The Diffuse Interstellar Medium

Robin Shelton

Structure

Outline

- Large bubbles
 - Local Bubble -- Spoiler: Solar Wind Charge Exchange
 - Sco-Cen Bubble (Loop I)
- Supernova Remnants (see later talks)
- Galactic halo
- Galactic Ridge and Bulge (see later talks)

Fig. 2. Smoothed galactic $N_{\rm H,I}$ image of the cloud (velocity interval: $-30 \text{ km s}^{-1} < V_{\rm H,I} < -17 \text{ km}$ minimum contour is $0.5 \times 10^{20} \text{ H I cm}^{-2}$ with contour intervals of 2×10^{-4} count s⁻¹ arc min⁻² with contour intervals of 2×10^{-4} count s⁻¹ arc min⁻² min⁻². The field is 1.8° in diameter with contour intervals of 0.5 × 10²⁰ H I cm⁻².

Snowden et al. (1991)

s⁻¹ arc min⁻². The field is 1.8° in diameter with the center at ℓ ~94.7°, b ~37.6°; longitude increases to the left and the north galactic pole is

Historical View of Local Bubble:

- Soft X-rays observed from all directions, anti-correlated with N_H hence Local Bubble (LB) (Wisconsin All Sky Survey, SAS 3, HEAO 1, ROSAT, also XMM, Chandra, Suzaku)
- ROSAT images reveal shadows, • confirms local X-ray emission
- LB stronger in 1/4 keV than 3/4 keV • (ex: ratio > 15, Snowden, McCammon, & Verter (1993) in MBM 12 direction)
- LB mapped via shadowing analyses (Snowden et al. 1998, Kuntz & Snowden 2000),
- Temperature: if CIE, then $T \sim 10^6 \text{ K}, P \sim 15,000 \text{ K/cm}^3$
- Radius: 50 to 120 pc, depending on direction (Snowden et al. 1998)

But, Solar Activity Also Makes Local Diffuse X-Rays

- Solar wind ions charge exchange with neutral gas
 (ex: O⁷⁺ + H or He -> O^{6+*} + H⁺ or He⁺), then de-excite
 and radiate X-ray photons ∴ contaminate observations
- Solar activity level is cyclic
- The ROSAT All Sky Survey and the XMM and Chandra LB observations were taken during solar maximum
- Present time = solar minimum, thus current Suzaku observations see minimal solar effects

Solar Wind Charge Exchange (SWCX) Spectrum

- Suzaku Spectrum (Fujimoto, et al. 2007) 357 eV: C VI 2p to 1s 455 eV: C VI 4p to 1s 558 eV: O VII (561 eV) 649 eV: O VIII (2p to 1s (653 eV) 796 eV: Fe XVII, XVIII L and O VIII 3p to 1s 882 eV: Fe XVII, XVIII L + Ne IX + O VIII 6p to 1s 1022 eV: Ne X 1356 eV: Mg XI
- SWCXflare correlated with ACE observations of proton flux
- Emission thought to be geocoronal

Another type of SWCX Event

- XMM and Suzaku observed same directions 4 years apart
- ACE showed no anomalies during the XMM observation, but XMM saw much more Xray emission than Suzaku (Henley & Shelton, 2007)
- ∴SWCX can be uncorrelated with ACE diagnostics => <u>heliospheric</u> "density enhancements"

Density Enhancements - Coronal Mass Ejections

- Cause:
 - perhaps density enhancements (Coronal Mass Ejections) that create X-rays but need not intersect ACE satellite
 - Coronal Mass Ejections (Koutroumpa, et al. 2007)
- Thus, there can be nonquiescent <u>heliospheric</u> SWCX, too
- How much? XMM event O VII: 4 to 7 ph/s/cm²/sr O VIII: 1 to 5 ph/s/cm²/sr

Also Steady Heliospheric SWCX

- Robertson, Cravens & Snowden (2003), Koutroumpa, et al. (2007), and Henley & Shelton (2007) calculated steady heliospheric SWCX
- Directional dependence assoc. with activity on Sun's surface

Robertson, Cravens, and Snowden (2003) Predictions for SWCX seen by ROSAT All Sky Survey

How Can We Make Progress on SWCX?

