XMM-Newton Science Analysis System Page: 1

Reference Manual for the XMM SAS Data Access Layer

April 16, 2023

1 Introduction

This document contains reference material for the XMM SAS Data Access Layer (DAL) software.
The DAL’s Application Programmable Interface (API) supports four languages; F90, C++, C and Perl.

Primarily, this document will serve as reference material for the F90 DAL API. The C++ and C APIs
are also described but with less detail.

Where appropriate, a language-independent approach has been taken and this will partially serve as
general user information.

It is a mandatory requirement that all SAS task developers must use the DAL APIs to access FITS files.

2 Data Model

The DAL is principally concerned with data organisation and access.

The DAL Data Model organises data into a collection of data sets.

A data set, which, for aesthetic reasons, will be written as the collocation dataset throughout this
document, is an attributable set together with an ordered collection of zero or more blocks. Sometimes

a dataset is said to be an attributable set or simply attributable.

A block is one of:

® an array

e a table.

An array is an attributable set together with an n-dimensional array (1 jj n jj 3) of numeric scalars. The
scalars all have the same type. Sometimes an array is said to be an attributable set or simply attributable.

A table is an attributable set together with an ordered collection of zero or more columns. Sometimes a
table is said to be an attributable set or simply attributable.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 2

A column is an attributable set together with a vector of cells. Sometimes a column is said to be an
attributable set or simply attributable. A cell is one of:

e a string
e a scalar

e an n-dimensional array (1 jjn jj 4) of scalars

A scalar is one of:

e 3 nuieric scalar

e 3 boolean

A numeric scalar is one of:

e an integer value with 8 bits of precission

e an unsigned integer value with 16 bits of precission
e an integer value with 16 bits of precission

e an unsigned integer value with 32 bits of precission

e an integer value with 32 bits of precission

a real value with 32 bits of precission

a real value with 64 bits of precission

The scalars within a particular array or column all have the same type.

An attributable set, which for the purposes of brevity will be shortened to attributable throughout this
document, is the quintuple

{ name, label, setofattributes, setofhistoryrecords, setofcommentrecords }

where:

e name A string which is used to provide unique identification.
e label A textual description.
e setofattributes is a ordered collection of zero or more attributes

e setofhistoryrecords is an ordered collection of zero or more history records. A history record is a
string.

e setofcommentrecords is an ordered collection of zero or more comment records. A comment record
is a string.

An attribute is a quadruple { name, label, unit, value }, where:

e name A string which is used to provide unique identification.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 3

e label A textual description.
e unit A string which is used to provide information on the units of the data.
e value Supported types are:

— string

— integer

— real

— boolean

3 Abstract API

The DAL is essentially implemented in C+4. The design takes the form of a set of abstract classes which
provides the fundamental DAL interface. There are currently two implementations (both in C++) of
this abstract interface; one is the High Memory Model and the other is the HighLow Memory Model. A
third implementation, not yet fully implemented, is the Low Memory Model. The exact nature of these
Memory Models is described later in this document.

Three additional interfaces are provided. These are the F90, C and Perl APIs, each of which is imple-
mented, through a transitional layer of C++ code (sometimes called a glue-layer), in terms of the C++
abstract API.

Whilst it is not necessary to understand the underlying Abstract C++ API, it will certainly be beneficial
to have at least an overview of the main designs aspects.

In particular, an understanding of the C++ class hierarchy will lead to more generic algorithms e.g. use
BlockT rather than ArrayT if only the BlockT methods are needed.

. Class Hierarchy . Object Hierarchy

4 Supported File Formats

The DAL supports three file formats:

e FITS, the preferred format, which conforms to the platform-independent FITS standard.

e DAL, a special internal format (which should be considered platform-specific) that will only be used
for temporary intermediate files, probably for (high memory mode) tasks within meta-tasks.

e DECEIT, a special format used by the dataset creation tool deceit. To be used only by specialized
tasks only.

When reading an existing file, the DAL will attempt to detect the file format; in the event that a file was
opened with the modify mode, the same format will be used when it is rewritten.

When creating a new file, the default output format is FITS. This behaviour may be altered by defining

the environment variable SAS_ FORMAT. It can have the following values (the corresponding format for
each each value is also shown):

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 4

e 1, FITS

e 2, DAL
e 3, DECEIT

The output format of a task can be overridden with a command line option.

The data model is abstract in that it is not dependant on an underlying representation (e.g.FITS). The
following table shows the mapping to FITS, DAL and deceit files.

There are restrictions imposed by FITS ... e.g. Keyword Length is limited to 8 characters.

5 Clobber

By default when the dal is used to create a new dataset, an existing dataset with the same name will be
overwritten. This is referred to as clobbering.

If the environment variable SAS_CLOBBER is defined, to determines the clobber behaviour. It can take the
following values:

0 no clobber: a task will produce an error when trying to overwrite an existing file.

1 clobber: a task will overwrite existing files. This is the default behaviour, in the event that the
SAS_CLOBBER variable is undefined.

6 Errors

This section documents warnings and errors generated by this task (if any). Note that warnings and
errors can also be generated in the SAS infrastructure libraries, in which case they would not be docu-
mented here. Refer to the index of all errors and warnings available in the HTML version of the SAS
documentation.

DataSetNonActive (error)
found in:../../src/datasetserver/DataSetRecord.cc

FITSError (error)
found in:../../src/readerwriter /FitsReaderWriter.cc

FITSFailure (error)

FITSIO (error)
found in:../../src/common/dal_utilities.cc

InconsistentDataSet (error)
found in:../../src/readerwriter/FitsReaderWriter.cc

InternalError (error)
found in:../../src/highlow /HiLowDataSet.cc,../../src/memory/MemDataSet.cc

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 5

InvalidCompoundName (error)
found in:../../src/common/DalDataSet.cc

InvalidDataType (error)

InvalidMemoryModel (error)
found in:../../src/extensions/extdal /ExtDal.cc

InvalidSeek (error)
found in:../../src/highlow/Slicer.cc

InvalidType (error)
found in:../../src/highlow/Slicer.cc

NoDataSetRecord (error)
found in:../../src/datasetserver/DataSet Tracker.cc

NoValueAttribute (error)
found in:../../src/common/DalAttribute.cc

NotImplemented (error)

accessingAsWrongDataType (error)
found in:../../src/highlow/HiLowDataStorage.cc,../../src/memory/DataStorage.cc

arrayReadError (error)
found in:../../src/readerwriter/MemDalReaderWriter.cc

arrayWriteError (error)

attributableNotFound (error)
found in:../../src/common/DalAttributable.cc

attributeNameExpected (error)
found in:../../src/common/CompoundName.cc

attributeNotFound (error)

attributeNumberNotFound (error)
found in:../../src/common/DalAttributable.cc

attributeReadError (error)
found in:../../src/readerwriter/MemDalReaderWriter.cc

attributeWriteError (error)
found in:../../src/readerwriter/MemDalReaderWriter.cc

blockExists (error)
found in:../../src/common/DalDataSet.cc

blockNotFound (error)

blockNumberNotFound (error)
found in:../../src/common/DalDataSet.cc

clobberFailed (error)
found in:../../src/datasetserver /DalDataSetServer.cc,../ .. /src/readerwriter /HiLowFitsDatabase.cc,../../src/readerw

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 6

columnAlreadyExists (error)
found in:../../src/common/DalTable.cc

columnExists (error)

columnNotFound (error)
found in:../../src/common/DalTable.cc

columnReadError (error)
found in:../../src/readerwriter/MemDalReaderWriter.cc

copyDataSetFailed (error)

couldNotOpenDataSet (error)
found in:../../src/datasetserver /DalDataSetServer.cc

createDatasetFailed (error)
found in:../../src/readerwriter/HiLowFitsDatabase.cc,../../src/readerwriter/MemDalReader Writer.cc,.. /.. /src/read

creatorOfDataSetNotFound (error)

dallnternalError (error)
found in:../../src/readerwriter/HiLowFitsDatabase.cc

dataset AlreadyExists (error)
found in:../../src/readerwriter/HiLowFitsDatabase.cc,../../src/readerwriter/MemFitsReaderWriter.cc

datasetCouldNotBeRead (error)

dateOfDataSetNotFound (error)
found in:../../src/datasetserver/DalDataSetServer.cc

deleteDataSetFailed (error)
found in:../../src/datasetserver /DalDataSetServer.cc

deleteDatasetFailed (error)

deletingFile (error)
found in:../../src/readerwriter /HiLowFitsDatabase.cc

expected ArrayName (error)
found in:../../src/common/CompoundName.cc

incompatibleNumberOfRows (error)
found in:../../src/common/dal_utilities.cc

incompatibleTables (error)
found in:../../src/common/dal utilities.cc

internalError (error)

interrnalError (error)
found in:../../src/highlow/Slicer.cc

invalid ArrayDataRange (error)
found in:../../src/highlow/HiLowArrayData.cc,../../src/memory /MemArrayData.cc

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 7

invalid ArrayDimension (error)
found in:../../src/readerwriter/MemFitsReaderWriter.cc

invalid AttributeDataType (error)

invalid AttributeTypeDescription (error)
found in:../../src/common/dal utilities.cc

invalidBlockAccess (error)
found in:../../src/common/DalDataSet.cc

invalidBlockPosition (error)

invalidBlockType (error)
found in:../../src/readerwriter/HiLowDalReaderWriter.cc,../.. /src/readerwriter/MemDalReader Writer.cc

invalidCloneCreateCombination (error)
found in:../../src/datasetserver /DalDataSetServer.cc

invalidCloneReadCombination (error)

invalidColumn (error)
found in:../../src/readerwriter/MemDalReaderWriter.cc

invalidColumnDataType (error)
found in:../../src/highlow/HiLowColumn.cc,../.. /sr¢/memory/MemColumn.cc

invalidColumnName (error)

invalidColumnNumber (error)
found in:../../src/common/DalTable.cc

invalidColumnOperation (error)
found in:../../src/common/DalColumn.cc,../.. /src/highlow /HiLowColumn.cc,../.. /src/memory /MemColumn.cc

invalidColumnPosition (error)

invalidCompoundName (error)
found in:../../src/common/CompoundName.cc,../../src/common/DalAttributable.cc,.. /.. /src/common /DalBlock.ce

invalidCopyMode (error)
found in:../../src/common/dal_utilities.cc

invalidCountDimensions (error)
found in:../../src/highlow/HiLowArrayData.cc,../../src/memory /MemArrayData.cc

invalidDataObject (error)
found in:../../src/common/DalDataComponent.cc

invalidDataType (error)

invalidFloatFormat (error)
found in:../../src/readerwriter/FitsReaderWriter.cc

invalidFromDimensions (error)
found in:../../src/highlow/HiLowArrayData.cc,../../src/memory /MemArrayData.cc

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

8

invalidNullOperation (error)
found in:../../src/common/DalNullable.cc

invalidNullableOperation (error)

invalidPosition (error)

found in:../../src/common/DalArrayData.cc,../../src/highlow /HiLowColumnData.cc,../.. /src/memory /MemColum

invalidRow (error)

found in:../../src/highlow /HiLowColumnData.cc,../.. /src/memory /MemColumnData.cc

invalidRowNumber (error)

invalidTableName (error)
found in:../../src/common/DalBlock.cc

invalidTrailingCharacters (error)
found in:../../src/common/DalAttributable.cc

invalidTypeCode (error)

invalidTypeDescription (error)
found in:../../src/common/dal_utilities.cc

invalidVectorColumnsSize (error)
found in:../../src/common/DalTable.cc

missingQuoteFromFITSKeyword (error)

noDebugHistory (error)
found in:../../src/datasetserver/DalDataSetServer.cc

noProcessHistory (error)
found in:../../src/datasetserver /DalDataSetServer.cc

notDalFormat (error)

notImplemented (error)

found in:../../src/highlow /HiLowArrayData.cc,../../src/highlow /HiLowCellData.cc,../../src/memory /DataStorage.

nullNotDefined (error)
found in:../../src/common/DalNullable.cc

nullValueFound (error)
found in:../../src/common/dal_utilities.cc

nullValueNotDefined (error)
found in:../../src/common/DalNullable.cc

openForReading (error)

openForWriting (error)
found in:../../src/readerwriter/HiLowDalReaderWriter.cc

overflow (error)
found in:../../src/common/dal_utilities.cc

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

9

readOnly (error)
found in:../../src/common/DalDal.cc

unhandledNull (error)
found in:../../src/common/dal_utilities.cc

unreleasedObject (error)
found in:../../src/common/DalDataComponent.cc

unsupportedAttributeDataType (error)
found in:../../src/common/dal utilities.cc

unsupportedColumnType (error)

found in:../../src/readerwriter/HiLowFitsReaderWriter.cc,../../src/readerwriter /MemFitsReader Writer.cc

unsupportedObjectType (error)
found in:../../src/common/dal_utilities.cc

wrongArrayDimensions (error)
found in:../../src/readerwriter/MemFitsReaderWriter.cc

AttributeNaN (warning)
found in:../../src/common/DalAttribute.cc
corrective action:

IllegalColumnAttributeName (warning)
found in:../../src/readerwriter /FitsReaderWriter.cc
corrective action:

IllegalTableAttributeName (warning)
found in:../../src/readerwriter /FitsReaderWriter.cc
corrective action:

KeywordTooLong (warning)
found in:../../src/readerwriter/FitsReaderWriter.cc
corrective action:

ReservedKeyword (warning)
found in:../../src/readerwriter /FitsReader Writer.cc
corrective action:

creatorKeywordNotFound (warning)
found in:../../src/readerwriter /FitsReaderWriter.cc
corrective action:

dateKeywordNotFound (warning)
found in:../../src/readerwriter /FitsReaderWriter.cc
corrective action:

duplicateTableName (warning)
found in:../../src/readerwriter /FitsReader Writer.cc
corrective action:

overflowDetected (warning)
found in:../../src/common/dal_utilities.cc
corrective action:

unnamedTable (warning)
found in:../../src/readerwriter /FitsReader Writer.cc
corrective action:

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 10

unreleasedData (warning)
found in:../../src/common/DalDataComponent.cc,../.. /src/highlow /HiLowArray.cc,../../src/highlow /HiLowColum
corrective action:

unsigned AccessedAsSigned (warning)
found in:../../src/f90/dal_implementation.cc
corrective action:

7 Test Programs

The DAL comes with a suite of test programs. These are run by doing make test in the DAL package
directory.

The test program will display a number of warning messages (but no error messages) which may be noted
for information, but safely ignored.

8 Example Programs

This document contains a large number of example programs which also are available separately. They
can be found in directory dal/doc/reference/examples. The programs are built with the command: make
test.

9 Environment Variable

The following environment variables may be set by the user:

e SAS_CLOBBER
Determines the clobber behaviour. 0 implies that datasets may not be overridden, whilst 1 implies
otherwise.

e SAS FORMAT
Determines the output format of new datasets. The following settings are allowed:
— 1, FITS
— 2, DAL
— 3, DECEIT
e SAS MEMORY_MODEL
Determines which memory model the DAL uses to open datasets. The following settings are allowed:
— 1, high
— 2, highlow
— 3, low - as the low memory model is not implemented, this will default to highlow
e SAS ROWS

Determines the number of rows selected when iterating over a table. Any positive integer value is
allowed.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 11

e SAS_COLUMN_WISE
The DAL can write table columns (to the underlying FITS file) either in a column-by-column or
a row-by-row fashion. The default behaviour is row-by-row, but setting the environment variable
SAS_COLUMN_WISE ensures the column-by-column method is used.

10 Configuation

The DAL uses apart from dal_conf.txt also the following file in the SAS configuration directory
$SAS DIR/config:

DAL.msg Message file. Do not change this file.

Note: the use of the configuration files is subject to change.

11 Access Modes

DataSets are accessed with one of the following modes:

e READ Read an existing dataset with the given name. An error is raised if the dataset is not found,
or cannot be opened.

e CREATE Create a new dataset with the given name. If an dataset already exisits with the given
name, the behaviour is dependent on the setting of the environment variable SAS_FORMAT. Any
changes made to the dataset will be discarded upon closure,

e MODIFY Open an existing dataset with the given name. All changes made to the dataset will be
written saved upon closure.

e TEMP Open a new dataset. The dataset is discarded upon closure.

When accessing tables, arrays and columns the mode is understood to be only a hint, and gives the DAL
an opportunity to be more memory efficient. It should be noted that it is not intended to safeguard the
developer from making logical programming mistakes. The underlying reason for this is that the DAL
hands out data pointers, and has no way of preventing modifications or even knowing if the data has
been modified.

This simple scenario has been adopted because the full bookkeeping on what data has to be written
and what data has to be extracted from the original file would have been too expensive in terms of

performance and coding.

By default an object inherits the access mode from its parent.

12 Qualified Names

Most objects in the Dal Model have a name, and an owner (usually referred to as the parent). This
gives rise to an ancestral sequence of objects, beginning with the dataset and continuing to the object.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 12

The Qualified Name, of an object is the token-separated concatenation of names of each object in this
sequence.

The colon character is used to separate the names of datasets, blocks and columns, but the % character
is used before an attribute name.

e.g. 7set:tab:col%att” is the fully qualified name of the column-attribute with name ”att”, whose parent
column has name ”col”, whose parent table has name "tab”, whose parent dataset has name ”set”.

It is possible to omit the block, column or attribute name from a qualified name. The effect of this is
equivalent to specifying the name of the first block in a dataset, the first column in a table, or the first
attribute in an attributable e.g.the qualified name ”set::col” may be used to access the column with name

7col” in the first table contained in the dataset with name ”set”.

