Suzaku Status

K. Mitsuda (ISAS/JAXA) on behalf of operation/processing/hardware teams December 12, 2007

Outline

- Satellite status
 - Overall status of Suzaku since the launch
- Operational status
 - Status of the tracking station
 - Conflict with other satellites
- Detector status
 - Summary of XIS/HXD status
- Observational status
 - Cycle I (AOI) and Cycle 2 (AO2) observations

Satellite status

Troubles in Attitude control system & Data recorder

Satellite status

Troubles in Attitude control system & Data recorder

Satellite status: Daily operations

Satellite status: Daily operations

HXD PIN: Long-term stability

HXD PIN: In-Orbit Degradation

Due to the radiation damage in the space environment, significant increase of the noise events is observed in the Si PIN diodes.

> epoch1 : 2005.08.19 -- 2005.12.30 epoch2 : 2006.01.04 -- 2006.05.31 epoch3 : 2006.06.04 -- 2006.10.31 epoch4 : 2006.11.02 -- 2007.03.31

The increase of the noise events is suppressed by reducing the bias voltage from 500V to 400V.

HXD GSO: Long-term changes of gain and background

Some of the PMTs show significant decrease in gain due to the in-orbit radiation damage. Short-term variations due to the temperature fluctuations are also observed. The activation background of GSO scintillators has increased gradually (as expected before launch), but is close to saturation.

Long-term change of the CCD performance

Spaced-row Charge Injection (SCI)

Injected charge will fill the traps to improve the charge transfer efficiency.

Sample image of XIS with SCI injected charges

Injected charge will not be read out in normal operation.

Effectiveness of the charge injection

Anomaly of XIS2 on November 9, 2006

Large amount of charge suddenly started to leak in the imaging region. Cause is unknown; impact of micro-meteoroid is one of the possibilities.

Contamination on OBF

OBF annealing test at Kyoto University

on August 28, 2007, by, Mori, Tsuru, & Matsumoto

Result (I)

Result (2)

Wrinkles in the OBF

Before the test

After the test

Patterns of wrinkles have changed, in particular, near the OBF frame.
Difference in the spatial frequencies of the wrinkles.

A possibility: the glue on the frame dissolved in DEHP, and the OBF slipped between the two frame plates (??)

Recommendation from the XIS team

- The XIS baking should not be done, because of the following reasons.
- Origin and nature of the contamination are not well understand.
 Cause and their stress of the wrinkles developed during the thermal cycle are not understood.
- (3) OBF temperature can be raised only up to -15°C. It is not clear whether the contamination can be removed quickly enough.
- (4) It is not clear whether we can raise the OBF temperature safely.
- (5) Contamination thickness of XIS3 is already saturated, and that of XIS1 is close to saturation. The transmission is about 30 % at Oxygen K line energy.
- (6) We have already (effectively) lost XIS2. We need to avoid an operation with even a slight risk not to loose the sensor any more.

Data processing

- Version I.x processing
 - Official data release for guest observers
 - May 30, 2006
 - HEAsoft 6.0.6 released on May 16, 2006
- Version 2.x processing
 - SCI mode of XIS
 - August 14, 2007
 - HEAsoft 6.3.1 on July 30, 2007

AO-I observations

	Priority-A		Priority-B		Priority-C		Public
	#Seq	ksec ⁽¹⁾	#Seq	ksec	#Seq	ksec	#Seq
Cal	40	762	0	0	0	0	40
G.P.	30 ⁽²⁾	1141	17	886	8	449	18
G.D.	61	1873	24	1110	7	335	32
E.G.P.	42	2402	18	1445	12	635	30
E.G.D.	15	885	32	1259	26	1413	25
ToO ⁽³⁾	5	185			-	-	5
Total	193	7248	91	4700	53	2852	150

(1) after anomaly in XIS2, we increased the integration times of Priority-A targets by 25%
(2) Including 3 reserved ToO.

(3) Generic ToO	2006/9/4	GRB060904A	30.3k/30k
	2006/9/23	CXOU J164710.2-455216	38.7k/35k
	2006/9/25	IGR J17497-2821	53.4k/50k
	2007/3/19	XTE J1856+053	24.5k/25k
	2007/03/28	GRB070328	52.5k/45k

AO-2 observation status

	Priority-A		Prior	rity-B	Priority-C	
	Done	Not yet	Done	Not yet	Done	Not yet
Cal	13	3	0	0	0	0
G.P.	34(1)	19	8	3	6	21
G.D.	22	6	21	7		20
E.G.P.	32 ⁽²⁾	17	17	4		37
E.G.D.	14		13	4	10	16
ToO ⁽³⁾	3	-	100 1	-	- -	
Total	193	7248	91	<mark>47</mark> 00	53	2852

As of December 5, 2007

(I) Including 2 reserved ToO.

(2) Including I reserved ToO.

(3) Generic ToO Nova Vul

GROJ1008-57 3C454.3

2007/11/4 2007/11/30 2007/12/5 Data is public Data processing in progress Just observed

AO-3 proposals

- Japan (JAXA)
 - I46 proposals (2 LP), 22 Msec (AO-2: I35 proposals, I8Ms)
- US (NASA)
 - I 20 proposals (9LP), 21 Msec (AO-2: I 56 proposals, 26Msec)
- ESA
 - 30 proposals, 3Msec (AO-2: 39 proposals)

- Continue stable operations
- Continue to produce good scientific results