Heliospheric: Robertson & Cravens Total Sky Map

- Active area! See 3 posters
- Observations: examine geocoronal vs heliospheric vs Coronal Mass Ejection SWCX
- Continue work on theoretical SWCX estimates
 - improved atomic physics in the 1/4 keV band
 - uncertainty estimates
 - spectral temperature of the SWCX

SWCX Does Not Negate the Local Bubble

- 1/4 keV: Robertson & Cravens (2003) model explains ~50% of 1/4 keV emission found in Gal. plane and ~25% of emission at high latitudes
- Significant 1/4 keV emission remains after SWCX subtraction
- Other reasons to believe in LB:
 - O VI column density cannot be explained by SWCX
 - A cavity in the cool gas distribution surrounds the Solar neighborhood; the space must be filled by some phase of the ISM

Local Bubble Observations

Suzaku Shadowing Observations of the Local Bubble

- Suzaku => taken solar minimum observations
- MBM 12 (Smith et al. 2007)
 - O VII: 3.34 ± 0.26 l.u. 3.5 l.u. (SWCX, Koutroumpa)
 - O VIII: 0.24 ± 0.1 l.u. 0.5 l.u. (SWCX, Koutroumpa)
- Southern filament (Henley & Shelton 2007)

 $Log(T_{LB}) = 5.98(+0.03,-0.04)$

- O VII: 1.1(+1.1,-1.4) l.u. 0.8 l.u. (SWCX, Koutroumpa)
- O VIII: 1.1 ± 1.1 l.u. 0.1 l.u. (SWCX, Koutroumpa)

Another Large Bubble: Loop I, North Polar Spur

- Suzaku observation (Miller et al. 2007)
- Unusual metal abundances, elevated nitrogen
 - Suggests region was enriched by AGB stars
 - Enrichment is not related to bubble, because AGB stars are too old

Hot Gas in the Halo / Thick Disk

- Height = above disk H I layer
 shadows distinguish LB from halo
- Turn of the century picture:
 - "halo" emits 1/4 keV and
 3/4 keV X-rays
 - 2 T model (1 and 3×10^{6} K), Kuntz & Snowden (2001)
 - ROSAT maps show 1/4 keV distribution is lumpy, but 3/4 keV emission is smooth (aside from Loop I) so expect 2 components

Chandra, XMM, Suzaku Era

- Observe O VII and O VIII features, spectra
- Combine with C IV and O VI data to span wider temperature range
- Consider new models:
 - non-equilibrium

(have not found significant signs of disequilibrium)

```
non isothermal
```

Power Law Emission Measure Models

- $d(n_e^2 dl)/d(\log T) \propto T^{\alpha}$
- 2 versions
 - First version:
 - Yao & Wang (2007)
 - modeled O VI (abs), O VII & O VIII (abs + emiss) together
 - Mrk 421 and 1~90°, b~61°
 - Found $\alpha = 1.2$

Power Law Emission Measure Models

- $d(n_e^2 dl)/d(log T) \propto T^{\alpha}$ continued
- second version:
 - Lei, Shelton, & Henley (in preparation),
 - used O VI (abs & emiss), ROSAT 1/4 keV, and Suzaku spectrum (covered O VII & O VIII)
 - Southern Filament shadowing analysis (1 = 279°, b=-47°)
 - Required 2 components
 - Found $\alpha_1 = 0.4$, and $\alpha_2 = -2$
 - Explains differing 1/4 keV and 3/4 keV distributions

Conclusions

- Solar wind charge exchange X-rays observed:
 - Some flairs are correlated with ACE proton flux
 - Some flairs are not (maybe line of sight enhancements)
 - Complicate observations of the Local Bubble but do not negate the Local Bubble
- Local Bubble observations: Temperature near previous estimate, O VII and O VIII measured
- North Polar Spur observations: generally agree with previous results, but find enhanced nitrogen
- Halo: replaced 1 and 2 T models with power law models. Source of 3/4 keV emission differs from source of 1/4 keV emission

Supplemental

FUSE Shadowing Observations

- Not unusual part of southern halo
- On-filament:

l = 278.6, b = -45.3 E(B-V) = 0.17 \pm 0.5 magnitudes (Penprase et al. 1998) IRAS 100 µm => 7.3 MJy sr⁻¹ (Schlegel et al 1998) Filament blocks 89 (+5,-11)% of 1032, 1038 Å photons

• Off-filament:

l = 278.7, b = -47.1

- $N_{\rm H} = 0.5$ to 2.0×10^{20} cm⁻²
- (Lallement et al. 2003, Kalberla et al. 2005, Schlegel et al. 1998)