The qualified name of an object may be passed to many of the functions and subroutines. The DAL will
parse these names and raise an error if inconsistencies are detected.

13 Long Strings

The FITS standard supports the notion of long strings. These are FITS keywords with string values
which exceed 68 characters and are continued across several lines. The continuation is specified with the
& character (at the end of each string value to be continued) followed by one or more lines beginning
with the reserved keyword CONTINUE (followed by the contined string value).

Long string values are handled transparently by the DAL.

14 Dimensions

It should be noted that when creating either an array or a column in c++ the dimensions are transferred
to FITS in the reverse order.

For example, if an array with dimensions (2,4) is created in c4++ it will appear in a FITS file as a (4,2)
array.

15 Null Values

The DAL supports Null Values (both integer and real).

For objects (i.e. arrays or columns) containing integer data, it is possible to define a null value. A data
value is then is considered null if it is equal to the object’s null value.

Integer data containing null values may be operated on safely i.e. arithmetic operations.
In the case of real data, a value is considered null if it has an IEEE NaN representation. Real data

containing null values must be treated carefully i.e. testing for nullity before carrying out any further
operations.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 13

16 Memory Models

There are currently two memory models available; the High Memory and the High/Low Models (The
Low Memory Mode, is only partially prototyped and is unlikely to be released in the foreseable future.).

The memory model may be selected by setting the environment variable SAS_. MEMORY_MODEL. The
allowed settings are:

e high
Select the High Memory Model.

e highlow Select the High/Low Memory Model.

e low Select the low memory model.

N.B. The low memory model is not yet implemented, and the highlow memory model will be
selected.

When a dataset is opened, with the High Memory Model mode (HMM), it is loaded into memory in
its entirety. All subsequent operations are performed on the memory-loaded dataset. When the dataset
is closed, the memory is flushed back to disk. The High Memory Mode gives high performance but is
memory expensive. With the HMM mode enabled, it is more probable that the operating swapping
mechanism will be invoked, giving rise to unacceptibly poor performance.

In the HighLow Memory Model (LMM) mode, when the dataset is opened, only the attributes are loaded
into memory. Only when the data is accessed is it loaded into memory. When the data is no longer
required it may be released, in which case it is flushed to disk before the memory is freed.

In principle, the LMM mode is capable of using almost no memory, or as much as the high memory mode.
A task programmer should take the steps necessary to ensure that the memory consumption is kept to a
minimum, and that the task is both high and low memory compatible. The guidelines for this are given

later in this document.

The DAL supports the notion of subranges, which essentailly is a convenient mechanism of restricting
access to all or only part of the data in a column or an array.

In the HMM mode, a subrange amounts to manipulating memory offsets to the data.

In the LMM mode, however, subranges become very significant because only the data specified in a
subrange will be loaded into memory.

17 Iterators

TBD

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 14

18 F90 DAL API

18.1 Introduction

The DAL {90 API is contained in the file dal/interface/dal.f90.

The API is specified in the module dal, which contains large number subroutines and functions (many of
which are overloaded through interface definitions) together with a number of derived type defintions.

18.2 Handles

Handles hide the internal details of the underlying C++ classes. Essentailly a handle is a pointer to an
object, but this detail will be irrelevant to most users.

Corresponding to each of the classes in the Abstract C++ API, there is a derived type.

The derived types ArrayT, AttributableT, AttributeT, BLockT; ColumnT, DataSetT, LabelledT and
TableT are used to declare handles of objects.

By having different derived types for each C++ class, the API becomes more robust and type-safe.

18.3 Class Relationships

The C++ classes are related to each other in two ways.
The first is the Base-Derived relationship

The F90 API supports the Base-Derived relationships through Base-Class conversion functions. These
are: block, attributable, and labelled.

and the second is the Parent-Child relationship.

These relationships are handled in the F90 API through the parent() function. This function has been
overloaded, and returns the parent object of the given object.

The following table shows this simple relationship:

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 15

’ Handle \ Class \ Base Classes \ Parent Class ‘
ArrayT Array Block -
Nullable
DataComponent
AttributableT Attributable Labelled -
AttributeT Attribute Labelled Attributable
BlockT Block Attributable DataSet
ColumnT Column Attributable Table
Nullable
DataComponent
DataComponentT | DataComponent Nullable -
NullableT Nullable - -
DataSeT DataSet Attributable DataSetServer
LabelledT Labelled - -
TableT Table Block -

Further details are given in the section on the C+-+ API.

18.4 API Overview

F90 applications must use the module dal, to gain access to the DAL APIL.

The DAL is concerned with dataset access. A dataset is accessed with the function:

e dataSet(dataSetName, mode, memoryModel)

where,

e character(len=%*), intent(in) :: dataSetName
The name of the dataset.
e integer, intent(in) :: mode
The access mode which the dataset should be used with. It must be one of the following values:
— READ Read an existing dataset with the given name. An error is raised if the dataset is not
found, or cannot be opened.

— CREATE Create a new dataset with the given name. If an dataset already exisits with the
given name, the behaviour is dependent on the setting of the environment variable SAS_FORMAT.
Any changes made to the dataset will be discarded upon closure,

— MODIFY Open an existing dataset with the given name. All changes made to the dataset will
be written saved upon closure.

— TEMP Open a new dataset. The dataset is discarded upon closure.
e integer, intent(in), optional :: memoryModel
This specifies a hint to which the memory model should be used. The following values are possible:
— HIGH.MEMORY
HIGH.LOW_MEMORY
— LOW_MEMORY
USE_ENVIRONMENT

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 16

The code extract, shown below, is a typical example of how to use the dataSet () function:

program test
use dal

type (DataSetT) set ! Declare a dataset handle.

set = dataSet("myset", CREATE) Create a dataset called "myset", with
the High Memory Mode. A handle of
the newly created dataset is returned

and assigned to the variable set.

Do some operations on the dataset, using
the handle set.

call release(set) ! Close the dataset.

end program

The dataset() function returns a handle to a dataset. This handle is used to specify the dataset in
subsequent operations. The handle itself is opaque, in that its contents may not be accessed to perform
dataset operations. The idea is to think of the handle as being an abstract object called a dataset.

The release function is used to close the dataset (the handle of the dataset is passed as a parameter).
The behaviour of the release is dependent on the access mode (see ??) which was used to access the
dataset.

Most DAL procedures(functions and subroutines) require a handle as one of the arguments and /or returns
a handle value. In many cases a procedure has been overloaded to operate on objects of different types.

These have been provided in the form on interfaces. For example, the release interface operates on
datasets, blocks, arrays, tables and columns.

18.4.1 Data types

At the lowest level the DAL provides access to data. The following data types are supported:

boolean 1 byte boolean

e int8 1 byte unsigned signed integer
e uintl16 2 byte unsigned integer

e int16 2 byte signed integer

e uint32 4 byte unsigned integer

e int32 4 byte signed integer

e real32 4 byte floating point

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 17

e real64 8 byte floating point

e string character string

Note: at this moment the DAL uses 4 bytes logicals instead of 1 byte logicals.

18.4.2 Data set

A data set can be accessed and released again with the following procedures:

e dataSet Returns a data set handle, given the name of the dataset and the access mode (see 77).

e release Release the data set again. The program should do this as soon as the set is no longer
needed.

A data set has an associated set of attributes (see 18.4.3).

The following procedures can be applied to a data set:

e addTable Add a table. Requires the name, the data type and shape of a cell and the number of
rows for the new table.

e addArray Add an array. Requires the name, the datatype and the shape of the array.
e table Given a block number or a name, returns a reference to that table.

e array Given a block number or a name, returns a reference to that array.

e block Given a block number or a name, returns a reference to that block.

e blockNr Given a name, returns the number of the block with that name.

e deleteBlock Deletes a block. Requires the block number or name.

e number0fBlocks Returns the nr of blocks in the data set.

e name Returns the name of the set.

18.4.3 Attributes

A data set, a block (either array or table), and a column have associated attributes. An attribute is
a keyword-value pair, optionally with a string describing the units of the value and a comment. The
following procedures can be used to set and enquire attributes:

e Jtype>Attribute Returns the value of an attribute of the specified type. Requires a handle to
the object and the name of the attribute.

e units Returns a string describing the units of an attribute, given a handle to the object and the
name of the attribute.

e label Returns the comment string of an attribute, given a handle to the object and the name of
the attribute.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 18

e setAttribute Sets the value of an attribute. In the case of a numeric attribute, requires the handle
of the object, the name of the attribute, the value, the units and a comment. For non-numeric
attributes the units are not provided.

There is a utility function available to copy attributes from one object to another:

e setAttributes Replaces the attributes by the attributes found in another object. Requires two
Attributable handles. A dataset, a block and a column can be converted into an attributable with
the attributable call.

e addAttributes Adds the attributes that are found in another object. Requires two Attributable
handles. A dataset, a block and a column can be converted into an attributable with the attributable
call.

e attribute Return a handle to the attribute with the specified name.

e setAttribute Set an attribute using the result of a previous attribute call.

18.4.4 Block

A data set is an ordered list of blocks. Each block has a name and a set of attributes (see 18.4.3). Two
types of blocks exist:

e Table (see 18.4.6)

e Array (see 18.4.5)

Blocks are accessed by number. The number of a block can be found from its name with the blockNr
function.

The following functions can be called with a block handle:

e name Returns the name of the block.

e number Returns the block number.

18.4.5 Array

An array is a block (see 18.4.4) that is an n-dimensional array of scalars. An array can be accessed and
released with the following procedures:

e array Returns an array handle. Requires a data set handle, the name or number of the array and
the access mode (see 77).
e release Release the array again. The program should do this as soon as the array is no longer

needed.

Once the handle is available, the following properties can be enquired:

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 19

e numberOfElements Returns the number of elements in the array.
e dimensions Returns an integer vector with the dimensions of the array.

e number0fDimensions Returns the number of dimensions of the array.

The data in an array can be accessed via access function. There is a large variety of those to support the
different types and dimensions.

o Jtype><dimension>Data Returns a pointer to the data in the array. Requires an array handle.

The following example illustrates how to change the values in an array.

program modifyColumn
use dal
type(DataSetT) :: set
type (ArrayT) :: arr
integer(kind=int32), dimension(:,:), pointer :: x

set dataSet ("test.dat" ,Modify)
arr array(set,"test")
x => int32Array2Data(arr)
x = 124
call release(arr)
call release(set)
end program

To reduce the size of the array that is accessed in one go (and thereby reducing memory usage), one can
select a certain range:

e arraySeek Set the range of interest. Requires an array handle and two vectors of integers, indicating
the starting position and the size of the range of interest.

Note: the current DAL does not support the seek function.

18.4.6 Table

A table is a block (see 18.4.4) that consists of a set of columns (see 18.4.7), each of which has its own
data type. A table can be accessed and released with the following procedures:

e table Returns a handle to the table. Requires a data set handle, the table name of number and
the access mode (see 77).
e release Release the table again. The program should call release as soon as the table is no longer

needed.

The table number can be found from its name with the blockNr function.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 20

Columns in a table are accessed by name or by number. The number can be found from the name with
the columnNr function.

The following procedures can operate on a table:

e addColumn Adds a column and returns a reference to the new column. Requires the name, the data
type and the units for the new column.

e column Given a column number, returns a reference to the column.
e columnNr Given a name, returns the number of the column with that name.
e deleteColumn Deletes a column. Requires the column number.

e insertRows Inserts rows into the table. Requires the starting position and the number of rows to
insert.

e deleteRows Deletes rows from a table. Requires the starting position and the number of rows to
delete.

e copyColumn Copy a column. Requires the column number, a reference to the destination table and
the new name.

e number0fColumns Returns the number of columns.
e numberOfRows Returns the number of rows.

e copyRows Copies rows. Requires the row number to copy from, the row number to copy to, and
the number of rows to copy.

e insertRows Inserts rows, containing arbitrary values. Requires the row number where to insert the
rows and the number of rows to insert.

e deleteRows Deletes rows. Requires the row number of the first row to delete and the number of
rows to delete.

18.4.7 Column

A column can be accessed and released again with the procedures

e column Return a handle to a column. Requires a table handle, the column name or number, the
starting row of interest, the number of rows of interest, and the access mode (see ?77?).

e release Release the column. Requires the column handle.

The following example illustrates how to change the values in a column.

program modifyColumn
use dal
type(DataSetT) :: set
type(TableT) :: tab
type (ColumnT) :: col
integer(kind=int32), dimension(:), pointer :: x

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 21

set = dataSet("test.dat",Modify)
tab = table(set,"test")
col = column(tab,"x",0,0,Modify)

x => int32Data(col)

x = 124

call release(col)

call release(set)
end program

The following procedures can operator on a column handle:

e name Returns the name.

e number Returns the column number.

e dataType Returns the data type of the column.

e dimensions Returns the shape of each cell in the column.

e numberOfDimensions Returns the number of dimensions of each cell in the column.

e numberOfRows Returns the number of rows in the column.

To reduce the size of the column that is accessed in one go (and thereby reducing memory usage), one
can select a certain range:

e columnSeek Set the range of interest. Requires a column handle, the starting row and the number
of rows.

Note: the current implementation of the DAL does not support the column seek function.

18.5 Reference

NAME addArray(dataSet, name, type, dimensions, units, comment, position)

PURPOSE
Create and add an array to a dataset.

ARGUMENTS

o type(DataSetT), intent(in) :: dataSet
A handle to a dataset. The newly created array will be added to this dataset.
e character(len="*), intent(in) :: name
The name of the array; there must not be a block with this name already in the dataset.
e integer, intent(in) :: type
The data type of the array. It must be one of Integer8, Integer16, Integer32, Real32,
Real64
e integer(KIND=INT32), dimension(:) :: dimensions
A vector of integer values which desribes the dimensions of the array.
e character(len="*), intent(in), optional :: units
The units of the array. This is a passive description of the units, which has no effect
on the array’s data.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 22

RETURNS

e character(len=%*), intent(in), optional :: comment
A textual comment which is used to describe the array.

e integer, intent(in), optional :: position
This is the ordinal position which the array is to occupy in the given dataset dataSet.
The first block in a dataset has position zero.

o type(ArrayT)
The value returned is a handle to the newly created array.

DESCRIPTION

ERRORS

EXAMPLES

An array is a block. Create and add an array to the specified dataset. The name must be
unique. If no position is specified the array is placed at the end of the dataset. The number
of blocks will be increaseed by one. All the data elements of the array will have the specified
type. The total number of elements is given by the product of the given dimensions. If a
position is specified, the array will have the given position e.g. blockNumber(arrayName
) returns the given position. The remaining blocks, if any, will be moved (notionally) to
accommodate the new array.

Whilst the DAL data model is independent of any underlying representation, there is an
exceptional facility for handling the notion of the FITS Primary Image. An array with block
number zero, and name "PRIMARY”, will be treated by the FITS file reader/writer as the
FITS primary image. This does not spoil the purety of the DAL data model, with FITS
specific notions, since the interpretation, is made by the FITS File reader/writer, which is a
separate piece of software, which is implementated, in terms of the abstract DAL interface.
The restriction of setting the block number to zero, is needed to ensure consistancy of block
numbers, between successive create and reads.

The name, units and comment may be changed. The type, dimensions and position may
not be changed. In the event that the ordinal position is not at the end, the newly created
array is inserted, moving subsequent blocks as necessary.

blockExists invalidBlockPosition

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.
In this example add dataset is created (opened) containing

I
!
!
I
I
I
!
!
!
I
I
I
!
!
I
I
I
! two 3-dimensional arrays.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

23

SEE ALSO

It illustrates the use of the derived types DataSetT and ArrayT.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The first array is filled with unique data before the
dataset is released (closed).

program example_addarray

use dal
use errorhandling

implicit none

type (DataSetT) set
type(ArrayT) arrl, arr2

integer(kind=int32), dimension(:,:,:), pointer :: al, a2
integer, dimension(3), parameter :: s = (/ 3,4,2 /)
integer :: i,j,k,n

! create a set

set = dataSet("test.dat",CREATE)

arrl = addArray(set, "arrayl", INTEGER32, dimensions=s)

arr2 = addArray(set, "array2", arrayDataType(arrl), dimensions=s)

! £i11 with unique numbers
al => int32Array3Data(arrl)
a2 => int32Array3Data(arril)

n=20
do k=0,1
do j=0,3
do i=0,2
al(i,j,k) =n
a2(i,j,k) = a1(i,j,k) + 1
n=n+1
end do
end do
end do

call release(arrl)
call release(arr2)
call release(set)

end program example_addarray

array block blockNumber blockType deleteBlock hasBlock numberOfBlocks

BUGS AND LIMITATIONS
Boolean and String Data types are not supported.

NAME addAttributes(destination, source)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 24

PURPOSE
Add the attributes from the source attributable object to the destination attributable object.

ARGUMENTS

o type(AttributableT), intent(in) :: destination
The destination attributable object.

o type(AttributableT), intent(in) :: source
The source attributable object.

RETURNS
None

DESCRIPTION
The attributes in source are copied to destination. Attributes in the destination object,
which have the same name are overwritten.

ERRORS
None

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.
program example_addattributes

use dal
use errorhandling
implicit none

type (DataSetT) set
type(TableT) tab

set = dataSet("test.dat",CREATE)
call setAttribute(set,"sbooll",.false.,"dataset bool comment")
call setAttribute(set,"sbool2",.false.,"dataset bool comment")

tab = addTable(set,"table",10);

call addAttributes(attributable(tab) ,attributable(set))
call release(tab)

call release(set)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 25

end program example_addattributes

SEE ALSO

setAttributes addAttributes

BUGS AND LIMITATIONS
None known.

