January 18, 2024

# Revealing the circumnuclear environment of Centaurus A through high-resolution X-ray spectroscopy of the iron emission line

#### Toshiya Iwata (The University of Tokyo)

A. Tanimoto (Kagoshima University), K. Hagino, A. Bamba (The University of Tokyo), H. Odaka, Y. Inoue (Osaka University)

## The circumnuclear environment of SMBHs

#### The circumnuclear materials

\*broad-line region (BLR), torus..

Connect AGNs and their host galaxies

- Feeding SMBHs
- AGN feedback

The circumnuclear environment of radio galaxies is still uncertain

(e.g., Tazaki et al. 2011,13)

Difference between radio-loud and radio-quiet AGNs



# X-ray reverberation mapping

Compare the light curve of direct component and that of iron line

- The direct component comes directory from the X-ray source
- The iron line (~6.4 keV) is emitted from a reflector irradiated by the X-ray source
- The iron line is delayed from the direct component due to the difference in the light travel distance.

The lag of the iron emission line



# Target: Centaurus A

#### Centaurus A (Cen A)

a suitable target to study the structure around the SMBH in radio galaxies.

- the iron line (~6.4 keV) was detected
- observed repeatedly in the X-ray energy range

# The origin of the iron line is still an open question.

- Line width (*v*<sub>FWHM</sub>): 1000–3000 km s<sup>-1</sup> (Evans et al. 2004)
- Stable iron line flux

 $\gtrsim$  10 lt-yr (Fürst et al. 2016)

# $\begin{array}{l} \textbf{F}_{\text{the NuSTAR spectra of Cen A}} \\ \textbf{F}_{\text{transformulation}} \\ \textbf{F}_{transformulation} \\ \textbf{F}_{\text{transformulation}} \\$

► 10<sup>-2</sup>-10<sup>-1</sup> pc

▶ ≳1pc

Goal: to reveal the origin of the iron line

# **Comparison of the light curves**

#### **Direct component and iron line**

The iron line flux dropped between 2013 and 2015



short lag ( $\lesssim 1$  year)

The flux variation was suppressed



The light curve of Swift/BAT (Krimm+2013)



#### The flux of the iron emission line



#### There seem to be both short-lag and long-lag components

# **Transfer function**

# How the flux of iron line respond to the irradiate flux Transfer function $L(t; \mathbf{p}) = \int d\tau \Psi(\tau; \mathbf{p}) C(t - \tau)$ Light curve of the the iron line



### **Assumed transfer function**

double-top-hat function

- Contains short-lag and long-lag components
- transfer function for two spherical shells



## Analysis using the the transfer function

#### **Parameters estimation**

Fit the convolution to the iron line data



1e-6

- $\tau_1 < 2.8 \times 10^2 \text{ days} \implies < 0.24 \text{ pc}$
- $\tau_2 > 2.1 \times 10^3$  days  $\rightarrow$  > 1.8 pc

Since the number of iron line flux data is limited, alternative models can also explain the data

# More realistic model

## **XClumpy-like model**

Assume the distribution of the origin of the iron line as follows

•  $N(r/r_{in})^{-q} \exp\left(-(\theta - \pi/2)^2/\sigma^2\right) r^2 \sin\theta dr d\theta d\phi$ ( $r_{in} < r < r_{out}$ )

\*Same as the clump distribution in XClumpy (Tanimoto et al. 2019)

• 
$$r_{\rm out} = 5 \, {\rm pc}, \, \sigma = 40^{\circ}$$

• Inclination angle  $i = 60^{\circ}$ 

# Calculate the transfer function from the distribution

• Short-lag and long-lag components



time (davs)

## The limitation of the reverberation mapping

#### Iron line flux estimation

Both cases with  $r_{\rm in} = 1 \times 10^{-2}$  pc and  $1 \times 10^{-1}$  pc consistent with the light curve

X-ray reverberation cannot distinguish between these cases

It is difficult to obtain further constraints on the short-lag component



Since Resolve on XRISM has an energy resolution of < 7 eV, the analysis of the line profile will be the most promising way

# Simulation of XRISM iron line profile

## Assumption for the iron line origin

- XClumpy-like model
- Keplerian motion

Simulated two cases:

(i) 
$$r_{\rm in} = 1 \times 10^{-2} \, \rm pc$$

(ii)  $r_{\rm in} = 1 \times 10^{-1} \, {\rm pc}$ 

## Simulation of XRISM observation

The continuum flux is the same as the NuSTAR observation in 2018

Exposure 200 ks





# Analysis of the simulated spectra

11

#### **Analysis procedure**

Fit the XClumpy-like model to the simulated spectra

• Four free parameters:  $r_{in}$ , q, s and i

#### The results

| $r_{\rm in}$ (assumed)     | r <sub>in</sub>                                 |
|----------------------------|-------------------------------------------------|
| (i) $1 \times 10^{-2}$ pc  | $(8.5^{+3.6}_{-2.4}) \times 10^{-3} \text{ pc}$ |
| (ii) $1 \times 10^{-1}$ pc | $(9.2^{+2.1}_{-0.9}) \times 10^{-2} \text{ pc}$ |

XRISM observation will enable us to estimate the size of the iron line origin when  $r_{in} \sim 10^{-2} - 10^{-1}$  pc

#### The analysis results of simulated spectra





- X-ray reverberation mapping suggests that the reflection component is originated from the reflectors whose sizes are < 0.24 pc and > 1.8 pc.
- Obtaining additional constraints on the short-lag component through x-ray reverberation mapping is challenging.
- Observation of Cen A with XRISM will enable us to estimate the size of the iron line origin from the line profile, which is particularly sensitive to an inner reflector at  $r_{\rm in} \sim 10^{-2}$ - $10^{-1}$  pc.

# Thank you for listening!

Back up

# **Results of simulated spectra analysis**

|      |         | r <sub>in</sub>                                 | q                         | S                                       | i (degree)       |
|------|---------|-------------------------------------------------|---------------------------|-----------------------------------------|------------------|
| (i)  | assumed | $1 \times 10^{-2} \text{ pc}$                   | 2.7                       | $5.3 \times 10^{-3}$                    | 60               |
|      | results | $(8.5^{+3.6}_{-2.4}) \times 10^{-3} \text{ pc}$ | $2.687^{+0.061}_{-0.058}$ | $(5.48^{+0.34}_{-0.30}) \times 10^{-3}$ | $70^{+16}_{-12}$ |
| (ii) | assumed | $1 \times 10^{-1} \text{ pc}$                   | 3.2                       | $5.1 \times 10^{-3}$                    | 60               |
|      | results | $(9.2^{+2.1}_{-0.9}) \times 10^{-2} \text{ pc}$ | $3.16^{+0.22}_{-0.14}$    | $(5.08^{+0.28}_{-0.25}) \times 10^{-3}$ | $60^{+16}_{-12}$ |



• Assume the distribution of the origin of the iron line as follows  $N(r/r_{in})^{-q} \exp(-(\theta - \pi/2)^2/\sigma^2) r^2 \sin\theta dr d\theta d\phi + (r_{in} < r < r_{out})$ 



## Simulated spectra: gauss



## Simulated spectra: gauss (narrow + broad)





Energy (keV)

Energy (keV)

# Analysis of the simulated data: $3 \times 10^{-3}$ pc

18

#### The analysis results of simulated spectra



#### The results

| $r_{ m in}$ (assumed)              | r <sub>in</sub>                                 |
|------------------------------------|-------------------------------------------------|
| (i) $3 \times 10^{-3}$ pc          | $(1.9 \pm 1.0) \times 10^{-3} \text{ pc}$       |
| (ii) $1 \times 10^{-1} \text{ pc}$ | $(9.2^{+2.1}_{-0.9}) \times 10^{-2} \text{ pc}$ |

## Analysis of the simulated spectra: 100 ks

#### **Simulated data**

Exposure: 100 ks

#### The analysis results of simulated spectra



#### The results

| $r_{\rm in}$ (assumed)             | r <sub>in</sub>                                    |
|------------------------------------|----------------------------------------------------|
| (i) $1 \times 10^{-2}$ pc          | $(8.2^{+9.7}_{-3.7}) \times 10^{-3} \text{ pc}$    |
| (ii) $1 \times 10^{-1} \text{ pc}$ | $(1.01^{+0.49}_{-0.16}) \times 10^{-1} \text{ pc}$ |