Transmits 59% to 88% of 1032, 1038 Å photons

Halo's Emission Measure Function

- Tracers over broad range of temperatures
 - $10^{5} \text{ K:} \qquad \text{C IV} \qquad (\text{SPEAR}) \\ 3 \times 10^{5} \text{ K:} \qquad \text{O VI} \qquad (\text{FUSE}) \\ 2 \times 10^{6} \text{ K} \approx 10^{6} \text{ K} \approx 10^{6} \text{ K} = 10^{6} \text{$
 - 2×10^6 K, 3×10^6 K: O VII and O VIII (Suzaku, XMM, Chandra)
- Spectral Fitting
- Power laws explain obs better than 1 or 2 temperature models
 - Yao & Wang (2007), toward Mrk 421 (Chandra)
 Lei, Shelton, & Henley (in preparation), near Southern Filament (Suzaku)

How Can We Make Progress, continued

- Test for SWCX; Search for clever solar system observing strategies
- Pursue high spectral resolution observations, but with note that spectral signature of recombining SW could look similar to recombining gas in the LB
 - Ex: O VII forbidden to recombination + intercombination ratio

History: Local Cavity

- Na I data implies cavity in neutral material
- Size: r ~ 65 to ~250pc
- Note possible chimney
- Early hints: β CMa Tunnel
 Gry et al. 1985,
- Recent surveys: Welsh et al, 1998, Sfeir et al. 1999, Lallement at al. 2003

History: O VI

- O VI found in *Copernicus* survey
 - O VI column density found on nearby sightlines (Jenkins 1978)
 - Offset in straight line fit to column density vs distance data (")
 - Statistical analysis found O VI in LB to be probable ($N_{OVI} \sim 1.6 \times 10^{13}$ cm⁻², Shelton & Cox 1994)
- O VI column density found in *FUSE* surveys of nearby stars
 - Oegerle et al. 2005 $(N_{OVI} \sim 0.7 \times 10^{13} \text{ cm}^{-2} \text{ per 100 pc})$
 - Savage & Lehner 2006 ($N_{OVI} \sim 1.1 \times 10^{13} \text{ cm}^{-2}$ per 100 pc, local n_{OVI} is higher than disk average)

Savage & Lehner (2006), O VI observations

History: Suggestion that the LB isn't Hot

- Re-examine CIE assumption
- Ex: hot gas bubble "breaks out" of birth cloud
 - Rapidly adiabatically expands
 - Gas cools faster than ions recombine
 - Very high ions -> X-rays
 - Fig: Breitschwerdt 2001
- Expect O VI within LB
 - $N_{OVI} \approx 2.7 \text{ x } 10^{14} \text{/cm}^2$
 - $I_{OVI} \approx 1900 \text{ ph/s/cm}^2/\text{sr}$
 - (My estimates from Breitschwerdt model)

History: Simulations

- Single SNRs simulated, but provided too little energy to explain 1/4 keV
- Multiple SNRs simulated
 - Our region of Galaxy, assuming realistic IMF. The Local Bubble after 20 SN have exploded \rightarrow (fig: Avillez 2003)
 - Non CIE simulations of bubble blown by 2 to 3 SN
 - $N_{OVI} = 0.8 2.8 x$ 10¹³/cm² (corrected)
 - $I_{OVII}, I_{OVIII} =$ few to several ph/s/cm²/sr
 - (ref: Smith & Cox 2001)

 $LB + L1 - AMR \Delta x = 1.25 \text{ pc}$

History: Multiple SNR explanation

- Sco-Cen stars or Pleiades stars may have passed through solar neighborhood within last 10 to 20 million years
- Expect 10 to 20 early SN
- Blow Local Bubble, and shower Earth with cosmic rays and ⁶⁰Fe
- ∴ extinctions and observed ⁶⁰Fe layers
- (Fig: Maiz-Apellaniz 2001, Also see Berghofer & Breitschwerdt 2002)

Solar Wind Charge Exchange (SWCX)

- Solar wind ions receive electrons from neutrals
 - $O^{7+} + H \text{ or He} \rightarrow O^{6+*} + H^+ \text{ or He}^+$
 - Variation with solar cycle
 - Coronal mass ejections add to intensity
- X-ray emission:
 - Heliospheric contribution >> geocoronal contribution
 - Non isotropic
 - Varies on long and short time scales, can not forecast
 - 1/4 keV: Robertson & Cravens (2003) model explains ~50% of 1/4 keV emission found in Gal. plane and ~25% of emission at high latitudes
 - 3/4 keV (O VII and O VIII) Koutroumpa et al (2007) model can explain all the local O VII and O VIII on MBM 12 and filament sight lines, but with unknown error bars
 - Do not expect O VI intensity or ions