NAME addColumn(table, columnName, dataKind, units, dimensions, comment, position)

PURPOSE
Create and add a column to a table.

ARGUMENTS

e type(TableT), intent(in) :: table
A handle to the table to which a column is to be added.
e character(len=*), intent(in) :: columnName

The name of the column. There must not be a column with the same name already in
the table.

e integer, intent(in) :: dataKind
The type of the column’s data. Must be one of Boolean, String, Integer8, Integerl6,
Interger32, Real32, Real64.

e character(len=%*), intent(in), optional :: units
The units of the column’s data. This is a passive description of the units and has no
effect on the column’s data.

e character(len=*), intent(in), optional :: comment
A short textual description to be attached to the column.
e integer, dimension(:), optional :: dimensions
The dimensions of the column’s data.
e integer, intent(in), optional :: position
This is the ordinal position which the column is to occupy in the table. The first
column in a table has ordinal position zero.

RETURNS

e type(ColumnT)
The newly created column is returned as a handle.

DESCRIPTION
Create and add a column to the given table. It is not possible to change the data type,
position and dimensions of a column. The name, label and units of a column may be
changed. The column handle which is returned is opaque, in that, its contents are hidden
from the user, and is an abstract representation of the column.

ERRORS

columnAlreadyExists invalidColumnPosition

EXAMPLES

! ESA (C) 2000-2018
1

! This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 26

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.
program example_addcolumn

!
!
|
!
!
!
! SAS is distributed in the hope that it will be useful,
|
!
!
!
!
!

use dal
implicit none
type(DataSetT) set

type(TableT) tab
type (ColumnT) col

logical (kind=bool), dimension(:), pointer :: Db
integer(kind=int8), dimension(:), pointer :: i8
integer(kind=int16), dimension(:), pointer :: il16
integer (kind=int32), dimension(:), pointer :: 132
real (kind=single), dimension(:), pointer :: r32
real (kind=double), dimension(:), pointer :: r64

character(len=1024) :: s
integer i

set = dataSet("test.dat",CREATE)
tab = addTable(set,"some table",100)
col = addColumn(tab,"bool",BOOLEAN)

b => boolData(col)
do i=0,number0fRows (tab)-1

b(i) = (modulo (i,2) .eq. 0)
end do

col = addColumn(tab,"int8",INTEGER8,units="cm",comment="int8 column")
i8 => int8Data(col)
write(*,*) shape(i8)
do i=0,number0fRows(tab)-1
i8(i) =i
end do

col = addColumn(tab,"int16",INTEGER16,units="dm",comment="int16 column")
i16 => inti6Data(col)
do i=0,numberOfRows(tab)-1
i16(i) = 2*i
end do

col = addColumn(tab,"int32",INTEGER32,units="m",comment="in32 column")

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

i32 => int32Data(col)

do i=0,numberOfRows(tab)-1
i32(i) = 3*i

end do

col = addColumn(tab,"real32",REAL32,units="Dm",comment="real32 column")

r32 => real32Data(col)

do i=0,number0fRows(tab)-1
r32(i) = 0.5%i

end do

col = addColumn(tab,"real64" ,REAL64,units="hm",comment="real64 column")

r64 => real64Data(col)

do i=0,numberOfRows(tab)-1
r64(i) = 0.25%i

end do

col = addColumn(tab,"string",STRING, comment="string column",dimensions=(/80/))

do i=0,numberOfRows(tab)-1
write(s,*) "string",i
call setStringCell(col,i,s)
end do

call release(set)
end program example_addcolumn

SEE ALSO
columns deleteColumn rename relabel

BUGS AND LIMITATIONS

None known.

NAME

addComment

PURPOSE
Add a comment string to an attributable object.

INTERFACE
subroutine addCommentToArray(array, comment)
subroutine addCommentToAttributable(attributable, comment)
subroutine addCommentToBlock(block, comment,)
subroutine addCommentToDataSet(dataSet, comment)
subroutine addCommentToTable(table, comment)

ARGUMENTS

e type(ArrayT), intent(in) :: array
o type(AttributableT), intent(in) :: attributable

o type(BlockT), intent(in) :: block

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 28

e character(len=%*), intent(in) :: comment
o type(DataSetT), intent(in) :: dataSet

e type(TableT), intent(in) :: table

RETURNS
None

DESCRIPTION

ERRORS
None

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.
program example_addcomment

I
!
I
I
I
!
!
! (at your option) any later version.
I
I
!
!
I
I
I
I

use dal
implicit none

type(DataSetT) set
type(TableT) tab

set = dataSet("test.dat",CREATE)

call addComment (set,"this comment is a dataset comment")
call addComment(set,"and so is this one.")

tab = addTable(set,"some table",100)

call addComment (tab,"this comment is a table comment")

call addComment(tab,"and so is this one.")

call addComment (block(set,0,MODIFY),"Another table comment")
call release(set)

end program example_addcomment

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 29

SEE ALSO

addHistory

BUGS AND LIMITATIONS
Whilst columns are attributable, column comments are not supported when using fits files.
This is a result of an underlying limitation of the fits file standard.

NAME
addHistory

PURPOSE
Add a history string to an attributable object.

INTERFACE
subroutine addHistoryToArray(array, history)
subroutine addHistoryToAttributable(attributable, history)
subroutine addHistoryToBlock(block, history)
subroutine addHistoryToDataSet(dataSet, history)
subroutine addHistoryToTable(table, history)

ARGUMENTS

o type(ArrayT), intent(in) :: array

type(AttributableTDataSetT), intent(in) :: attributable

type(BlockT), intent(in) :: block

type(DataSetT), intent(in) :: dataSet

character(len="*), intent(in) :: history

type(TableT), intent(in) :: table
RETURNS

None
DESCRIPTION

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).
it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

!
!
!
!
! SAS is free software: you can redistribute it and/or modify
!
!
! (at your option) any later version.

!

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 30

! SAS is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
]
]
]

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.
program example_addhistory

use dal
implicit none

type (DataSetT) set
type(TableT) tab

set = dataSet("test.dat",CREATE)
call addHistory(set,"this history is a dataset history")
call addHistory(set,"and so is this one.")

tab = addTable(set,"some table",100)
call addHistory(tab,"this history is a table history")
call addHistory(tab,"and so is this one.")

call addHistory(block(set,0,MODIFY),"Another table history")
call release(set)

end program example_addhistory

SEE ALSO
addComment

BUGS AND LIMITATIONS
Whilst columns are attributable, column history is not supported. This is a result of an
underlying limitation of the fits file standard.

NAME
addTable(dataSet, name, numberOfRows, comment, position)

PURPOSE
Adds a table to a dataset.

ARGUMENTS
o type(DataSetT), intent(in) :: dataSet
A handle to a dataset to which a table is to be added.

o character(len="*), intent(in) :: name
The name of the table. There must not be a block with this name already in the
dataset.

o integer, intent(in) :: numberOfRows
The number of rows of the table.

e character(len="*), intent(in), optional :: comment
A short textual description of the table.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 31

e integer, intent(in), optional :: position
The ordinal position of the table within the dataset. The first block within a dataset
has ordinal position zero.

RETURNS
None

o type(TableT)
The newly created table is returned as a handle.

DESCRIPTION
The table name must be unique. If no position is specified, the table is placed at the end
of the dataset. The number of rows is defined on the table, rather than on the columns, as
this ensures that all columns have the same number of rows. The handle returned to the
newly created table is opaque, in that the contents are hidden. In the event that the ordinal
position is not at the end, subsequent blocks are moved as necessary.

ERRORS
tableAlreadyExists badTablePosition

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

! This example shows how the addtable()

! function is used.

program example_addtable

use dal
implicit none

type (DataSetT) set
type(TableT) tab
type (BlockT) blk
integer i

set = dataSet("test.dat",CREATE)
tab = addTable(set,"tablel",10)

tab = addTable(set,"table2",100)
tab = addTable(set,"table3",1000)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

32

do i=0,number0fBlocks(set) - 1
blk = block(set, i, MODIFY)

write(*,*) name(blk)

call addComment(blk, "A table comment")

end do
call release(set)

end program example_addtable

SEE ALSO

deleteBlock

BUGS AND LIMITATIONS

None known.

NAME
array
PURPOSE
Get an array from a dataset.
INTERFACE
function arrayWithNumber(dataSet, blockNumber, mode)
function arrayWithName(dataSet, blockName, mode)
ARGUMENTS
character(len=%*), intent(in) :: blockName
The name of the array to get.
integer, intent(in) :: blockNumber
The ordinal position of the array to get.
type(DataSetT), intent(in) :: dataSet
A handle to the dataset from which the array will be retrieved.
integer, intent(in) :: mode
The access mode which the retrieved array should have. It must be one of the enumer-
ation values: READ, WRITE or MODIFY
RETURNS
type(ArrayT)
A handle, to the retrieved array, is returned. All subsequent operations on this handle
will operate on the actuall array stored within the dataset.
DESCRIPTION
Retrieve a particular array from a given dataset. The array may be specified either by name
or by number (ordinal position within the dataset).
ERRORS
arrayNotFound
EXAMPLES

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 33

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

]
!
]
!
!
!
!
]
!
! SAS is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.

!

!

]

!

]

]

!

!

]

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example, a dataset is created containing

a 3-dimensional array. The array is filled with unique

numbers, before the dataset is released (closed).

The dataset is then reopened (with READ access),
and the array’s data is displayed.

program example_array

use dal
use errorhandling

implicit none

type (DataSetT) set
type (ArrayT) arr

integer (kind=int32), dimension(:,:,:), pointer :: a
integer (kind=int32), dimension(:), pointer :: ad
integer, dimension(3), parameter :: s = (/ 3,4,2 /)
integer :: i,j,k,n

I create a set
set = dataSet("test.dat",CREATE)
arr = addArray(set, "some array", INTEGER32, dimensions=s)

I £i11 with unique numbers
a => int32Array3Data(arr)

n=20
do k=0,1
do j=0,3
do i=0,2
a(i,j,k) =n
n=n+1
end do
end do
end do

call release(arr)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 34

call release(set)

| create a set

set = dataSet("test.dat",READ)

arr = array(set, "some array", READ)
ad => int32Data(arr)

do n = 0, numberOfElements(arr) - 1
write(*,*) ad(n)
end do

call release(set)

end program example_array

SEE ALSO
addArray block blockType hasBlock

BUGS AND LIMITATIONS

None known.

NAME
ARRAY BLOCK

PURPOSE
Used to indicate a block of type array.

DESCRIPTION
A block is either an array or a table. The function blockType may be used to determine the
type of a given block. In the event that a block is an array the call blockType(someBlock
) will return the value ARRAY _BLOCK.

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

1
]
!
]
!
!
!
]
!
! SAS is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.

!

]

!

!

]

!

]

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.
In this example add dataset is created containing

2 arrays and 2 tables.

A simple loop then iterates over the dataset’s

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

35

! blocks printing appropriate messages.

! The first two blocks will have ARRAY_BLOCK block type.
! The second two blocks will have TABLE_BLOCK block type.
program example_blocktype

use dal
use errorhandling

implicit none

type(DataSetT) set

type (ArrayT) arr

type(TableT) tab

type (BlockT) blk

integer, dimension(3), parameter :: s = (/ 3,4,2 /)
integer :: i

! create a set

set = dataSet("test.dat",CREATE)

arr = addArray(set, "block0", INTEGER32, dimensions=s)
arr = addArray(set, "blockl", INTEGER32, dimensions=s)
tab = addTable(set, "block2", 5)

tab = addTable(set, "block3", 5)

do i = 0, numberOfBlocks(set) - 1
blk = block(set, i, READ)

if (blockType(block(set, i, READ)) .eq. ARRAY_BLOCK) then

write(*,*) "The block with name ", name(blk), " is an array."

arr = array(set, i, READ)

write(*,*) "It has ", numberOfDimensions(arr), " dimensions."
end if

if(blockType(block(set, i, READ)) .eq. TABLE_BLOCK) then

write(*,*) "The block with name ", name(blk), " is a table."
tab = table(set, i)
write(*,*) "It has ", numberOfRows(tab), " rows."
end if
end do

call release(arr)
call release(set)

end program example_blocktype

SEE ALSO
addArray block blockType hasBlock

BUGS AND LIMITATIONS

NAME
ArrayT

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 36

PURPOSE
A derived type which is used to declare array handles.

DESCRIPTION
The Array type is derived from the Attributable type, which means that an array is at-
tributable, and hence may contain attributes. An object of type ArrayT may be converted
to an object of type AttributableT, BlockT or LabelledT.

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

two 3-dimensional arrays.

It illustrates the use of the derived types DataSetT and ArrayT.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The first array is filled with unique data before the
dataset is released (closed).
program example_addarray

use dal
use errorhandling

implicit none

type (DataSetT) set
type(ArrayT) arrl, arr2

integer (kind=int32), dimension(:,:,:), pointer :: al, a2
integer, dimension(3), parameter :: s = (/ 3,4,2 /)
integer :: i,j,k,n

I create a set
set = dataSet("test.dat",CREATE)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

arrl
arr2

fill with unique numbers

al => int32Array3Data(arrl)
a2 => int32Array3Data(arrl)

n=20
do k=0,1
do j=0,3
do i=0,2
al(i,j,k) =n
a2(i,j,k) = al(i,j,k) + 1
n=n+1
end do
end do
end do

call release(arrl)
call release(arr2)
call release(set)

end program example_addarray

SEE ALSO

addArray array attributable AttributeT attribute AttributableT

BUGS AND LIMITATIONS

None known.

NAME

attributable

PURPOSE

Convert a handle to an Attributable handle (AttributeT).

INTERFACE

function arrayAttributable(array)
function blockAttributable(block)
function columnAttributable(column)
function datasetAttributable(dataset)
function tableAttributable(table)

ARGUMENTS

type(ArrayT), intent(in) :: array

Convert an array to base type AttributableT
type(BlockT), intent(in) :: block

Convert a block to base type AttributableT
type(ColumnT), intent(in) :: column
Convert a column to base type AttributableT
type(DataSetT), intent(in) :: dataset
Convert a dataset to base type AttributableT
type(TableT), intent(in) :: table

Convert a table to base type AttributableT

xmmsas_20230412_1735-21.0.0

addArray(set, "arrayl", INTEGER32, dimensions=s)
addArray(set, "array2", arrayDataType(arrl), dimensions=s)

XMM-Newton Science Analysis System Page: 38

RETURNS

o type(AttributableT)
A handle to the Attributable base object.

DESCRIPTION
Convert a handle of a derived type of base type Attributable, to AttributableT. This function
allows the programmer to create generic routines, based on the Attributable type, which is
the base class for ArrayT, BlockT, ColumnT, DataSetT, and TableT.

ERRORS
None

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

]
]
]
]
]
]
]
]
]
! SAS is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.

]

]

]

]

]

]

]

]

]

]

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example, a dataset is created with one table and one

array.

Two attributes are added to each of the dataset, table and array.

The generic subroutine displayAttributes, which operates on the
AttributableT base type, displays the attributes contained in
each of the dataset, table and array.

subroutine displayAttributes(thisAttributable)
use dal

implicit none
type (AttributableT) thisAttributable
type (AttributeT) att
integer i
do i = 0, numberOfAttributes(thisAttributable) - 1
att = attribute(thisAttributable, i)
write(*,*) name(att), stringAttribute(att), units(att), label(att)
end do

end subroutine displayAttributes

program example_attributable

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 39

use dal
implicit none

type (DataSetT) set

type(TableT) tab

type (ArrayT) arr

integer(kind=int32), dimension(:,:,:), pointer :: a
integer, dimension(3), parameter :: s = (/ 3,4,2 /)

set = dataSet("test.dat",CREATE)
call setAttribute(set,"sbooll",.false.,"dataset first bool comment")
call setAttribute(set,"sbool2", .true.,"dataset second comment")

tab = addTable(set,"table",10);
call setAttribute(set,"intl",1,"table first integer comment","kg")
call setAttribute(set,"int2",2,"table second integer comment",'"mm"

arr = addArray(set, "array", INTEGER32, dimensions=s)
call setAttribute(set,"reall",1.1,"array first real comment","kN")
call setAttribute(set,"real2",2.3,"array second real comment","rad")

call displayAttributes(attributable(set))
call displayAttributes(attributable(tab))
call displayAttributes(attributable(arr))

call release(set)

end program example_attributable

SEE ALSO
AttributableT

BUGS AND LIMITATIONS

None known.

NAME
AttributableT

PURPOSE
A derived type which is used to declare attributable handles.

DESCRIPTION
The derived type AttributableT is a base type for ArrayT, BlockT, ColumnT, DataSetT
and TableT.

ERRORS

EXAMPLES
See attributable.

SEE ALSO
attributable ArrayT BlockT ColumnT DataSetT TableT

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 40

BUGS AND LIMITATIONS
None known.

NAME
attribute

PURPOSE
Get an attribute from an attributable object.

