suzaku data do not show significant OVII or OVIII feature, with an upper limit 3 4 times lower than the XMM flux.
 Overdensity: \$ < 200 (1/2Mpc)-1/2 (7/0.17 color)-1/2
- Overdensity: $\delta < 300 (L/2Mpc)^{-1/2} (Z/0.1Z_{\odot} \text{solar})^{-1/2}$

Tamura et al. 2008? A2052

- Soft excess observed with XMM (Kaastra et al. 03)
- Suzaku observation: August 19-21, 2005 (very low contamination on XIS filter)
- 4 deg offset observation: July 14-15, 2007

Residual spectrum can be fit with either brighter Galactic foreground or redshifted emission ($kT \sim 0.2$ keV)

More A2052

- Both A2052 and BGD regions are near the North Polar Spur, and the emission is rather strong
- If the 0.2 keV excess is due to WHIM at the cluster redshift with L = 2 Mpc, Z = 0.1 solar, n_H ~ 2 × 10⁻⁴ cm⁻³ (δ ~ 1000)
- λ The excess component looks spatially extended

RASS keV map

Radial profile of the excess

Sculptor supercluster

- 6 X-ray clusters at z = 0.11, observed in Nov. 27-29, 2005
- XIS data suggested excess emission with kT ~ 0.8 keV (Kelley et al.: Suzaku 2006)
- A2811-offset region was further analyzed

 Upper limits (2σ) to O lines: OVII: 1.2–1.4 x 10⁻⁷ cm⁻²s⁻¹ arcmin⁻² → δ < 350 (2x10⁶K, 2Mpc, 0.1Z_☉) OVIII: 2–3 x 10⁻⁷ cm⁻²s⁻¹ arcmin⁻²

A2142 offset

- The first cluster in which cold fronts were discovered by Markevitch et al. 2000.
- Offset regions along the merger axis were observed with Suzaku in August 2007

Two offset regions show similar diffuse spectrum

- Assuming the standard BGD (CXB and 2-T Galactic), the excess spectrum can be fit with kT ~ 0.6 keV thermal model
- Slight excess in offset-2 over offset-3 indicates
 OVII flux < 0.7 x 10⁻⁷ cm⁻² s⁻¹ arcmin⁻² (→ δ < 250).

A1413

- A relaxed cluster at z = 0.143
- Suzaku offset pointing was done in Nov. 15-18, 2005
- 2σ upper limits to O lines in 0.66 – 1 r_{180} : OVII: 2.0 x 10⁻⁷ cm⁻²s⁻¹arcmin⁻² OVIII: 1.6 x 10⁻⁷ cm⁻²s⁻¹arcmin⁻² with BGD in the same field
- With the same assumption of 0.1 solar, 2 x 10⁶ K and L = 2 Mpc, $\delta < 400$

is implied by the OVII upper limit

Hoshino et al. Poster A16

Summary of Suzaku constraints

- Suzaku upper limits on Oxygen lines are factor of 3 -5 lower than the XMM "detection".
- Understanding the spectrum of Galactic emission is most important
- Detector background and solar wind process also cause significant effect on oxygen measurement

XENIA/EDGE and DIOS

- TES calorimeter array with 1024 pixels
- <u>DIOS</u> (Diffuse Intergalactic Oxygen Surveyor, Japan) ... small mission ~400 kg
- <u>EDGE</u> (Explorer of Diffuse emission and Gamma-ray burst Explosions) ... medium size ~2000 kg ⇒ XENIA (Kouveliotou, Piro, ...)
- Launch: 2016 or later
- Very wide field of view (~ 1deg) with 4-reflection X-ray telescope
- Energy range < 2 keV</p>

DIOS: Japanese small satellite

Incident spectrum

5 deg x 5 deg at *z* = 0.2 (60 Mpc)

Expected results

- 1 Msec exposure with EDGE/XENIA (SΩ~ 1000 cm² deg²) gives significant detection of WHIM filaments
- Combined detection of OVII and OVIII lines suppresses spurious features
- EDGE/XENIA has capability of absorption measuement against GRB afterglow → density and depth of the filament

 $OVII \& OVIII > 3\sigma$

Expectation from XEUS

- Kawahara et al. 06 computed the mock transmission spectra of the WHIM based on hydrodynamic simulation data.
 - a light-cone output for 0 < z < 0.3
 - mock spectra for a bright source
- Cosmological Hydrodynamic Simulation (Yoshikawa et al. 01)
 - PPPM/SPH (128³ DM and gas particles, L_{box} = 75h⁻¹ Mpc)

 - note: Ω_b is ~30 % smaller than the recent estimate.

OVII: *z*=0.26-0.30, 5 deg = 76 Mpc

Summary

- WHIM or missing baryons carry important science about structure formation and chemical/thermal evolution of the universe
- Its detection is a challenge for X-ray astronomy
- Suzaku is giving fairly low upper limits (δ < 300), but real detection for δ <100 awaits either wide field (~ 1 deg) or large area (> 10⁴ cm²) microcalorimeters
- With Suzaku, we hope to find dense clamps of WHIM in cluster outskirts and in superclusters, which will be the first signature of WHIM