Considering a Diminished Hot LB

- Suppose part (1/2) of the X-rays are SWCX and part (1/2) are hot LB, what are the consequences?
- Weaker hot LB
 - Reduces density by ~ $1/\sqrt{2}$, assuming unchanged LB radius and temperature
 - reduces pressure to more reasonable value
 - Decreases estimated energy of the LB
 - Need less explosion energy -> fewer SNRs
 - Perhaps a single SNR could be viable
 - Could change LB temperature, depending on SWCX spectra
 - O VI column density unaffected
 - Lowers the X-ray to O VI ratio
 - Re-opens the door to the break-out model
 - Evaporating clouds modeling could be unaffected by changes in n_e , T

History: Local Interstellar Cloud

- Known in 1980's (i.e. Frisch & York 1983)
- Size = few parsecs
- $T \sim 8000 \text{ K}$ -- far cooler than LB
- Expect O VI-rich interface region
 - $N_{OVI} = 0.7$ to 1.4 x 10¹³/cm²
 - $I_{OVI} \approx 250 \text{ ph/s/cm}^2/\text{sr}$
 - Ref: Slavin 1989
- Local Cloud is one of many clouds within LB (example: 6 on εCMa line of sight, Gry et al 1995)
- (Figs: Schwarzchild 2000, after Colorado group. Cloud flowing past Sun, away from Sco-Cen association)

Conclusions

- The Local Bubble may be weaker than previously thought
- This solves some problems (ex: excess pressure)
- It would be difficult to explain all observations if there were no Local Bubble
- However, solar wind charge exchange emission contaminates X-ray observations

1/4 keV X-ray Maps

Left: Soft X-ray Background: Snowden et al. (1997) Right: 1/4 keV Local component: Snowden et al. (1998)