INTERFACE
function arrayAttributeWithName(array, name)
function arrayAttributeWithNumber(array, number)
function attributableAttributeWithName(attributable, name)
function attributableAttributeWithNumber(attributable, number)
function blockAttributeWithName(block, name)
function blockAttributeWithNumber(block, number)
function columnAttributeWithName(column, name)
function columnAttributeWithNumber(column, number)
function dataSetAttributeWithName(dataSet, name)
function dataSetAttributeWithNumber(dataSet, number)
function tableAttributeWithName(table, name)
function tableAttributeWithNumber(table, number)

ARGUMENTS
o type(ArrayT), intent(in) :: array
A handle of an array object from which to get the attribute.

o type(AttributableT), intent(in) :: attributable
A handle of an attributable object from which to get the attribute.

e type(BlockT), intent(in) :: block
A handle of a block object from which to get the attribute.
o type(ColumnT), intent(in) :: column
A handle of a column object from which to get the attribute.

o type(DataSetT), intent(in) :: dataSet
A handle of an attribute object from which to get the attribute.

e character(len=%*), intent(in) :: name
The name of the attribute to get.

e integer, intent(in) :: number
The ordinal number of the attribute to get.

e type(TableT), intent(in) :: table
A handle of a table object from which to get the attribute.

RETURNS

o type(AttributeT)
The attribute handle of the retrieved attribute.

DESCRIPTION
Get an attribute, either by name or by number (ordinal position within the attributable
object) from an attributable object.

ERRORS
attributeNotFound invalidAttributeNumber

EXAMPLES

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

41

SEE ALSO

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.
In this example a dataset with a table is ! created.
Two attributes are added to each of the dataset ! and table.
The attribute names of the dataset are displayed using
access-by-number, and the table attribute names are displayed
using access-by-name.

program example_attribute

use dal
implicit none

type(DataSetT) set
type(TableT) tab
type(ArrayT) arr

set = dataSet("test.dat",CREATE)
call setAttribute(set,"sbooll",.false.,"dataset bool comment")
call setAttribute(set,"sbool2", .true.,"dataset bool comment")

tab = addTable(set,"table",10);
call setAttribute(tab,"sbooll", .false.,"table bool comment")
call setAttribute(tab,"sbool2", .true.,"table bool comment")

write(*,*) name(attribute(set, 0))
write(*,*) name(attribute(set, 1))
write(*,*) name(attribute(tab, "sbooll"))
write(*,*) name(attribute(tab, "sbool2"))

call release(set)

end program example_attribute

AttributableT AttributeT

BUGS AND LIMITATIONS

None known.

AttributeT

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 42

PURPOSE
A derived type used to declare Attribute handles.

DESCRIPTION

An attribute has a name, value, comment and units. The value of an attribute is not strongly
typed; type conversions are carried out when the attributes’s value is accessed. Objects of
type AttributeT are not attributes but attribute-handles. An attribute handle provides an
abstract access layer to the internal structure of an attribute. An attribute belongs (is
owned by) to an attributable (or any of its derived types) object. The parent (owner) of
an attribute is an attributable object. An attribute is created with a call to addAttribute,
which creates and adds a new attribute to an attributable object. An attribute is retrieved
from an attributable object with the attribute function.

ERRORS

EXAMPLES
See addAtribute.

SEE ALSO
addAttribute attribute parent AttributableT

BUGS AND LIMITATIONS

None known.

NAME
block
PURPOSE
Convert a handle, of derived type of base type Block, to BlockT
INTERFACE
function arrayBlock(array)
function tableBlock(table)
ARGUMENTS
o type(ArrayT), intent(in) :: array
Handle of array which is to be converted into a handle of BlockT.
o type(TableT), intent(in) :: table
Handle of table which is to be converted into a handle of BlockT.
RETURNS
o type(BlockT)
A Block handle is returned.
DESCRIPTION
ERRORS
EXAMPLES

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

43

su

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.
In this example, a dataset is created with one table and one
array.
The generic subroutine displayBlock, which operates on the
BlockT base type. The blockType() function operates on objects
of type BlockT.
The example also sjows blocks being retrieved from the dataset
both by name and by number.
broutine displayBlock(thisBlock)
use dal

implicit none

type (BlockT) thisBlock

write(*,*) "The block with name ", name(thisBlock)

if (blockType(thisBlock) .eq. ARRAY_BLOCK) then
write(*,*) " is an array."

end if

if (blockType(thisBlock) .eq. TABLE_BLOCK) then

write(*,*) " is a table."
end if

end subroutine displayBlock

subroutine displayBlocks(thisSet)

use dal
implicit none

type (DataSetT) thisSet
integer i

do i = 0, numberOfBlocks(thisSet) - 1
call displayBlock(block(thisSet, i, READ))
end do

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 44

end subroutine displayBlocks
program example_block

use dal

implicit none

type (DataSetT) set

type(TableT) tab
type (ArrayT) arr

integer, dimension(3), parameter :: s = (/ 3,4,2 /)
set = dataSet("test.dat",CREATE)

tab = addTable(set,"table",10);

arr = addArray(set, "array", INTEGER32, dimensions=s)

call displayBlock(block(tab))

call displayBlock(block(arr))

call displayBlock(block(set, "table", READ))
call displayBlock(block(set, "array", READ))
call displayBlocks(set)

call release(set)

end program example_block

SEE ALSO

BlockT
BUGS AND LIMITATIONS

None known.

NAME
block

PURPOSE
Get a block from a dataset.

INTERFACE
function blockWithNumber(dataSet, blockNumber, mode)
function blockWithName(dataSet, blockName, mode)

ARGUMENTS

e character(len=%*), intent(in) :: blockName
Name of block which is to be retrieved from a dataset.
e integer, intent(in) :: blockNumber
Number of block which is to be retrieved from a dataset.
o type(DataSetT), intent(in) :: dataSet
Handle of a dataset from which a block is to be retrieved.
e integer, intent(in) :: mode
The access mode which the retrieved block should have. It must be one of the enumer-
ation values: READ, WRITE or MODIFY.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 45

RETURNS

o type(BlockT)
The Block handle is returned.

DESCRIPTION
The block may be retrieved either by name or by number (i.e. ordinal position) from the
dataset.

ERRORS
blockNotFound

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

]
]
]
]
]
]
]
]
]
! SAS is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.

]

]

]

]

]

]

]

]

]

]

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.
In this example, a dataset is created with one table and one
array.
The generic subroutine displayBlock, which operates on the
BlockT base type. The blockType() function operates on objects
of type BlockT.
The example also sjows blocks being retrieved from the dataset
! both by name and by number.
subroutine displayBlock(thisBlock)
use dal

implicit none

type (BlockT) thisBlock

write(*,*) "The block with name ", name(thisBlock)

if (blockType(thisBlock) .eq. ARRAY_BLOCK) then
write(x,*) " is an array."

end if

if (blockType(thisBlock) .eq. TABLE_BLOCK) then
write(*,*) " is a table."

end if

end subroutine displayBlock

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

46

subroutine displayBlocks(thisSet)
use dal

implicit none

type(DataSetT) thisSet
integer i

do i

= 0, number0fBlocks/(

thisSet) - 1

call displayBlock(block(thisSet, i, READ))
end do

end subroutine displayBlocks

program example_block

use dal

implicit none

type (DataSetT) set
type(TableT) tab
type (ArrayT) arr
integer, dimension(3), parameter :: s = (/ 3,4,2 /)

set
tab
arr

call
call
call
call
call

call

dataSet ("test.dat",CREATE)
addTable(set,"table",10);
addArray(set, "array", INTEGER32, dimensions=s)

displayBlock(block(
displayBlock(block(
displayBlock(block(
displayBlock(block(
displayBlocks(set)

release(set)

end program example_block

SEE ALSO

BlockT

BUGS AND LIMITATIONS

None known.

NAME

tab))
arr))
set, "table", READ))
set, "array", READ))

blockNumber(dataSet, blockName)

PURPOSE

Get the number (ordinal position) of a block.

ARGUMENTS

o type(DataSetT), intent(in) :: dataSet
Handle of a dataset which contains the desired block.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 47

o character(len=%*), intent(in) :: blockName
The name of the block for which the number is required.

RETURNS

e integer
The ordinal number (position of the block within the dataset).

DESCRIPTION
A dataset contains zero or more blocks. Each block has an ordinal number (or position)
within its parent dataset. This function returns the ordinal position of a block.

ERRORS
blockNotFound

EXAMPLES

! ESA (C) 2000-2018
! This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

! This example creates a dataset with one

! table and one array.

The table will have block number O,

and the array will have block number 1

subroutlne displayBlockNumber (thisBlock)

use dal

implicit none
type (BlockT) thisBlock

write(*,*) "The block with name ", name(thisBlock), "has number "
write(*,*) blockNumber(parent(thisBlock), name(thisBlock))

end subroutine displayBlockNumber

program example_blocknumber
use dal

implicit none

type(DataSetT) set

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 48

type(TableT) tab
type(ArrayT) arr

integer, dimension(3), parameter :: s = (/ 3,4,2 /)
set = dataSet("test.dat",CREATE)

tab = addTable(set,"table",10);

arr = addArray(set, "array", INTEGER32, dimensions=s)

call displayBlockNumber(block(tab))
call displayBlockNumber(block(arr))

call release(set)

end program example_blockNumber

SEE ALSO
BlockT DataSetT

BUGS AND LIMITATIONS

None known.

NAME
BlockT

PURPOSE
A derived type used to declare block handle objects.

DESCRIPTION
This type allows generic routines to be writeen, which do not need to worry whether a
particular block is an array or a table. The Block type is derived from the Attributable
type, which means that a block is attributable, and may thus contain attributes.

EXAMPLES
See block, blockNumber

SEE ALSO
addAttribute attributable AttributableT attribute AttributeT DataSetT

BUGS AND LIMITATIONS

None known.

NAME
blockType
PURPOSE
Get the type of a block.
INTERFACE
function blockType(block)
function blockTypeOfBlockWithName(dataSet, blockName)
function blockTypeOfBlockWithNumber(dataSet, blockNumber)
ARGUMENTS

o type(BlockT), intent(in) :: block
A handle to the block.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 49

o character(len=%*), intent(in) :: blockName
The name of the block.

e integer, intent(in) :: blockNumber
The number of the block.

o type(DataSetT), intent(in) :: dataSet
A handle to the dataset containing the desired block.

RETURNS

e integer
Returns ARRAY_BLOCK if the block is an array and returns TABLE_BLOCK if the
block is a table.

DESCRIPTION
Determines the type of the given block.

ERRORS
blockNotFound

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

]
]
!
!
!
]
]
]
!
! SAS is distributed in the hope that it will be useful,
]
]
]
!
! You should have received a copy of the GNU General Public License
! along with SAS. If not, see <http://www.gnu.org/licenses/>.

! In this example add dataset is created containing

! 2 arrays and 2 tables.

]

! A simple loop then iterates over the dataset’s

! blocks printing appropriate messages.

! The first two blocks will have ARRAY_BLOCK block type.

! The second two blocks will have TABLE_BLOCK block type.

program example_blocktype

use dal
use errorhandling

implicit none
type (DataSetT) set
type (ArrayT) arr

type(TableT) tab
type (BlockT) blk

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

50

integer, dimension(3), parameter :: s = (/ 3,4,2 /)
integer :: i

| create a set

set = dataSet("test.dat",CREATE)

arr = addArray(set, "block0", INTEGER32, dimensions=s)
arr = addArray(set, "blockl", INTEGER32, dimensions=s)
tab = addTable(set, "block2", 5)

tab = addTable(set, "block3", 5)

do i = 0, numberOfBlocks(set) - 1
blk = block(set, i, READ)

if (blockType(block(set, i, READ)) .eq. ARRAY_BLOCK) then

write(*,*) "The block with name ", name(blk), " is an array."

arr = array(set, i, READ)

write(*,*) "It has ", numberOfDimensions(arr), " dimensions."
end if

if (blockType(block(set, i, READ)) .eq. TABLE_BLOCK) then

write(*,*) "The block with name ", name(blk), " is a table."
tab = table(set, i)
write(*,*) "It has ", numberOfRows(tab), " rows."
end if
end do

call release(arr)
call release(set)

end program example_blocktype

SEE ALSO
addBlock block BlockT

BUGS AND LIMITATIONS

None known.

NAME
BOOL

PURPOSE
Native fortran enumeration which is used to indicate boolean data.

DESCRIPTION
ERRORS
EXAMPLES

N/A
SEE ALSO

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 51

BUGS AND LIMITATIONS

None known.

NAME
BOOLEAN

PURPOSE
Enumeration value which is used to indicate DAL boolean data.

DESCRIPTION
This value should not be confused with the Native fortran value BOOL. Boolean data values
are 4-byte logicals.

EXAMPLES
N/A

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
booleanAttribute

PURPOSE
Get the value of an attribute as a boolean.

INTERFACE
function booleanArrayAttribute(array, name)
function booleanAttributableAttribute(attributable, name)
function booleanAttribute(attribute)
function booleanBlockAttribute(block, name)
function booleanColumnAttribute(column, name)
function booleanDataSet Attribute(dataSet, name)
function booleanTableAttribute(table, name)

ARGUMENTS

o type(ArrayT), intent(in) :: array

o type(AttributableT), intent(in) :: attributable
o type(AttributeT), intent(in) :: attribute

o type(BlockT), intent(in) :: block

e type(ColumnT), intent(in) :: column

o type(DataSetT), intent(in) :: dataSet

e character(len=%*), intent(in) :: name

o type(TableT), intent(in) :: table

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 52

RETURNS

e logical

DESCRIPTION
Gets the value of an attribute as a boolean from the specified object. In the event that the
data conversion is not possible an error is raised.

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

]
]
]
]
]
]
]
]
!
! SAS is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.

]

]

]

]

]

]

]

]

]

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how boolean attributes are used.

The program creates a dataset containing two boolean attributes,

together with a table containing two boolean attributes.

The attributes are then accessed, by name, with

the booleanAttribute() function.

Also, it is shown how to access the attributes by position.

program example_booleanattribute

use dal
use errorhandling
implicit none

type (DataSetT) set
type(TableT) tab
type (AttributeT) att
integer i

set = dataSet("test.dat",CREATE)
call setAttribute(set,"sbooll",.false.,"dataset bool comment")
call setAttribute(set,"sbool2", .true.,"dataset bool comment")

tab = addTable(set,"table",10);

call setAttribute(tab,"sbooll",.false.,"dataset bool comment")
call setAttribute(tab,"sbool2", .true.,"dataset bool comment")

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 53

write(*,*) booleanAttribute(set, "sbooll") ! output ’F’
write(*,*) booleanAttribute(set, "sbool2") ! output ’T’
write(*,*) booleanAttribute(tab, "sbooll") ! output ’F’
write(*,*) booleanAttribute(tab, "sbool2") ! output ’T’

do i = 0, numberOfAttributes(set) - 1
att attribute(set, i)
write(*,*) booleanAttribute(att) ! output the sequence ’F’,’T’
end do

call release(set)

end program example_booleanattribute

SEE ALSO
AttributeT

BUGS AND LIMITATIONS

NAME
boolArray2Data

PURPOSE
Get the boolean data from an array or column cell containing 2-dimensional array data.

INTERFACE
function boolArrayArray2Data(array)
function boolColumnArray2DataElement(column, row)

ARGUMENTS

type(ArrayT), intent(in) :: array

type(ColumnT), intent(in) :: column

integer, intent(in) :: row

RETURNS

logical(kind=bool), dimension(:,:), pointer
DESCRIPTION
ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).
it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

!
!
!
!
! SAS is free software: you can redistribute it and/or modify
!
!
! (at your option) any later version.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 54

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two 2-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_cellarray2data

use dal
use errorhandling

implicit none

type (DataSetT) set

type(TableT) tab

type(ColumnT) coll, col2

logical(kind=BOOL), dimension(:,:), pointer :: cl, c2
integer, dimension(2), parameter :: s = (/ 3,4 /)
integer :: i,j,k,n

! create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columni", BOOLEAN, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers

n=20

do k=0,numberOfRows(tab) - 1
cl => boolArray2Data(coll, k)
c2 => boolArray2Data(col2,k)

do j=0,3
do i=0,2
c1(i,j) = .false.
c2(i,j) = c1(i,j)
n=n+1
end do
end do
end do

call release(coll)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 55

call release(col2)
call release(set)

end program example_cellarray2data

SEE ALSO

BUGS AND LIMITATIONS
boolArrayArray2Data is not implemented.

NAME
boolArray2Data
PURPOSE
Get the boolean data from a column containing 2-dimensional array data.
INTERFACE
function boolColumnArray2Data(column)
ARGUMENTS
o type(ColumnT), intent(in) :: column
RETURNS
e logical(kind=bool), dimension(:,:,:), pointer
DESCRIPTION
ERRORS
EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

!
]
!
]
!
!
]
!
!
! SAS is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.

!

]

!

!

!

!

]

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.
In this example add dataset is created (opened) containing

a table with 2 columns of two 2-dimensional arrays.

The second array has the same data type as the first; this

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 56

is ensured by using the arrayDataType() function to determine

the data type of the first array.

The columns are then initialised before the

dataset is released (closed).

program example_array2data

use dal
use errorhandling

implicit none
type(DataSetT) set

type(TableT) tab
type(ColumnT) coll, col2

logical (kind=BOOL), dimension(:,:,
integer, dimension(2), parameter ::

integer :: i,j,k,n

! create a set

set = dataSet("test.dat",CREATE)
tab = addTable(set, "table", 100,
coll
col2

! £i11 with unique numbers
cl => boolArray2Data(coll)
c2 => boolArray2Data(coll)

n=20
do k=0,numberOfRows(tab) - 1
do j=0,3
do i=0,2
c1(i,j,k) = .false.

c2(i,j,k) = c1(i,j,k)
n=n+1
end do
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_array2data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME

boolArray3Data

xmmsas_20230412_1735-21.0.0

1), pointer :: cl, c2

s =(3,4/)

"table comment")

addColumn(tab, "columni", BOOLEAN, "km", s, "column comment")
addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

XMM-Newton Science Analysis System Page: 57

PURPOSE
Get the boolean data from an array or column cell containing 3-dimensional array data.

INTERFACE
function boolArrayArray3Data(array)
function boolColumnArray3DataElement(column, row)

ARGUMENTS

e type(ArrayT), intent(in) :: array
e type(ColumnT), intent(in) :: column

e integer, intent(in) :: row

RETURNS
e logical(kind=bool), dimension(:,:,:), pointer
DESCRIPTION
ERRORS
EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two 3-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),

|
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! before the dataset is released (closed).

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 58

program example_cellarray3data

use dal
use errorhandling

implicit none
type(DataSetT) set

type(TableT) tab
type(ColumnT) coll, col2

logical(kind=BOOL), dimension(:,:,:), pointer :: cl, c2
integer, dimension(3), parameter :: s = (/ 3,4,5 /)
integer :: i,j,k,1,n

! create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll addColumn(tab, "columni", BOOLEAN, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers

n=20
do 1=0,numberOfRows(tab) - 1
cl => boolArray3Data(coll,l)
c2 => boolArray3Data(col2,1)
do k=0,4
do j=0,3
do i=0,2
c1(i,j,k) = .false.
c2(i,j,k) = c1(i,j,k)
n=n+1
end do
end do
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_cellarray3data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
boolArray3Data

PURPOSE
Get the boolean data from a column containing 3-dimensional array data.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 59

INTERFACE
function boolColumnArray3Data(column)

ARGUMENTS

o type(ColumnT), intent(in) :: column

RETURNS
e logical(kind=bool), dimension(:,:,:,:), pointer
DESCRIPTION
ERRORS
EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

!
]

]

]

]

!

]

]

!

! SAS is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
]

]

!

!

]

]

]

]

!

!

]

]

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two 3-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised before the
dataset is released (closed).

program example_array3data

use dal
use errorhandling

implicit none
type(DataSetT) set

type(TableT) tab
type(ColumnT) coll, col2

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page: 60

logical(kind=BOOL), dimension(:,:,:,:), pointer ::
integer, dimension(3), parameter ::

integer :: i,j,k,1,n

! create a set

set = dataSet("test.dat",CREATE)
tab = addTable(set, "table", 100,
coll
col2

! £i11 with unique numbers
cl => boolArray3Data(coll)
c2 => boolArray3Data(coll)

n=20
do 1=0,numberOfRows(tab) - 1
do k = 0,4

do j=0,3
do i=0,2
c1(i,j,k,1) = .false.
c2(i,j,k,1) = c1(i,j,k,1)
n=n+1
end do
end do
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_array3data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME

boolArray4Data

PURPOSE

s =(/3,4,5/)

"table comment")
addColumn(tab, "columnl", BOOLEAN, "km", s,
addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

cl, c2

"column comment")

Get the boolean data from a column cell containing 4-dimensional array data.

INTERFACE

function boolColumnArray4DataElement(column, row)

ARGUMENTS

RETURNS

e type(ColumnT), intent(in) :: column

e integer, intent(in) :: row

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 61

e logical(kind=bool), dimension(:,:,:,:), pointer
DESCRIPTION
ERRORS
EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two 4-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_cellarray4data

use dal
use errorhandling

implicit none
type(DataSetT) set

type(TableT) tab
type (ColumnT) coll, col2

logical (kind=BOOL), dimension(:,:,:,:), pointer :: cl, c2
integer, dimension(4), parameter :: s = (/ 3,4,5,6 /)
integer :: i,j,k,1l1,m,n

| create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columnl", BOOLEAN, "km", s, "column comment")

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 62

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")
I £i11 with unique numbers

n=20
do m=0,number0fRows(tab) - 1
cl => boolArray4Data(coll,m)
c2 => boolArray4Data(col2,m)
do 1=0,5
do k=0,4
do j=0,3
do i=0,2
c1(i,j,k,1) = .false.
c2(i,j,k,1) = c1(i,j,k,1)
n=n+1
end do
end do
end do
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_cellarray4data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
boolArray4Data
PURPOSE
Get the boolean data from a column containing 4-dimensional array data.
INTERFACE
function boolColumnArray4Data(column)
ARGUMENTS
o type(ColumnT), intent(in) :: column
RETURNS
e logical(kind=bool), dimension(:,:,:,:,:), pointer
DESCRIPTION
ERRORS

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 63

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

!

]

]

]

]

!

]

]

!

! SAS is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
]

!

!

!

]

]

]

!

!

]

]

]

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two 3-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised before the
dataset is released (closed).
program example_array3data

use dal
use errorhandling

implicit none
type (DataSetT) set

type(TableT) tab
type(ColumnT) coll, col2

logical(kind=BOOL), dimension(:,:,:,:), pointer :: cl, c2
integer, dimension(3), parameter :: s = (/ 3,4,5 /)
integer :: i,j,k,1,n

! create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columnl", BOOLEAN, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers
cl => boolArray3Data(coll)
c2 => boolArray3Data(coll)

n=20

do 1=0,numberOfRows(tab) - 1
do k = 0,4

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

64

do j=0,3
do i=0,2
c1(i,j,k,1) = .false.
c2(i,j,k,1) = c1(i,j,k,1)
n=n+1
end do
end do
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_array3data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
boolData
PURPOSE
Get the boolean data from an array, column or column cell.
INTERFACE
function boolArrayData(array)
function boolColumnData(column)
function boolColumnDataElement(column, row)
ARGUMENTS
o type(ArrayT), intent(in) :: array
A handle of the array which contains the data to be accessed.
e type(ColumnT), intent(in) :: column
A handle of the column which contains the data to be accessed.
e integer, intent(in) :: row
The number of the column cell which contains the data to be accessed.
RETURNS
e logical(kind=bool), dimension(:), pointer
The data is returned as a flat vector regardless of the dimensionality of the data.
DESCRIPTION
The data is returned in a vector regardles of the dimensionality of the data. In particular,
when accessing a scalar column cell, a vector of length 1 is returned, which contains the
single scalar value.
ERRORS
EXAMPLES

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 65

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

]
!

]

!

!

!

!

]

!

! SAS is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!

!

]

!

]

]

!

!

]

!

!

!

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two 4-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, and then the second column
is output by accessing the column’s data as a flat vector.
program example_booldata

use dal
use errorhandling

implicit none

type (DataSetT) set

type(TableT) tab

type (ColumnT) coll, col2

logical(kind=BOOL), dimension(:,:,:,:,:), pointer :: cl, c2
logical(kind=BOOL), dimension(:), pointer :: cd

integer, dimension(4), parameter :: s = (/ 3,4,5,6 /)
integer :: i,j,k,1,m,n

I create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 5, "table comment")

coll = addColumn(tab, "columnl", BOOLEAN, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

I £i11 with unique numbers
cl => boolArray4Data(coll)
c2 => boolArray4Data(col2)

n=20
do m=0,numberOfRows(tab) - 1
do 1=0,5
do k=0,4

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 66

do j=0,3
do i=0,2
c1(i,j,k,1,m) = .false.
c2(i,j,k,1,m) c1(i,j,k,1,m)
n=n+1
end do
end do
end do
end do
end do

call release(coll)
call release(col2)

! Output the col2
cd => boolData(col2) ! Access the column’s 4-dimensional data as a flat vector.

do n = O,numberOfElements(coll) * numberOfRows(tab) - 1
write(*,*) cd(n)

end do

call release(col2)
call release(set)

end program example_booldata

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
boolVectorData
PURPOSE
Get the data from an array or column cell containing vector array data.
INTERFACE
function boolArrayVectorData(array)
function boolColumnVectorDataElement(column, row)
ARGUMENTS
o type(ArrayT), intent(in) :: array
A handle of the array which contains the data to be accessed.
o type(ColumnT), intent(in) :: column
A handle of the column which contains the data to be accessed.
e integer(kind=INT32), intent(in) :: row
The number of the column cell which contains the data to be accessed.
RETURNS

e logical(kind=bool), dimension(:), pointer

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 67

DESCRIPTION

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two vector arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row

basis (i.e. accessing the column’s data cell-by-cell).
The data is output on a cell-by-cell basis and accessing
the cell as a flat vector.

program example_boolcellvectordata

use dal
use errorhandling

implicit none

type(DataSetT) set

type(TableT) tab

type(ColumnT) coll, col2

logical(kind=BOOL), dimension(:), pointer :: cl, c2
integer, dimension(1), parameter :: s = (/ 3 /)
integer :: i,m,n

! create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columnl", BOOLEAN, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

68

! £fill with unique numbers

n=20

do m=0,number0OfRows(tab) - 1
cl => boolVectorData(coll,m)
c2 => boolVectorData(col2,m)

do i=0,2
c1(i) = .false.
c2(i) = c1(i)
n=n+1

end do

! release(coll)
! release(col2)
end do

! OQutput col2
do m=0,numberOfRows(tab) - 1
c2 => boolVectorData(col2,m)
do n=0,numberOfElements(col2) - 1
write(*,*) c2(n)
end do
! release(col2)
end do

call release(set)

end program example_boolcellvectordata

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
boolVectorData
PURPOSE
Get the data from a column containing vector array data.
INTERFACE
function boolColumnVectorData(column)
ARGUMENTS
e type(ArrayT), intent(in) :: array
A handle of the array which contains the data to be accessed.
o type(ColumnT), intent(in) :: column
A handle of the column which contains the data to be accessed.
o integer(kind=INT32), intent(in) :: row
The number of the column cell which contains the data to be accessed.
RETURNS

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 69

e logical(kind=bool), dimension(:,:), pointer
DESCRIPTION
ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

]
!

]

!

!

]

!

]

!

! SAS is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!

!

!

]

!

]

]

!

]

!

!

!

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two vector arrays.

The second array has the same data type as the first; this
is ensured by using the columnDataType() function to determine
the data type of the first array.

The columns are then initialised before the
dataset is released (closed).
program example_columnvectordata

use dal
use errorhandling

implicit none

type(DataSetT) set

type(TableT) tab

type(ColumnT) coll, col2

logical (kind=BOOL), dimension(:,:), pointer :: cl, c2
integer, dimension(1l), parameter :: s = (/ 3 /)
integer :: i,j,k,1l,m,n

| create a set
set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")
coll = addColumn(tab, "columnil", BOOLEAN, "km", s, "column comment")
col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 70

! £fill with unique numbers
cl => boolVectorData(coll)
c2 => boolVectorData(col2)

n=20
do m=0,number0fRows(tab) - 1
do i=0,2
c1(i,m) = .false.
c2(i,m) = c1(i,m)
n=n+1
end do
end do

call release(coll)
call release(col2)

call release(set)

end program example_columnvectordata

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
clobber()

PURPOSE
Get the clobber setting.

ARGUMENTS

None
RETURNS

e logical
True, if the SAS Clobber setting is set, false otherwise.

DESCRIPTION
The SAS Clobber setting is determined by the setting of the SAS_CLOBBER environment
variable.

ERRORS
None.

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

]
]
!
!
!
! it under the terms of the GNU General Public License as published by

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

SAS is distributed in the hope that it will be useful,

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

]
]

!

]

! but WITHOUT ANY WARRANTY; without even the implied warranty of
]

! GNU General Public License for more details.

!

]

You should have received a copy of the GNU General Public License
! along with SAS. If not, see <http://www.gnu.org/licenses/>.

! This example shows how the clobber() function is
! used.
program example_clobber

use dal
implicit none

if (clobber()) then
write(*,*) "The SAS_CLOBBER environment variable is set"
else

write(*,*) "The SAS_CLOBBER environment variable is not set"

endif
end program example_clobber

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME

column

PURPOSE
Get a column from a table.

INTERFACE
column
e functon columnWithName(table, columnName, mode)

e function columnWithNumber(table, columnNumber, mode)

ARGUMENTS
o type(TableT), intent(in) :: table
The handle of a table from which to get the column.

e character(len=%*), intent(in) :: columnName
The name of the column in the table.

e integer, intent(in) :: columnNumber

The ordinal number of the column. It must be in the range 0 to n - 1, where n is the

number of columns in the table.

e integer, intent(in) :: mode The access mode which will be given to the retrieved column.

The options are: READ—WRITE—MODIFY

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 72

RETURNS

o type(ColumnT)
A handle of the retrieved column.

DESCRIPTION
In the event that the column was not found an error is raised. An error is usually raised
when the column name does not exist or the ordinal number is invalid. The handle (which
is essentailly a pointer to the internal column, but this detail is hidden by the API) which is
returned may be (in fact this is the only way to modify a column) used to perform various
operations on the column. A column is deleted from a table with deleteColumn.

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

!
!
!
]
!
!
!
!
]
! SAS is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.

]

!

!

!

]

!

!

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.
This examples show how the column() function is used.
The column by name is used to get a column and rename it.
The column by number is used to iterate over all
columns in the table to output the name, type and units.
program example_column

use dal
implicit none

type (DataSetT) set
type(TableT) tab
type (ColumnT) col
integer i

set = dataSet("test.dat",CREATE)

tab = addTable(set,"some table",100)

col = addColumn(tab,"coll",INTEGER32,units="ml1",comment="in32 column")
col = addColumn(tab,"col2",INTEGER32,units="m2",comment="in32 column")
col = addColumn(tab,"col3",INTEGER32,units="m3",comment="in32 column")

col = column(tab, "col2", MODIFY)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 73

call rename(col, "cold")

do i =0, numberOfColumns(tab) - 1

col = column(tab, i, READ)

write(*,*) name(col), columnDataType(col), units(col)
end do

call release(set)

end program example_column

SEE ALSO
addColumn ColumnT

BUGS AND LIMITATIONS

None known.

NAME
columnNumber(table, columnName)
PURPOSE
Get the number (ordinal position) of a column.
ARGUMENTS
o type(TableT), intent(in) :: table
The table containing the column for which the number is required.
e character(len=%*), intent(in) :: columnName
The name of the column.
RETURNS
e integer
The value returned will be in the range 0 to n - 1, where n is the number of columns
in the table.
DESCRIPTION
The first column in a table has number zero. In the event that a column with the specified
name is not found in the given table, an error will be raised. A column’s number will change
when additional columns are added, or when columns are deleted to earlier positions.
ERRORS
columnNotFound
EXAMPLES

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).
SAS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

I
I
I
I
I
I
!
! (at your option) any later version.
I

I

SAS is distributed in the hope that it will be useful,

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 74

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This examples shows how the columnNumber() function

is used.

program example_columnnumber

use dal
implicit none

type (DataSetT) set
type(TableT) tab
type (ColumnT) col
integer i

set = dataSet("test.dat",CREATE)
tab = addTable(set,"some table",100)

col = addColumn(tab,"int16",INTEGER16,units="dm",comment="int16 column")
col = addColumn(tab,"int32",INTEGER32,units="m",comment="in32 column")
col = addColumn(tab,"real32",REAL32,units="Dm",comment="real32 column")

col = addColumn(tab,"real64",REAL64,units="hm",comment="real64 column", &
position=columnNumber(tab, "int32"))

do i = 0, numberOfColumns(tab) - 1
col = column(tab, i, READ)
write(*,*) name(col)

end do

call release(set)

end program example_columnnumber

SEE ALSO
addColumn

BUGS AND LIMITATIONS

None known.

NAME
ColumnT

PURPOSE
A derived type which is used to declare column handles.

DESCRIPTION
A derived type which is used to declare column handles. A column always belongs to a
table. A columns is created with the addColumn() function, which requires a table as an
argument. This table becomes the owning parent of the column. The Column type is
derived from the Attributable type, which means that a column is attributable, and may
thus contain attributes.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 75

ERRORS

EXAMPLES

SEE ALSO

BUGS AND

NAME

PURPOSE

See addColumn

addColumn attributable AttributableT attribute AttributeT column

LIMITATIONS

None known.

copyBlock(set, block, newName)

Copy a block.

ARGUMENTS

o type(DataSetT), intent(in) :: set

The handle of a dataset to which the block should be copied.
o type(BlockT), intent(in) :: block

The handle of a block which is to be copied to the dataset.

e character(len="*), intent(in), optional :: newName
An optional name of the newly copied block.

RETURNS None

DESCRIPTION

ERRORS

EXAMPLES

Copy a block to a dataset. The source block may reside in a differnt dataset from set. A
duplicate of the source block is created, either with the same name as the source block or
with a new name speicfied with newName. If newName is not specified, the newly created
block will have the same name as the source block. It will be necessary to specify the name
of the new block when block resides in the dataset set. In the event that a block cannot be
copied (e.g. non-unique name) an error will be raised.

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

!
!

!

!

! SAS is free software: you can redistribute it and/or modify

! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or

! (at your option) any later version.
!

!

!

!

!

!

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 76

SEE ALSO

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example a dataset is created, with

three tables.

The created datanew is then copied to a new dataset.