Local O VI Column Densities

 TABLE 1

 Summary of the Observational Data

TABLE 7					
LISM O	VI AND	Οι	Column	DENSITIES	

1 11 (0

		l	b	d	$T_{\rm eff}$		<i>v</i> *	v _{LISM}	
WD Name	Other Name	(deg)	(deg)	(pc)	(K)	Туре	$(km s^{-1})$	(km s ⁻¹)	References
WD 0004+330	GD 2	112.48	-28.69	97	49360	DA1	NM	+0.1	a, 1
WD 0027-636	MCT 0027-6341	306.98	-53.55	238	63724	DA	(+30.2)	(+0.6)	b, 2
WD 0050-332	GD 659	299.15	-84.12	58	36000	DA1.5	+34.3	+9.8	a, 3
WD 0113+002	HS 0111+0012	134.85	-61.88		65000	DO	NM	(-18.1, +33.1)	b, 2
WD 0147+674	GD 421	128.58	+5.44	99	30210	DA	NM	(-9.6)	b, 2
WD 0416+402		160.20	-6.95	228	35227	DA	(+79.1)	(-2.3, +19.6)	a, 2
WD 0455-282	MCT 0455-2812	229.29	-36.17	102	57200	DA1	+69.6	+14.0	a, 1
WD 0549+158	GD 71	192.03	-5.34	49	32750	DA1.5	NM	+23.2	a, 1
WD 0603-483		255.78	-27.36	178	35332	DA:	(+41.0)	(-39.3, +15.3)	a, 2
WD 0715-703		281.62	-23.50	94	43600	DA	NM	(-9.0)	a, 2
WD 0802+413		179.22	+30.94	230	45394	DA	(+58.5)	(+15.3, +70.7)	b, 2
WD 0809-728		285.82	-20.42	121	30585	DA	NM	(-4.1)	c, 2
WD 0830-535		270.11	-8.27	82	30500	DA	NM	(+9.2)	c, 2
WD 0937+505		166.90	+47.12	218	36200	DA	NM	(-5.1)	b, 2
WD 1017-138		255.74	+34.53	90	32000	DA	NM	(-7.5)	a, 2
WD 1041+580	PG 1041+580	150.12	+52.17	93	30800	DA	NM	(-10.1)	a, 2
WD 1100+716		134.48	+42.92	141	43000	DA	NM	(-14.8)	b, 2
WD 1211+332	HZ 21	175.03	+80.02	115 ± 35	53000	DO2	(+14.8)	-18.0	d, e, 2, 1
WD 1234+481		129.81	+69.01	129	56400	DA1	NM	-28.9	a, 1
WD 1254+223	GD 153	317.26	+84.75	67	38686	DA1.5	NM	-5.0	a, 4
WD 1314+293	HZ 43	54.10	+84.16	68 ± 13	50560	DA1	NM	-6.8	f, g, 4
WD 1335+700		117.30	+46.80	104	30289	DA	NM	(-24.5)	b, 2
WD 1440+751	HS 1440+7518	114.10	+40.12	98	42400	DA:	NM	(-18.1)	a. 2
WD 1528+487		78.87	+52.72	140	47600	DA1	(+48.6)	(-85.0, -21.6)	a, 2
WD 1603+432	PG 1603+432	68.23	+47.95	114	35075	DA	NM	(-26.2)	b, 2
WD 1615-154	EGGR 118	358.79	+24.18	55	29732	DA1.5	NM	-38.2	f, h, 1
WD 1620+647		96.61	+40.16	174	30184	DA	NM	(-36.7)	b, 2
WD 1631+781	1ES 1631+78.1	111.29	+33.58	67	44560	DA1+dMe	NM	-11.8	a, 1
WD 1634-573	HD 149499 B	329.88	-7.02	37 ± 3	49500	DO+KOV	+0.6	-19.6	h, i, 5
WD 1636+351		56.98	+41.40	109	37200	DA	NM	(-12.5)	a, 2
WD 1648+407		64.64	+39.60	200	38800	DA:	NM	(-27.2)	a, 2
WD 1800+685		98.73	+29.78	159	46000	DA1	NM	-15.9	a, 1
WD 1844-223		12.50	-9.25	62	31600	DA1	NM	(-41.1)	a, 2
WD 1845+683		98.84	+25.65	125	37400	DA	NM	(-18.1)	a, 2
WD 1917+595	HS 1917+5954	91.02	+20.04	111	33000	DA	(+12.2)	(-24.2)	b, 2
WD 1942+499		83.08	+12.75	104	34400	DA:	(-8.0)	(-36.4)	b, 2
WD 1950-432		356.49	-28.95	140	41339	DA	(+40:)	(-7.5)	b, 2
WD 2000-561	MCT 2000-5611	341.78	-32.25	198	47229	DA	(-15.4)	(-24.2)	b, 2
WD 2004-605		336.58	-32.86	58	44200	DA1	NM	-28.0	a, 1
WD 2014-575	RE J2018-572	340.20	-34.25	51	27700	DA	NM	(-34.4)	c, 2
WD 2111+498	GD 394	91.37	+1.13	50	37360	DA1.5	+28.9	-6.2	a, 1
WD 2116+736	RE J2116+735	109.39	+16.93	177	54680	DA	NM	(-18.0)	b, 2
WD 2124-224		26.81	-43.19	224	49800	DA	+29.5	-14.8	j, 3
WD 2146-433	BPS CS 22951-0067	356.97	-49.44	362	67912		(+27.0)	(-7.7)	b, 2
WD 2309+105	GD 246	87.26	-45.11	79	58700	DA1	-12.9	-7.9	a, 1
WD 2321-549	RE J2324-54	326.91	-58.21	192	45860	DA:	(+9.9)	(-11.1)	b, 2

REFERENCES.—The distance and temperature of the WDs are from (a) Vennes et al. 1997; (b) J. Dupuis et al. 2006, in preparation; (c) Vennes et al. 1997; (d) Perryman et al. 1997; (e) Dreizler & Werner 1996; (f) Finley et al. 1997; (g) van Altena et al. 1995; (h) Napiwotzki et al. 1995; (i) Holberg et al. 1998; (j) Vennes et al. 1998. Distances with errors are from parallax measurements, others are photometric distances. The stellar (v_*) and LISM (v_{LISM}) heliocentric velocities are from (1) *IUE* (Holberg et al. 1998), (2) *FUSE* (this work); (3) *HST/STIS* (Bannister et al. 2003); (4) *HST/STIS* (Redfield & Linksy 2004), (5) *HST/GHRS* (Wood et al. 2002). For *IUE* and *HST* the error on the absolute heliocentic velocity is $\leq 3 \text{ km s}^{-1}$; for *FUSE* the error on the absolute velocity is unknown and the values are therefore listed inside parentheses. "NM" stands for no metal detected in the *FUSE* bandpass.

WD Name	a (pc)	(cm^{-2})	(cm^{-2})
WD 0004+330	97	12.79 ± 0.09	16.35 ± 0.15
WD 0455-282	102	13.42 ± 0.07	14.91:
WD 0549+158	49	<12.62	$14.27^{+0.07}_{-0.09}$
WD 0715-703	94	13.23 ± 0.07	$15.90^{+0.10}_{-0.09}$
WD 1017-138	90	13.29 ± 0.11	$15.95^{+0.45}_{-0.22}$
WD 1211+332	115	$12.38^{+0.17}_{-0.28}$	15.74 ± 0.05
WD 1234+481	129	12.91 ± 0.08	$15.63^{+0.08}_{-0.07}$
WD 1254+223	67	13.10 ± 0.05	$14.25^{+0.06}_{-0.05}$
WD 1314+293	68	12.94 ± 0.06	14.51 ± 0.03
WD 1528+487	140	13.27 ± 0.06	15.80 ± 0.08
WD 1615-154	55	<12.94	$15.78^{+0.10}_{-0.09}$
WD 1631+781	67	$12.52_{-0.17}^{+0.12}$	15.90 ± 0.09
WD 1634-573	37	13.04 ± 0.06	15.51 ± 0.03
WD 1636+351	109	$12.95^{+0.12}_{-0.20}$	$15.71_{-0.13}^{+0.24}$
WD 1800+685	159	12.96 ± 0.07	$16.12_{-0.12}^{+0.14}$
WD 1844-223	62	<12.84	15.97 ± 0.08
WD 2004-605	58	13.00 ± 0.10	15.65 ± 0.08
WD 2124-224	224	13.07 ± 0.11	15.94 ± 0.03
WD 2309+105	79	<12.53	15.67 ± 0.04

Notes.—The O v1 column densities are from the AOD values listed in Table 3 for WDs with no evidence of stellar contamination. The limits are 2 σ . The O 1 column densities are from Lehner et al. (2003) and references therein, except toward WD 1254+223, which is from Oliveira et al. (2005). See Table 1 for distance references.

• Left: Savage & Lehrner (2006) sample

• Right: Savage & Lehrner O VI detections with no evidence of stellar contamination; this table is the subset that also has O I data.