A simple loop then iterates over the

dataset’s blocks (a table may be treated as a block)
Each block is copyied to a second dataset, and

then displays the name of each new block (which actually
will be the same name as the source block); a comment

is added to each new block.

program example_copyblock

use dal
implicit none

type(DataSetT) setl, set2
type(TableT) tab

type (BlockT) blk

integer i

setl = dataSet("test.dat",CREATE)

tab = addTable(setl,"first table",100)
tab = addTable(setl,"second table",1000)
tab = addTable(setl,"third table",10000)

set2 = dataSet("testl.dat",CREATE)

do i = 0, numberOfBlocks(setl) - 1

blk = block(setl, i, MODIFY)

call copyBlock(set2, blk)

blk = block(set2, i, MODIFY)

call addComment(blk, "Copied from test.dat")
end do

call release(setl)
call release(set2)

end program example_copyblock

addBlock

BUGS AND LIMITATIONS

NAME

PURPOSE

None known.

copyColumn(table, column, newName)

Copy a column.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 77

ARGUMENTS

e type(TableT), intent(in) :: table

The handle of a table to which the column should be copied.
o type(ColumnT), intent(in) :: column

The handle of a column to be copied.

e character(len="*), intent(in), optional :: newName
An optional name for the newly copied column should have.

RETURNS None

DESCRIPTION
The source column may reside in a different table. A duplicate of the sourcee column is
created, whose name is either the same as the source column’s name or a new name specified
with newName.

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This examples show how to use the copyColumn function.

program example_copycolumn

use dal
implicit none
type(DataSetT) setl, set2

type(TableT) tabl, tab2
type(ColumnT) coll, col2, col3, cold

integer (kind=int32), dimension(:), pointer :: 132
real (kind=single), dimension(:), pointer :: r32
integer i

setl = dataSet("test.dat",CREATE)

tabil

addTable(setl,"some table",100)

coll

addColumn(tabl,"coll",INTEGER32,units="m",comment="in32 column")

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 78

i32 => int32Data(coll)

do i=0,numberOfRows(tabl)-1
i32(i) = 3*i

end do

call release(coll)

col2 = addColumn(tabl,"col2",REAL32,units="Dm",comment="real32 column")
r32 => real32Data(col2)
do i=0,numberOfRows(tabl)-1
r32(i) = 0.5%1i
end do
call release(col2)

set2 = dataSet("testl.dat",CREATE)
tab2 = addTable(set2,"some table",100)
call copyColumn(tab2, coll)

call copyColumn(tab2, col2, "col3")

col3 = column(tab2, name(coll), READ)

cold = column(tab2, "col3", READ)

i32 => int32Data(col3)

r32 => real32Data(col4)

do i = 0, numberOfRows(tab2) - 1
write(*,%) i32(i), r32(i)

end do

call release(col3)

call release(col4d)

call release(setl)
call release(set2)

end program example_copycolumn

SEE ALSO
addColumn

BUGS AND LIMITATIONS

None known.

NAME
copyDataSet(sourceName, destName)

PURPOSE
Copy a dataset.

ARGUMENTS

e character(len=*), intent(in) :: destName
The name of the destination dataset.

e character(len="*), intent(in) :: sourceName
The name of the destination source set.

RETURNS None

DESCRIPTION
Copy the dataset with name sourceName to the set with name destName. The destination

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 79

dataset becomes a duplicate of the source dataset. In the event that the source dataset is
not found an error will be raised.

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

!
!
!
!
!
]
!
!
!
! SAS is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.

]

!

!

]

!

!

!

!

!

!

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example a dataset is created, with

three tables.

The created datanew is then copied to a new dataset.

A simple loop then iterates over the new

dataset’s ! blocks (a table may be treated as a block)

then displays the name of ! each table, and adds a comment

to each block (table).

program example_copydataset

use dal

implicit none
type(DataSetT) set
type(TableT) tab

type (BlockT) blk
integer i

set = dataSet("test.dat",CREATE)

tab = addTable(set,"first table",100)
tab = addTable(set,"second table",1000)
tab = addTable(set,"third table",10000)

call release(set)
call copyDataSet("test.dat", "testl.dat")
set = dataSet("testl.dat",READ)

do i = 0, numberOfBlocks(set) - 1
blk = block(set, i, MODIFY)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 80

write(*,*) name(blk)
call addComment(blk, "Copied from test.dat")
end do

call release(set)

end program example_copydataset

SEE ALSO
addDataSet

BUGS AND LIMITATIONS
This subroutine has been implemented with a subprocess call to the unix rm command. The
DAL has no control over the overall behaviour of this command.

NAME
clone(from, to, mode, memoryModel)
PURPOSE
Clone a dataset.
ARGUMENTS
e character(len="*), intent(in) :: from
The name of the dataset to be cloned.
e character(len=%*), intent(in) :: to
The name of the clone.
e integer, intent(in) :: mode
The access mode which the dataset should be used with. It must be one of the following
values:
— MODIFY All changes made to the clone will be written saved upon closure.
— TEMP The clone is discarded upon closure.
e integer, intent(in), optional :: memoryModel
This specifies a hint to which the memory model should be used. The following values
are possible:
— HIGH.MEMORY
— HIGH.LOW_MEMORY
— LOW
— USE_ENVIRONMENT
RETURNS
o type(DataSetT) :: dataSet
A handle to the clone .
DESCRIPTION
ERRORS
EXAMPLES

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 81

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

]
!

]

!

! SAS is free software: you can redistribute it and/or modify

! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or

! (at your option) any later version.
!

!

]

!

]

!

!

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
! along with SAS. If not, see <http://www.gnu.org/licenses/>.
! This example shows how to use the clone
! function.
program example_clone

use dal
implicit none

type (DataSetT) set
type (DataSetT) clonedSet

set = dataSet("test.dat",CREATE)
call setAttribute(set,"attl", 10, "mm", "attribute comment")
call release(set)

set = dataSet("test.dat",MODIFY)
call setAttribute(set,"attl", 10, "mm", "attribute comment")
call release(set)

clonedSet = clone("test.dat","test2.dat",MODIFY)
call setAttribute(clonedSet,"att2", 10, "mm", "attribute comment")
call release(clonedSet)

set = dataSet("test2.dat",READ)
write(*,*) "att2 = ", int32Attribute(set, "att2");
call release(set)

end program example_clone

SEE ALSO
dataSet release setexist HIGH_.MEMORY HIGH_.LOW_MEMORY LOW_MEMORY
USE_ENVIRONMENT

BUGS AND LIMITATIONS

None known.

NAME
copyRows(table, from, to, count)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 82

PURPOSE

ARGUMENTS

Copy a range of rows.

type(TableT), intent(in) :: table
The handle of a table within which the rows are to be copied.

integer, intent(in) :: from

The source row number. ’from’ must be in the range 0 to n, where n is the number of
rows in the table. The source row numbers will then be in the range ’from’ to 'from +
count’. See the description below for additional constraints.

integer, intent(in) :: to

The destination row number. 'to’ must be in the range 0 to n, where n is the number
of rows in the table. The destination row numbers will then be 'to’ to 'to 4+ count’.

See the description below for additional constraints.

e integer, intent(in), optional :: count

The number of rows which should be copied. See the description below for additional

constraints.

RETURNS None

DESCRIPTION

ERRORS

EXAMPLES

Copy a range of rows from one location to another, within a table. The triple (from, to,
count) must be logically possible e.g. from + count j= n and to + count j= n, where n is

the number of rows in the table.

Memory Considerations This operation of copying rows within a table is very expensive.

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with SAS. If not, see <http://www.gnu.org/licenses/>.

!
!
]
]
]
!
!
]
!
]
]
]
!
]
]
]
! This examples show how to use the copyRows subroutine.

program example_copyrows
use dal

implicit none

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 83

type(DataSetT) set
type(TableT) tab
type(ColumnT) coll, col2

integer (kind=int32), dimension(:), pointer :: 132
real (kind=single), dimension(:), pointer :: r32
integer i

set = dataSet("test.dat",CREATE)

tab = addTable(set,"some table",10)

coll = addColumn(tab,"coll",INTEGER32,units="m",comment="in32 column")
i32 => int32Data(coll)

do i=0,4
i32(i) = 3*i
end do

call release(coll)

col2 = addColumn(tab,"col2",REAL32,units="Dm",comment="real32 column")
r32 => real32Data(col2)

do i=0,4

r32(i) = 0.5%i
end do
call release(col2)

call copyRows(tab, 0, 5, 5) ! copy range [0,4] to [5,9]

i32 => int32Data(coll)
r32 => real32Data(col2)

do i = 0, numberOfRows(tab) - 1
write(*,*) i32(i), r32(i)
end do

call release(coll)
call release(col2)

call release(set)

end program example_copyrows

SEE ALSO

deleteRows insertRows

BUGS AND LIMITATIONS

None known.

NAME
count

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 84

PURPOSE
Get the count-value from the seek range of an object.

INTERFACE
function countColumn(column) function countTable(table)

ARGUMENTS

e type(ColumnT), intent(in) :: column
e type(TableT), intent(in) :: table

RETURNS

e integer
DESCRIPTION
ERRORS
EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

!
]

!

!

! SAS is free software: you can redistribute it and/or modify

! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or

! (at your option) any later version.
!

!

!

1

!

!

!

!

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.
! This example shows how the seek functions
! are used.
! This subroutine will dispaly the seek values of the given table and column.
subroutine whatisseek(tab)
use dal
type(TableT), intent(in) :: tab
type(ColumnT) :: col

write(*,*) from(tab), count(tab)

col = column(tab,"x",MODIFY)
write(*,*) from(col), count(col)

end subroutine whatisseek

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

85

program example_seek
use dal
implicit none
type(DataSetT) :: set

type(TableT) :: tab
type (ColumnT) :: col

interface
subroutine whatisseek(subtab)
use dal
implicit none
type(TableT), intent(in) :: subtab

end subroutine whatisseek
end interface

set = dataSet("test.dat",CREATE)
tab = addTable(set,"events",10)
col = addColumn(tab,"x",real32,"mm"

call forEachSubTable(tab,whatisseek)
call release(set)

end program example_seek

SEE ALSO

from

BUGS AND LIMITATIONS

None known.

NAME
CREATE

PURPOSE

An enumeration value which is used to indicate that a new dataset should be created.

DESCRIPTION
ERRORS
EXAMPLES
Most of the examples show how to use the CREATE enumeration value.

SEE ALSO

BUGS AND LIMITATIONS

None known.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

86

NAME
dataComponent
PURPOSE
Convert a subclass of DataComponent into DataComponent.
INTERFACE
function arrayDataComponent(array) function columnDataComponent(column)
ARGUMENTS
o type(ArrayT), intent(in) :: array
The handle of an array which is to be converted to a DataComponent
o type(ColumnT), intent(in) :: column
The handle of a column which is to be converted to a DataComponent
RETURNS
o type(DataComponentT)
The converted object is returned as a handle to a DataComponent object.
DESCRIPTION
ERRORS
EXAMPLES

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

]
]

]

!

!

!

! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!

!

|

]

]

]

]

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
! along with SAS. If not, see <http://www.gnu.org/licenses/>.
! This example illustrates the use of the dataComponent() function.

! The units of objects with data type BOOLEAN and STRING are meaningless

! and so are not displayed.
subroutine displayUnits(dcomponent)
use dal

implicit none

type (DataComponentT) dcomponent
integer dattype

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 87

dattype = dataType(dcomponent)

write(
if (dat
.or.
writ
end if

*,%) dattype
type.eq.INTEGERS.or.dattype.eq.INTEGER16.0or.dattype.eq.INTEGER32 &
dattype.eq.REAL32.or.dattype.eq.REAL64) then

e(*,*) units(dcomponent)

end subroutine displayUnits

program

example_datacomponent

use dal

implic

it none

type (ArrayT) arr
type (BlockT) blk
type (ColumnT) col
type(DataSetT) set
type(TableT) tab

intege
intege

set =
tab =

col =
col =
col =
col =
col =
col =
col =
arr =
arr =

do i =
blk

ri, j
r, dimension(3), parameter :: s = (/ 2,3,4 /)
dataSet ("test.dat",CREATE)

addTable(set,"some table",100)

addColumn (tab, "bool" ,BOOLEAN)
addColumn(tab,"int8",INTEGERS,units="cm",comment="int8 column")
addColumn(tab,"int16" ,INTEGER16,units="dm" ,comment="int16 column")
addColumn (tab,"int32" ,INTEGER32,units="m",comment="in32 column")
addColumn (tab,"real32" ,REAL32,units="Dm", comment="real32 column")
addColumn(tab,"real64" ,REAL64,units="hm",comment="real64 column")
addColumn(tab, "string",STRING, comment="string column",dimensions=(/80/))
addArray(set, "arrayl", INTEGER16, dimensions=s, units="klm")
addArray(set, "array2", INTEGER32, dimensions=s, units="kla")

0, number0OfBlocks(set) - 1
= block(set, i, READ)

if (blockType(blk).eq.ARRAY_BLOCK) then

ar

r = array(set, name(blk), READ)

call displayUnits(dataComponent(arr))

else

tab = table(set, name(blk))

do

j = 0, number0fColumns(tab) - 1
col = column(tab, j, READ)
call displayUnits(dataComponent(col))

end do

end
end do
call r

if

elease(set)

end program example_datacomponent

SEE ALSO

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 88

BUGS AND LIMITATIONS

None known.

NAME
DataComponentT

PURPOSE
Used to declare DataComponent handles.

DESCRIPTION
DataComponent is a C++ class whose details are not available to the F90 programmer.
Access to this underlying class is achieved through the DataComponentT handle.

ERRORS

EXAMPLES
See dataComponent.

SEE ALSO
The description on handles and the description of class hierarchies etc.

BUGS AND LIMITATIONS

None known.

NAME
dataSet(dataSetname, mode, memoryModel)

PURPOSE
Open dataset with the given name.

ARGUMENTS

e character(len=%*), intent(in) :: dataSetName
The name of the dataset.
e integer, intent(in) :: mode
The access mode which the dataset should be used with. It must be one of the following
values:
— READ Read an existing dataset with the given name. An error is raised if the
dataset is not found, or cannot be opened.

— CREATE Create a new dataset with the given name. If an dataset already exisits
with the given name, the behaviour is dependent on the setting of the environment
variable SAS_ FORMAT. Any changes made to the dataset will be discarded upon
closure,

— MODIFY Open an existing dataset with the given name. All changes made to the
dataset will be written saved upon closure.

— TEMP Open a new dataset. The dataset is discarded upon closure.
e integer, intent(in), optional :: memoryModel
This specifies a hint to which the memory model should be used. The following values
are possible:
— HIGH_-MEMORY
— HIGH_LOW_MEMORY
— LOW_MEMORY

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 89

— USE_LENVIRONMENT
RETURNS

o type(DataSetT) :: dataSet
A handle to the new dataset.

DESCRIPTION
This is a fundamental routine within the DAL APIL. Virtually all programs requiring the
DAL will need to call this function to gain access to a dataset.

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

!
!

!

!

! SAS is free software: you can redistribute it and/or modify

! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or

! (at your option) any later version.
!

!

!

!

!

!

!

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
! along with SAS. If not, see <http://www.gnu.org/licenses/>.
! This examp,e shows how to use the dataset
! function.
program example_dataset

use dal

implicit none

type (DataSetT) set

set = dataSet("test.dat",CREATE)

call setAttribute(set,"attl", 10, "mm", "attribute comment")
call release(set)

set = dataSet("test.dat",MODIFY)

call setAttribute(set,"attl", 10, "mm", "attribute comment")
call release(set)

set = dataSet("test.dat",READ)

write(*,*) "attl = ", int32Attribute(set, "attl")

call release(set)

end program example_dataset

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 90

SEE ALSO

clone release setexists HIGH_MEMORY HIGH_.LOW_MEMORY LOW_MEMORY USE_ENVIRONME
BUGS AND LIMITATIONS

None known.

NAME
dataType

PURPOSE
Get the data type of an object.

INTERFACE
function arrayDataType(array)
function columnData(column)
function dataComponent(dataComponent)
function attributeDataType(attribute)
function arrayAttributeDataTypeN(array, name)
function arrayAttributeDataTypeR(array, number)
function attributableAttributeDataTypeN(attributable, name)
function attributableAttributeDataTypeR(attributable, number)
function blockAttributeDataTypeN(block, name)
function blockAttributeDataTypeR(block, number)
function columnAttributeDataTypeN(column, name)
function columnAttributeDataTypeR(column, number)
function dataSetAttributeDataTypeN(dataSet, name)
function dataSetAttributeDataTypeR(dataSet, number)
function tableAttributeDataTypeN(table, name)
function tableAttributeDataTypeR/(table, number)

ARGUMENTS

o type(ArrayT), intent(in) :: array A handle of the array whose data type is required, or
a handle of the array object containing the attribute whose data type is required.

o type(AttributableT), intent(in) :: attributable A handle of the attributable object con-
taining the attribute whose data type is required.

o type(AttributeT), intent(in) :: attribute A handle of the attribute whose data type is
required.

e type(BlockT), intent(in) :: block A handle of the block object containing the attribute
whose data type is required.

o type(ColumnT), intent(in) :: column A handle of the column whose data type is re-
quired, or a handle of the column object containing the attribute whose data type is
required.

o type(DataComponentT), intent(in) :: dataComponent A handle of the dataComponent
whose data type is required.

o type(DataSetT), intent(in) :: dataSet A handle of the dataset object containing the
attribute whose data type is required.

e character(len="*), intent(in) :: name The name of the attribute whose data type is
required.

e integer, intent(in) :: number The number of the attribute whose data type is required.

o type(TableT), intent(in) :: table A handle of the table object containing the attribute
whose data type is required.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 91

RETURNS
e integer Data type of a column, array, or dataComponent; one of the following enumer-
ation values will be returned: BOOLEAN, INTEGERS, INTEGER16, INTEHER32,
REAL32, REAL64, STRING Data type of an attribute: one of the following enumera-
tion values will be returned: INTEGER_ATTRIBUTE, REAL_ATTRIBUTE, STRING_ATTRIBUTE,
BOOLEAN_ATTRIBUTE.
DESCRIPTION

This interface is used to get the data type of columns, arrays, dataComponents and at-
tributes. For attributes, the interface allows an attribute object to be used directly, or to
specified an attribute, by giving its name or number within an attributable object.

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

two 3-dimensional arrays.

It illustrates the use of the derived types DataSetT and ArrayT.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The first array is filled with unique data before the
dataset is released (closed).
program example_addarray

use dal
use errorhandling

implicit none
type(DataSetT) set

type(ArrayT) arril, arr2
integer (kind=int32), dimension(:,:,:), pointer :: al, a2

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 92

integer, dimension(3), parameter :: s = (/ 3,4,2 /)
integer :: i,j,k,n

| create a set

set = dataSet("test.dat",CREATE)

arrl = addArray(set, "arrayl", INTEGER32, dimensions=s)

arr2 = addArray(set, "array2", arrayDataType(arrl), dimensions=s)

I £i11 with unique numbers
al => int32Array3Data(arrl)
a2 => int32Array3Data(arrl)

n=20
do k=0,1
do j=0,3
do i=0,2
al(i,j,k) =n

a2(i,j,k) = a1(i,j,k) + 1
n=n+1
end do
end do
end do

call release(arrl)
call release(arr2)
call release(set)

end program example_addarray

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This examples show how the column() function is used.

The column by name is used to get a column and rename it.

The column by number is used to iterate over all

columns in the table to output the name, type and units.

program example_column

use dal

implicit none

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 93

type(DataSetT) set
type(TableT) tab
type (ColumnT) col
integer i

set = dataSet("test.dat",CREATE)

tab = addTable(set,"some table",100)

col = addColumn(tab,"coll",INTEGER32,units="ml1",comment="in32 column")
col = addColumn(tab,"col2",INTEGER32,units="m2",comment="in32 column")
col = addColumn(tab,"col3",INTEGER32,units="m3",comment="in32 column")

col column(tab, "col2", MODIFY)
call rename(col, "cold")

do i =0, number0OfColumns(tab) - 1

col = column(tab, i, READ)

write(*,*) name(col), columnDataType(col), units(col)
end do

call release(set)

end program example_column
! ESA (C) 2000-2018
]

! This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.
! This example illustrates the use of the dataComponent() function.
! The units of objects with data type BOOLEAN and STRING are meaningless
! and so are not displayed.
subroutine displayUnits(dcomponent)
use dal

!
!
!
!
!
!
! SAS is distributed in the hope that it will be useful,
!
!
!
!
!
!

implicit none

type (DataComponentT) dcomponent
integer dattype

dattype = dataType(dcomponent)

write(*,*) dattype

if (dattype.eq.INTEGER8.or.dattype.eq.INTEGER16.or.dattype.eq. INTEGER32 &
.or.dattype.eq.REAL32.0or.dattype.eq.REAL64) then
write(*,*) units(dcomponent)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 94

end if

end subroutine displayUnits

program example_datacomponent
use dal
implicit none
type (ArrayT) arr
type (BlockT) blk
type (ColumnT) col
type (DataSetT) set
type(TableT) tab
integer i, j
integer, dimension(3), parameter :: s = (/ 2,3,4 /)
set = dataSet("test.dat",CREATE)
tab = addTable(set,"some table",100)
col = addColumn(tab, "bool",BOOLEAN)
col = addColumn(tab,"int8",INTEGERS,units="cm",comment="int8 column")
col = addColumn(tab,"int16",INTEGER16,units="dm",comment="int16 column")
col = addColumn(tab,"int32",INTEGER32,units="m",comment="in32 column")
col = addColumn(tab,"real32",REAL32,units="Dm",comment="real32 column")
col = addColumn(tab,"real64",REAL64,units="hm",comment="real64 column")
col = addColumn(tab,"string",STRING, comment="string column",dimensions=(/80/))
arr = addArray(set, "arrayl", INTEGER16, dimensions=s, units="klm")
arr = addArray(set, "array2", INTEGER32, dimensions=s, units="kla")
do i = 0, numberOfBlocks(set) - 1
blk = block(set, i, READ)

if (blockType(blk).eq.ARRAY_BLOCK) then

ar
ca
else

r = array(set, name(blk), READ)
11 displayUnits(dataComponent(arr))

tab = table(set, name(blk))

do

en

end
end do
call r

end prog

SEE ALSO

j = 0, number0fColumns(tab) - 1

col = column(tab, j, READ)

call displayUnits(dataComponent(col))
d do

if

elease(set)

ram example_datacomponent

BUGS AND LIMITATIONS

None known.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

95

NAME

DataSetT

PURPOSE
A derived type which is used to declare DataSet handles.

DESCRIPTION

EXAMPLES
See dataSet.

SEE ALSO
dataSet

BUGS AND LIMITATIONS

None known.

NAME
deleteAttribute

PURPOSE
Delete an attribute.

INTERFACE
subroutine deleteAttribute(attribute)
subroutine deleteArrayAttributeWithName(array, name)
subroutine deleteArrayAttributeWithNumber(array, attributeNumber)
subroutine deleteAttribAttributeWithName(attributable, name)

subroutine deleteAttribAttributeWithNumber(attributable, attributeNumber)

subroutine deleteBlockAttributeWithName(block, name)

subroutine deleteBlockAttributeWithNumber(block, attributeNumber)
subroutine deleteColumnAttributeWithName(column, name)

subroutine deleteColumnAttributeWithNumber(column, attributeNumber)
subroutine deleteDataSet AttributeWithName(dataSet, name)

subroutine deleteDatSetAttributeWithNumber(dataSet, attributeNumber)

subroutine deleteTableAttributeWithName(table, name) subroutine deleteTableAttribute-

WithNumber(table, attributeNumber)
ARGUMENTS

o type(ArrayT), intent(in) :: array

The handle of an array from which the specified attribute should be deleted.

o type(AttributableT), intent(in) :: attributable

The handle of an attributable from which the specified attribute should be deleted.

o type(AttributeT), intent(in) :: attribute
The handle of an attribute to be deleted.

o type(AttributableT), intent(in) :: attributeNumber
The ordinal position ofthe attribute to delete.

o type(BlockT), intent(in) :: block

The handle of a block from which the specified attribute should be deleted.
o type(ColumnT), intent(in) :: column
The handle of a column from which the specified attribute should be deleted.

o type(DataSetT), intent(in) :: dataSet
The handle of a dataset from which the aspecified ttribute should be deleted.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 96

e character(len=%*), intent(in) :: name
The name of the attribute to be deleted.

o type(TableT), intent(in) :: table
The handle of a table from which the specified attribute should be deleted.

RETURNS None

DESCRIPTION
Delete the given attribute or delete an attribute, with the given name or number, from the
specified attributable (or a subclass of attributable) object. In the event that the attribute
cannot be deleted an error will be raised. The DataSet, Table, Array, Block, Column and
Table types are derived from the Attributable type and hence may contain attributes.

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

]
!

!

!

! SAS is free software: you can redistribute it and/or modify

! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or

! (at your option) any later version.
]

]

!

!

!

!

]

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
! along with SAS. If not, see <http://www.gnu.org/licenses/>.
! This example shows how the deleteAttribute inteface is
! used.
subroutine deleteAllAttributes(attrib)
use dal
implicit none

type(AttributableT) attrib
type (AttributeT) att
integer i

do i = 0, numberOfAttributes(attrib) - 1
att = attribute(attrib, 0)

write(*,*) "deleting attribute with name ", name(att)
call deleteAttribute(att)
end do

end subroutine deleteAllAttributes
program example_deleteattribute

use dal

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

97

SEE ALSO

PURPOSE

implicit none

type (DataSetT) set
type(TableT) tab
type (ArrayT) arr

set = dataSet("test.dat",CREATE)

call setAttribute(set,"sbooll",.false.,"dataset bool comment")

call setAttribute(set,"sbool2", .true.,"dataset bool comment")
call setAttribute(set,"sbool3",.false.,"table bool comment")
call setAttribute(set,"sbool4d",.true.,"table bool comment")

tab = addTable(set,"table",10);

call setAttribute(tab,"sbooll", .false.,"table bool comment")
call setAttribute(tab,"sbool2", .true.,"table bool comment")
call setAttribute(tab,"sbool3",.false.,"table bool comment")
call setAttribute(tab,"sbool4d",.true.,"table bool comment")

write(*,*) numberOfAttributes(set)
call deleteAllAttributes(attributable(set))
write(*,*) numberOfAttributes(set)
write(*,*) numberOfAttributes(tab)
call deleteAllAttributes(attributable(tab))
write(*,*) numberOfAttributes(tab)

call release(set)

end program example_deleteattribute

attributable AttributableT attribute AttributeT

BUGS AND LIMITATIONS

None known.

deleteBlock

Delete a block from a dataset.

INTERFACE

subroutine deleteBlockWithName(dataSet, blockName)
subroutine deleteBlockWithNumber(dataSet, blockNumber)

ARGUMENTS

e character(len=*), intent(in) :: blockName
The name of the block to be deleted.
e integer, intent(in) :: blockNumber
The ordinal position of the block to be deleted.
o type(DataSetT), intent(in) :: dataSet
The handle of a dataset from which the block should be deleted.

RETURNS None

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 98

DESCRIPTION
Delete a block wth the given name or number from the specified dataset. In the event that
the block cannot be deleted an error will be raised.

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how the deleteBlock interface

is used.

program example_deleteblock

use dal
implicit none
type(DataSetT) set

type(TableT) tab
type (BlockT) blk

integer i

set = dataSet("test.dat",CREATE)
tab = addTable(set,"tablel",10)
tab = addTable(set,"table2",100)
tab = addTable(set,"table3",1000)

write(*,*) numberOfBlocks(set)

call deleteBlock(set, "table2");

do i=0,number0fBlocks(set) - 1
blk = block(set, 0, READ)
write(*,*) "deleting block with name ", name(blk)
call deleteBlock(set, 0)

end do

write(*,*) numberOfBlocks(set)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 99

call release(set)

end program example_deleteblock

SEE ALSO
addBlock BlockT

BUGS AND LIMITATIONS

None known.

NAME

deleteColumn

PURPOSE
Delete a column from a table.

INTERFACE
subroutine deleteColumnWithName(table, columnName)
subroutine deleteColumnWithNumber(table, columnNumber)

ARGUMENTS
e character(len=%*), intent(in) :: columnName
The name of the column to be deleted.

e integer, intent(in) :: columnNumber
The ordinal position of the column to be deleted.

e type(TableT), intent(in) :: table
The handle of a table from which the column should be deleted.
RETURNS None

DESCRIPTION
Delete a column wth the given name or number from the specified table. In the event that
the column could not be deleted an error is raised.

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

]
!
]
!
! SAS is free software: you can redistribute it and/or modify

! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or

! (at your option) any later version.

]

!

!

]

!

!

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 100

! You should have received a copy of the GNU General Public License
! along with SAS. If not, see <http://www.gnu.org/licenses/>.
program example_addcolumn

use dal
implicit none

type (DataSetT) set
type(TableT) tab
type (ColumnT) col
integer i

set = dataSet("test.dat",CREATE)
tab = addTable(set,"some table",100)

col = addColumn(tab, "bool",BOOLEAN)

col = addColumn(tab,"int8",INTEGERS,units="cm",comment="int8 column")

col = addColumn(tab,"int16",INTEGER16,units="dm",comment="int16 column")

col = addColumn(tab,"int32",INTEGER32,units="m",comment="in32 column")

col = addColumn(tab,"real32",REAL32,units="Dm",comment="real32 column")

col = addColumn(tab,"real64",REAL64,units="hm",comment="real64 column")

col = addColumn(tab,"string",STRING, comment="string column",dimensions=(/80/))

call deleteColumn(tab, "int32")
call deleteColumn(tab, 3) ! "real32"

do i = 0, numberOfColumns(tab) - 1
write(*,*) name(column(tab, i, READ))
end do

call release(set)

end program example_addcolumn

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
deleteRows(table, from, count)

PURPOSE
Delete a range of rows from a table.

ARGUMENTS
o type(TableT), intent(in) :: table
The handle of a table within which the specified range of rows should be deleted.

e integer, intent(in) :: from
The first row number of the range. 0 j= from n, where n is the number of rows in the
table.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 101

e integer, intent(in), optional :: count
The number of rows in the range. 0 j= count | n ,where n is the number of rows in the
table.

RETURNS None

DESCRIPTION
This operation is very expensive. The range is specified with couple [from,count], where
from + count j= n, where n is the number of rows in the table. It should be carefully noted
that any data pointers (to columns in this table) which are currently active will become
stale after deleteRows() has been called.

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This examples show how to use the deleteRows() subroutine.

program example_deleterows

use dal
implicit none

type (DataSetT) set

type(TableT) tab

type (ColumnT) coll, col2

integer (kind=int32), dimension(:), pointer :: 132
real (kind=single), dimension(:), pointer :: r32
integer i, r

set
tab

dataSet ("test.dat",CREATE)
addTable(set,"some table",10)

coll = addColumn(tab,"coll",INTEGER32,units="m",comment="in32 column")
i32 => int32Data(coll)

do i=0,4
i32(i) = 3%i

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

102

SEE ALSO

end do

call release(coll)

col2 = addColumn(tab,"col2",REAL32,units="Dm",comment="real32 column")

r32 => real32Data(col2)

do i=0,4
r32(i) = 0.5%i
end do

call release(col2)
call copyRows(tab, 0, 5, 5) ! copy range [0,4] to [5,9]

132 => int32Data(coll)
r32 => real32Data(col2)

do i = 0, numberOfRows(tab) - 1
write(*,*) i32(i), r32(i)
end do

call release(coll)
call release(col2)

r =20

doi=20,9
i32 => int32Data(coll)
if(i32(r) .eq. 6) then

write(*,*) "deleting row number ", i
call deleteRows(tab, r, 1)
else
r=1r+1
end if
call release(coll)
end do

i32 => int32Data(coll)

r32 => real32Data(col2)

do i = 0, numberOfRows(tab) - 1
write(kx,*) i32(i), r32(i)

end do

call release(set)

end program example_deleterows

copyRows insertRows

BUGS AND LIMITATIONS

None known.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

103

NAME

discardDataSet
PURPOSE

Tells the data set server object to discard the named data set.
ARGUMENTS

e character(len="*), intent(in) :: dataSetName
The name of the dataset.

RETURNS

None
DESCRIPTION

The named data set is released from memory.

This subroutine must only be called by Meta Tasks.
ERRORS
EXAMPLES

ESA (C) 2000-2018

SAS is free software: you can redistribute it and/or modify

(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

along with SAS. If not, see <http://www.gnu.org/licenses/>.
This example shows how to use the keepDataSet
subroutine
program example_keepdiscarddataset

use dal
implicit none
type (DataSetT) set

set = dataSet("test.dat",CREATE)
call release(set) ! The dataset will be released from memory

You should have received a copy of the GNU General Public License

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

call keepDataSet("test.dat") ! Tell the dataset server not to discard

! the dataset with name "test.dat"

set = dataSet("test.dat",READ)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 104

call release(set) ! The dataset will not be released from memory

set = dataSet("test.dat",READ) ! The dataset is already in memory, so this
! operation has virtually no overhead.

call release(set) ! The dataset will not be released from memory
call discardDataSet("test.dat") ! Tell the dataset server to discard and
| release the dataset with name "test.dat"

end program example_keepdiscarddataset

SEE ALSO
keepDataSet

BUGS AND LIMITATIONS

None known.

NAME

dimensions

PURPOSE
Get the dimensions of an array or a column.

INTERFACE
function dimensionsOfArray(array)
function dimensionsOfColumn(column)

ARGUMENTS

o type(ArrayT), intent(in) :: array
The handle of an array from which the dimensions are to be retrieved.

o type(ColumnT), intent(in) :: column
The handle of a column from which the dimensions are to be retrieved.

RETURNS

e integer, dimension(:), pointer
The number of elements in the returned vector gives the rank of the objects data. Each
element of the returned vector gives the length of each dimension.

DESCRIPTION
ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

!
I
I
I
!
!
!
! (at your option) any later version.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 105

]
! SAS is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
!
!
!

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.
! This example demonstrates the dimensions inteferface.
subroutine fillWithData(dataSetName)
use dal
implicit none
character(len=%*), intent(in) :: dataSetName
type(DataSetT) set

type(TableT) tab
type(ColumnT) col

integer (kind=INT32), dimension(:,:,:,:,:), pointer :: c
integer, dimension(:), pointer :: s
integer :: i,j,k,1l1,m,n

! Reopen dataset and fill with data.

set = dataSet(dataSetName, MODIFY)
tab = table(set, "table")
col = column(tab, "column", MODIFY)

s => dimensions(col)
¢ => int32Array4Data(col)

n=20
do m=0,number0fRows(tab) - 1
do 1=0, s(3) -1
do k=0, s(2) -1
do j=0, s(1) - 1
do i=0, s(0) -1
c(i,j,k,1,m) = n
n=n+1
end do
end do
end do
end do
end do

call release(col)
call release(set)

end subroutine fillWithData
program example_dimensions

use dal

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 106

implicit none

type (DataSetT) set

type(TableT) tab

type (ColumnT) col

integer, dimension(4), parameter :: s = (/ 3,4,5,6 /)

| create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

col addColumn(tab, "column", INTEGER32, "km", s, "column comment")
call release(set)

call fillWithData("test.dat")

end program example_dimensions

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
DOUBLE

PURPOSE
An enumeration value which is used to indicate real data of double precision.