More O VI Column Densities

TABLE 1 SUMMARY OF TARGETS AND OBSERVATIONS					
		0 V1 RESULTS			
HD NAME SPECTRAL TYPE	SIN v GALACTIC I b R(p<) V E(B−V) i STAR INT ROTATION	1038Å 1038Å L06 v <(v-v)≥> N v <(v-v)≥>			
5394 y Cas B0.5 IVel 10144 a Eri B3 Vp 14633 HD 14633 ONB V 22928 6 Per B5 III 22630 p Tau B7 III	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre><12.00</pre>			
24398 ζ Per 81 lb 24760 ε Per 80.5 [1] 24912 ζ Per 07.5 [1] (n) ((f)) 28497 HD 28497 81.5 Ve2 30514 α Can 09.5 la	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.18 13.5 299 J&M 12.96 57.6 260 J&M 13.34 1.2 299 J&M 13.06 ¹⁹ -7.9 639 York (1974) <13.40 L&M			
33328 λ Er1 B2 IVn 35439 25 0ri B1 Vn 36486 δ 0ri A D9.5 II SB 36695 ND 36695 B1 ¥ SB 36851 λ 0ri A DB III ((r))	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.65 -11.0 655 13.26 -10.8 352 12.96 3.3 131 13.13 -14.4 172 13.74 -20.5 1570 J & M 13.92 ¹⁰ -10.1 487 13.84 -3.0 273 13.21 -7.9 701 J & M			
37043 t Ori 09 111 SB 37128 ± Ori 80 la 37303 HD 37303 81.5 ¥ 37742 ¢ Ori A 09.7 lb 18 38666 ± Col 09.5 ¥	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.30 -18.9 351 J & M 13.17 -6.0 131 13.27 -9.6 146 13.55 -23.7 322 13.66 -23.2 370 13.25 -1.6 279 J & M 13.82 1.1 1061 York (1974)			
38771 x Ori 80.5 1a 40111 139 Tau 81 Ib 41161 HD 41161 08 Vn 42933 & Pic 80.5 IV SB 44506 HD 44506 81.5 IIIn	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.40 -5.8 432 J & M 13.83 5.8 376 J & M 13.29 17.4 63 13.59 -18.4 555 13.71 -18.9 810 13.84 0.9 787 13.87 -1.5 903			
45995 HD 45995 B2.5 Ve2+ 47839 15 Mon 07 V((f)) 51283 HD 51283 B2 III 52918 HD 52918 B1 IV 57060 29 CMa 07 la:fp 58	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.29 16.2 344 13.34 16.6 187 13.50 22.1 670 J & H 13.78 12.9 54611 J & H 13.09 46.6 202 13.10 51.2 410 13.46 16.6 570 J & H			
57061 τ CMa 09 11 SB 58978 HD 58978 80.5 IVnpe1 64740 HD 64740 81.5 Wp 54760 HD 64760 80.5 Ib 56811 τ Pup 04 I(n) f	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13.52 15.4 508 J & H 13.97 30.0 499 13.66 23.3 376 13.25 8.2 54311 13.06 -15.6 425 14.08 ¹⁰ 14.6 709 ¹² 14.13 15.0 665 13.51 0.7 544 J & M			
68273 y ² Vel WC8 + 09 I 87901 a Leo 87 V 91316 o Leo 81 Iab 93521 HD 93521 09 Vp ² 104337 HD104337 81 V 58	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	13.65 -11.6 328 J & H <13.40 -15.6 413 J & H 13.20 -15.6 413 J & H 13.8610 -14.1 559 13.94 -20.0 894 13.18 -15.6 224 13.60 -3.1 236			
106490 & Cru B2 IV 112244 HD112244 08.5 Iab(f) 116658 a Vir B1 IV SB 120307 v Cen B2 IV SB 120315 n Una B3 V	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	12.72 49.9 199 12.92 53.9 142 13.86 -19.3 193			
121263 (Cen B2.5 IV S8 121743 + Cen B2 IV 122451 # Cen A B2 III IB 132058 # Lup B2 III 135591 HD135591 07.5 III ((*))	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
136298 4 Lup 81.5 IV 143018 # Sco 81 V + 82 143118 m Lup A 82.5 IV 143275 6 Sco 80.5 IV IB 149881 HD149881 80.5 III ²	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.34 -3.2 263 13.19 -9.8 160 12.60 -4.3 299 J.6.M 13.21 -9.9 200 13.41 -9.4 404 13.26 -2.6 113 J.6.M 13.54 12.2 194 ²¹¹ <13.48			
150898 HD150898 B0.5 Ta 151890 µ ³ Sco B1.5 TV S8 155806 HD155806 07.5 V(n)e 157246 γ Ara B1 Ib 158926 λ Sco B1.5 TV IB	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
165024 s Ara B2 lb 173948 λ Pav B2 II-III 175191 d Sgr B3 IV IB 180968 2 Vul B1 IV 184915 κ Aql B0.5 IIIn	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	13.78 ¹⁰ 17.0, 660 13.56 -11.7 472 <12.90 J & H 14.10 ¹⁰ 23.1 1005			
186994 HD186994 B0.2 IV ³ 200120 59 Cyg B1.5 Ve2nn 200310 60 Cyg B1 Vn 209952 a Gru B7 IV 214060 HD214060 B1 Ib ¹	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
214168 8 Lac A B1 Vel 219188 HD219188 BD.5 [1-][[(n)	96.4 -16.1 413 5.7 0.12 348 0.6 -0.5 -1.8) 83.0 -50.2 2228 6.9 0.12 185 52.9 -2.7 -0.3	13.55 -9.1 401 13.84 -4.3 783 14.10 ¹⁰ -6.2 908 ¹² <13.48			
¹ Numerous references cited Jaschek, <u>et al.</u> (1964).	<pre>in ⁶ M_y = -6.1 from Morton (1976). ⁷ M_y = -6.0 from Hanbury Brown, <u>et al.</u> (1970).</pre>	11 The tracing of the other HD feature at 1021 Å is of poor quality. Hence the correction for HD absorption is uncertain.			
 3 Walborn (1973). 	From Herbison-Evans, et al. (1971).	12 The scans for HD at 1021 Å were not recorded, because of satellite malfunctions.			
⁴ am = 1.5 from Cester {1965 5 am = 1.0 from Seyfert (194	 Value of 1.77 in Lesh (1968) refers to components A and B together. 10 P[N, 1.05 x 10¹³ cm⁻², n₀r₀] <0.025, see s IVL of Param 11 	¹³ HD absorption seen at 1021 Å is so large that reliable subtraction at 1032 Å cannot be per- formed with presently available data.			
		¹⁶ Virtually no flux from the star was seen at 1021 Å. Hence no correction for HD was made.			

• Jenkins (1978) *Copernicus* survey

© American Astronomical Society • Provided by the NASA Astrophysics Data System

Snowden et al. 1998

More supplemental slides

Why Should We Care?

- If there is no hot gas in the LB, and little other gas, then we have an unexplained hole (the Local Cavity) in the Galaxy
 - (hole should fill in at the speed of sound in the surrounding medium, which should be observable, also local clouds should expand at this speed, which should be observable)
- If the LB does exist, then it is our local example of the population of hot bubbles in galaxies

Before the Local Bubble (was known)

- Early 1970's: *Copernicus* UV observations
 - Interstellar O VI absorption (Jenkins & Meloy 1974, Jenkins 1978a)
- Jenkins 1978b developed spatial model
 - Based on column density fluctuations
 - Regions of O VI-rich gas distributed in Galaxy
- O VI traces ~3 x 10⁵ K (assuming collisional ionizational equilibrium (CIE))
 - ... Hot gas regions distributed within Galaxy

The Local Bubble Emerges

- Local (r < 100 pc) region emits soft (~1/4 keV) X-rays
- Name \rightarrow Local (Hot) Bubble
- Temperature: if CIE, then T ~ 10^6 K, P ~ 15,000 K/cm³
- Obs sources: Wisconsin All Sky Survey, SAS 3, HEAO 1, ROSAT, (XMM, Chandra)

Figures from Snowden et al. 1997, 1998

Cartoon Geography:

Local Cavity, Local Bubble, and Embedded Clouds

Copernicus Revisited

- Jenkins' O VI spatial model revised to include LB (Shelton & Cox 1994)
- $N_{LB} \approx 1.6 \text{ x } 10^{13} \text{ cm}^2$

(attributed to bubble boundary + interface with Local Cloud)

• Also, $N_{distant features} \rightarrow$ larger than in Jenkins 1978b

Recent Observations: O VI Emission

- FUSE shadowing observation → isolate Local Bubble intensity
- Tight Upper Limit:

 $I_{OVI(2\sigma)} \le 800 \text{ ph/s/cm}^2/\text{sr}$

- Much less than expected from "breakout" model
- Tightly constrains bubble and evaporating clouds models
 - minimal number of cloud
 boundaries, minimal emission per cloud boundary, and very dim
 Local Bubble
- Ref: Shelton 2003

New Column Densities

- FUSE Local ISM Survey: $N_{LB} (r \le 100 \text{ pc}) \approx 7 \times 10^{12}/\text{cm}^2$
- Too little O VI for "breakout" model
- See O VI <u>within</u> LB → interpreted as transition zones on clouds
- Hard to see a wall of O VI at LB boundary → problem for hot bubble models
- Ref: Oegerle, Jenkins, Shelton, Bowen & Chayer, submitted
- GI Obs: Welsh et al. 2002 ($N_{OVI} < 10^{13} \text{ cm}^2$, d = 120 pc, high lat)

Discussion

- □ What We Don't See:
- Not enough O VI ions or resonance line photons for the "breakout" model
- Don't see strong LB
 boundary → this isn't
 your standard theoretical
 bubble
- Dim emission constrains net bubble + clouds model

What We Do See:

- O VI ions inside the LB → possibly cloud boundaries, lots of them, but wimpy
- LB region has more O VI than average ISM → "rumors of the LB's demise have been greatly exaggerated"

Power Law Emission Measure Models

- $d(n_e^2 dl)/dT \propto T^{\beta}$
- 2 versions:
- Yao & Wang (2007) modeled O VI (abs), O VII & O VIII (abs + emiss) together, Mrk 421 and 1~90°, b~61°
 - Found $\beta = 0.6$
- Lei, Shelton, & Henley (in preparation), used O VI (abs & emiss), ROSAT 1/4 keV, and Suzaku spectrum (covered O VII & O VIII) from Southern Filament shadowing analysis (1 = 279°, b=-47°)
 - Required 2 components
 - Found $\beta_1 = -0.6$, and $\beta_2 = -3$

Sources of hot gas:

SNRs (other talks) Superbubbles Possibly Pervasive Gas Halo Alert: solar wind contamination

NGC 4631 Galaxy. credit: NASA, CXC, HST, UIT, GSFC, AURA, NSF, D. Wang et al.

 05h39m
 05h38m
 05h37m
 05h36m
 05h35m

 Dennerl, et al. 2001
 Right Ascension
 (J2000)

 X-Ray Image
 from XMM (very hot gas)

Visible (DSS)

How Can We Make Progress on SWCX?

600

300

(b)

900

 $\times 10^{-6}$ Counts S⁻¹ Arcmin⁻²

1200

- Continue work on SWCX estimates
 - improved atomic physics in the 1/4 keV band
 - uncertainty estimates
 - spectral temperature of the SWCX and remaining LB spectra
- Search for LB by making additional X-ray shadowing observations in directions with dim SWCX and bright local emission (i.e. high ecliptic latitude, high positive galactic latitude)

Predicted Heliospheric X-Ray Emission as seen From Earth. -- in galactic coordinates.

Robertson, Cravens, and Snowden (2003).

ROSAT SXRB Map is also shown and an approximate "subtraction" map.