DESCRIPTION

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
forEachBlock(dataSet, callThisFunction)

PURPOSE
Block iteration.

ARGUMENTS

o type(DataSetT), intent(in) :: dataSet
The handle of a dataset for which block iteration is to be carried out.

e interface subroutine callThisFunction(block) type(BlockT), intent(in) :: block end
subroutine callThisFunction end interface
The iterating function to be called for each block in the dataset. The block is passed
by handle to the iterating function.

RETURNS None

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

107

DESCRIPTION
Call the specified subroutine for each block, in turn, in the specified dataset. If the dataset

ERRORS

EXAMPLES

has no blocks, no iteration will be attempted. Each block is passed to the iterating subroutine

as

su

a block-handle.

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.
In this example, a dataset is created with one table and one
array.
The generic subroutine displayBlock, which operates on the
BlockT base type. The blockType() function operates on objects
of type BlockT.
The example also shows blocks being retrieved from the dataset
both by name and by number.
broutine displayBlock(thisBlock)
use dal

implicit none

type(BlockT), intent(in) :: thisBlock

write(*,*) "The block with name ", name(thisBlock)

if (blockType(thisBlock) .eq. ARRAY_BLOCK) then
write(x,*) " is an array."

end if

if (blockType(thisBlock) .eq. TABLE_BLOCK) then

write(*,*) " is a table."
end if

end subroutine displayBlock

subroutine displayBlocks(thisSet)

use dal

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 108

implicit none

type(DataSetT) thisSet
integer i

interface
subroutine displayBlock(blk)
use dal
implicit none
type(BlockT), intent(in) :: blk

end subroutine displayBlock

end interface

call foreachblock(thisSet, displayBlock)
end subroutine displayBlocks
program example_foreachblock

use dal

implicit none

type (DataSetT) set

type(TableT) tab
type (ArrayT) arr

integer, dimension(3), parameter :: s = (/ 3,4,2 /)
set = dataSet("test.dat",CREATE)

tab = addTable(set,"table",10);

arr = addArray(set, "array", INTEGER32, dimensions=s)

call displayBlock(block(tab))

call displayBlock(block(arr))

call displayBlock(block(set, "table", READ))
call displayBlock(block(set, "array", READ))
call displayBlocks(set)

call release(set)

end program example_foreachblock

SEE ALSO
BlockT

BUGS AND LIMITATIONS

None known.

NAME
forEachColumn(table, callThisFunction)

PURPOSE
Column iteration.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 109

ARGUMENTS

e type(TableT), intent(in) :: table
The handle of a table fro which column iteration is to be carried out.

e interface subroutine callThisFunction(column) type(TableT), intent(in) :: column end
subroutine callThisFunction end interface
The iterating function to be called for each column in the table. Each column is passed
to the iterating subroutine as a column-handle.

RETURNS None
DESCRIPTION

ERRORS

EXAMPLES

! ESA (C) 2000-2018
!
! This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).
!
! SAS is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! SAS is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with SAS. If not, see <http://www.gnu.org/licenses/>.
! This examples show how the forEachColumn() function is used.
! The column by name is used to get a column and rename it.
! The column by number is used to iterate over all
! columns in the table to output the name, type and units.
subroutine displayColumn(col)
use dal
implicit none
type(ColumnT), intent(in) :: col
write(*,*) name(col), columnDataType(col), units(col)
end subroutine displayColumn

program example_foreachcolumn

use dal

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

110

implicit none

type (DataSetT) set
type(TableT) tab
type (ColumnT) col
integer i

interface
subroutine displayColumn(col)
use dal
implicit none

type(ColumnT), intent(in) :: col
end subroutine displayColumn
end interface

set = dataSet("test.dat",CREATE)
tab = addTable(set,"some table",100)

col = addColumn(tab,"coll",INTEGER32,units="ml1",comment="in32 column")
col = addColumn(tab,"col2",INTEGER32,units="m2",comment="in32 column")
col = addColumn(tab,"col3",INTEGER32,units="m3",comment="in32 column")

col column(tab, "col2", MODIFY)
call rename(col, "col4d")

call forEachColumn(tab, displayColumn)
call release(set)

end program example_foreachcolumn

SEE ALSO
ColumnT

BUGS AND LIMITATIONS

None known.

NAME
forEachSubTable(table, callThisFunction)

PURPOSE
Subtable iteration.

ARGUMENTS

e type(TableT), intent(in) :: table
The handle of a table for which subtable iteration is to be carried out.

e interface subroutine callThisFunction(subTable) type(TableT), intent(in) ::

end subroutine callThisFunction end interface
The iterating subroutine to be called for each subtable of the table.

subTable

The iterating

subroutine is passed the subtable as a subtable-hnadle. The table size is dependent
on the model. In, the High Memory Mode, the entire table is passed to the iterating
function, which therefore is called only once. In the Low Memory Mode, the table size
defaults to 1 row, but may be changed by setting the environment variable SAS_ ROWS
to the required table size. The Memory Model is set with the environment variable
SAS_MEMORY_MODEL.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 111

RETURNS None
DESCRIPTION

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.
This example shows how the forEachSubTable() function
is used.
This subroutine will fill the subtable with dummy data.
subroutine fill(tab)
use dal

!
]
!
!
!
!
]
!
!
! SAS is distributed in the hope that it will be useful,
!
!
!
!
!
!
1
!
!

type(TableT), intent(in) :: tab

type(ColumnT) :: xCol, yCol, tCol
real(kind=SINGLE), dimension(:), pointer :: x,y,t

write(*,*) from(tab), count(tab)

xCol = column(tab,"x",MODIFY)

yCol = column(tab,"y",MODIFY)

tCol = column(tab,"t" ,MODIFY)
=> real32Data(xCol)

x = 1.23

write(*,*) x

y => real32Data(yCol)

y = 2.34

write(*,x) y

t => real32Data(tCol)

t = 3.45

write(kx,*) t

end subroutine fill

! This subroutine will write the contents of the subtable to standard output.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 112

subroutine check(tab)
use dal

type(TableT), intent(in) :: tab

type(ColumnT) :: xCol, yCol, tCol
real (kind=single), dimension(:), pointer :: x,y,t

write(*,*) from(tab), count(tab)

xCol = column(tab,"x",READ)
yCol = column(tab,"y",READ)
tCol = column(tab,"t",READ)

x => real32Data(xCol)
y => real32Data(yCol)
t => real32Data(tCol)
write(*,*) "DATA:", x, y, t

end subroutine check
program example_foreachsubtable
use dal
implicit none
! This part of the program will apply reportX to a table.
type(DataSetT) :: set
type(TableT) :: tab

type (ColumnT) :: xCol, yCol, tCol
real (kind=SINGLE), dimension(:), pointer :: x,y,t

interface
subroutine £ill(subtab)
use dal
implicit none
type(TableT), intent(in) :: subtab

end subroutine fill
subroutine check(subtab)
use dal
implicit none
type(TableT), intent(in) :: subtab
end subroutine check
end interface

set = dataSet("test.dat",CREATE)
tab = addTable(set,"events",10)

xCol = addColumn(tab,"x",real32,"mm"
yCol = addColumn(tab,"y",real32,"mm")
tCol = addColumn(tab,"t",real32,"s")

call forEachSubTable(tab,fill)
call forEachSubTable(tab,check)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 113

call release(set)
end program example_foreachsubtable

SEE ALSO
foreachBlock forEachColumn forEachRow SubtableT

BUGS AND LIMITATIONS

None known.

NAME
forEachRow(table, fn)

PURPOSE

Row iteration.
ARGUMENTS

o type(TableT), intent(in) :: table
The handle of a table for which subtable iteration is required.

e interface subroutine fn(r) type(RowT), intent(in) :: r end subroutine end interface
The iterating subroutine which be will be called for each row in the table; the row
being passed as a row-handle.

RETURNS None
DESCRIPTION

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.
This example shows how the forEachSubTable() function
is used.
This subroutine will fill the subtable with dummy data.
subroutine fill(tab)
use dal

!
I
I
I
!
!
I
I
!
! SAS is distributed in the hope that it will be useful,
!
I
I
I
!
!
!
I
I

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

114

type

type

real (kind=SINGLE), dimension(:), pointer ::

xCol

yCol =

tCol
X =>

>

>

[N S S

(TableT), intent(in) :: tab

(ColumnT) :: xCol, yCol, tCol

column(tab, "x" ,MODIFY)
column(tab,"y" ,MODIFY)
= column(tab,"t" ,MODIFY)
real32Data(xCol)

1.23

real32Data(yCol)

=2.34

real32Data(tCol)
0

end subroutine fill

! This subroutine will write the contents of the subtable to standard output.

subrou
use

type

type

real (kind=single), dimension(:), pointer ::

xCol
yCol
tCol
x =>
y=>
t =>
writ

tine check(tab)
dal

(TableT), intent(in) :: tab

(ColumnT) :: xCol, yCol, tCol

column(tab, "x",READ)
column(tab,"y" ,READ)
= column(tab,"t" ,READ)
real32Data(xCol)
real32Data(yCol)
real32Data(tCol)
e(*,x) x, y, t

end subroutine check

program example_foreachsubtable

use

impl

! This part of the program will apply reportX to a table.

type
type
type

real (kind=SINGLE), dimension(:), pointer ::

inte

dal

icit none

(DataSetT) :: set
(TableT) :: tab

(ColumnT) :: xCol, yCol, tCol

rface

subroutine £ill(subtab)

use dal
implicit none
type(TableT), intent(in)

xmmsas_20230412_1735-21.0.0

:: subtab

X,y,t

X,y,t

X,y,t

XMM-Newton Science Analysis System

Page:

115

end subroutine fill
subroutine check(subtab)
use dal
implicit none
type(TableT), intent(in) :: subtab
end subroutine check
end interface

dataSet ("test.dat",CREATE)

addTable(set,"events",10)
addColumn(tab,"x",real32, "mm"
addColumn(tab,"y",real32, "mm")
addColumn(tab,"t",real32,"s")

set
tab
xCol
yCol
tCol

call forEachRow(tab,fill)
call forEachRow(tab,check)

call release(set)

end program example_foreachsubtable

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
from
PURPOSE
Get the from-value from the seek range of an object.
INTERFACE
function fromColumn(column) function fromTable(table)
ARGUMENTS
o type(ColumnT), intent(in) :: column
e type(TableT), intent(in) :: table
RETURNS
e integer
DESCRIPTION
ERRORS
EXAMPLES

! ESA (C) 2000-2018
!

! This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

116

SAS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
GNU General Public License for more details.

You should have received a copy of the GNU General Public License

See the

along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how the seek functions

are used.

This subroutine will dispaly the seek values of the given table and column.

subroutine whatisseek(tab)

use dal

type(TableT), intent(in) :: tab
type(ColumnT) :: col

write(*,*) from(tab), count(tab)

col = column(tab,"x",MODIFY)
write(*,*) from(col), count(col)

end subroutine whatisseek

program example_seek

use dal
implicit none

type(DataSetT) :: set
type(TableT) :: tab
type(ColumnT) :: col

interface
subroutine whatisseek(subtab)
use dal
implicit none
type(TableT), intent(in) :: subtab
end subroutine whatisseek
end interface

set = dataSet("test.dat",CREATE)
tab = addTable(set,"events",10)
col = addColumn(tab,"x",real32,"mm")

call forEachSubTable(tab,whatisseek)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 117

SEE ALSO

call release(set)

end program example_seek

count

BUGS AND LIMITATIONS

NAME

PURPOSE

INTERFACE
function arrayHasAttribute(array, name)
function attributableHasAttribute(attributable, name)
function blockHasAttribute(block, name)
function columnHasAttribute(column, name)
function dataSetHasAttribute(dataSet, name)
function tableHasAttribute(table, name)

ARGUMENTS

RETURNS

DESCRIPTION
Determine if an attribute with the given name exists within the given attributable set.

ERRORS

EXAMPLES

None known.

hasAttribute

Determine if an attribute with a given name exists.

type(ArrayT), intent(in) :: array

The handle of an array which is to be tested for the existence of the attribute.
type(AttributableT), intent(in) :: attributable

The handle of an attributable which is to be tested for the existence of the attribute.
type(BlockT), intent(in) :: block

The handle of a block which is to be tested for the existence of the attribute.
type(ColumnT), intent(in) :: column

The handle of a column which is to be tested for the existence of the attribute.

type(DataSetT), intent(in) :: dataSet
The handle of a dataset which is to be tested for the existence of the attribute.

character(len=%*), intent(in) :: name
The name of the attribute.

type(TableT), intent(in) :: table
The handle of a table which is to be tested for the existence of the attribute.

logical

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 118

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shoes how the hasAttribute interface is used.

program example_hasattribute

use dal
implicit none

type (DataSetT) set
type(AttributeT) att

set = dataSet("test.dat",CREATE)
call setAttribute(set,"sbooll",.false.,"dataset bool comment")

if (hasAttribute(set, "sbool2")) then
write(*,*) ’That is not possible’
end if

if (hasAttribute(set, "sbooll")) then

att = attribute(set, "sbooll")

write(*,*) name(att), " = ", booleanAttribute(att)
end if

call release(set)
end program example_hasattribute

SEE ALSO
AttributableT AttributeT

BUGS AND LIMITATIONS

None known.

NAME
hasBlock(set, name)

PURPOSE
Determine if a block with a given name exists.

ARGUMENTS

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 119

o type(DataSetT), intent(in) :: set
The handle of the dataset which is to be examined for the existence of the named block.

e character(len="*), intent(in) :: name
The name of the block.

RETURNS

e logical

DESCRIPTION
Block names are unique within a dataset, so there can never be more than one block with
the given name. If a block with the given name is not found, false is returned, otherwise
true is returned.

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

!
]
]
]
!
!
]
]
!
! SAS is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.

]

]

]

!

]

]

]

]

!

!

]

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.
This example showas how the hasBlock() function is used.
In the example, a dataset is created with one table and one
array.
The generic subroutine displayBlock, which operates on the
BlockT base type. The blockType() function operates on objects
of type BlockT.
The dataset is testes for the existence of the table and the array, and in
! each case, the block is displayed.
subroutine displayBlock(thisBlock)
use dal

implicit none
type (BlockT) thisBlock
write(*,*) "The block with name ", name(thisBlock)

if (blockType(thisBlock) .eq. ARRAY_BLOCK) then
write(*,*) " is an array."

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 120

end if
if (blockType(thisBlock) .eq. TABLE_BLOCK) then
write(*,%*) " is a table."
end if
end subroutine displayBlock
program example_hasblock
use dal
implicit none
type (DataSetT) set

type(TableT) tab
type (ArrayT) arr

integer, dimension(3), parameter :: s = (/ 3,4,2 /)
set = dataSet("test.dat",CREATE)

tab = addTable(set,"table",10);

arr = addArray(set, "array", INTEGER32, dimensions=s)

call release(set)
set = dataSet("test.dat",READ)

if (hasBlock(set, "table")) then
call displayBlock(block(set, "table",READ))
end if

if (hasBlock(set, "array")) then
call displayBlock(block(set, "array",READ))
end if

call release(set)

end program example_hasblock

SEE ALSO
BlockT DataSetT

BUGS AND LIMITATIONS

None known.

NAME
hasColumn(table, name)

PURPOSE

Determine if a column with a given name exists.
ARGUMENTS

e type(TableT), intent(in) :: table
The handle of the table which is to be examined for the existence of the named column.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 121

e character(len=%*), intent(in) :: name
The name of the column.

RETURNS

e logical

DESCRIPTION
Determine if a column with a given name exists within the given table. Column names are
unique, within a table, so there can never be more than one column with the given name.
False is returned if a column the given name is not found, otherwise true is returned.

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

!

!

!

!

! SAS is free software: you can redistribute it and/or modify

! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or

! (at your option) any later version.
!

!

!

!

!

!

!

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
! along with SAS. If not, see <http://www.gnu.org/licenses/>.
! This examples show how the hasColumn() function is used.
! The column by name is used to get a column and rename it.
! The column by number is used to iterate over all
! columns in the table to output the name, type and units.
program example_hascolumn

use dal
implicit none

type (DataSetT) set
type(TableT) tab
type (ColumnT) col
integer i

set = dataSet("test.dat",CREATE)

tab = addTable(set,"some table",100)

col = addColumn(tab,"coll",INTEGER32,units="m1",comment="in32 column")
col = addColumn(tab,"col2",INTEGER32,units="m2",comment="in32 column")
col = addColumn(tab,"col3",INTEGER32,units="m3",comment="in32 column")

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

122

col = column(tab, "col2", MODIFY)
call rename(col, "cold")

if (hasColumn(tab, "col2")) then

write(*,*) ’This is not possible, since col4 was renamed to col4d’

end if

do i =0, numberOfColumns(tab) - 1
col = column(tab, i, READ)

write(*,*) name(col), columnDataType(col), units(col)

end do
call release(set)

end program example_hascolumn

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
hasNulls
PURPOSE
Determines if an object contains any null values.
INTERFACE
function hasNullArray(array)
function hasNullColumn(column)
ARGUMENTS
o type(ArrayT), intent(in) :: array
A handle of the array containing the values to be checked.
o type(ColumnT), intent(in) :: column
A handle of the column containing the values to be checked.
o integer(kind=INT32), intent(in) :: position
RETURNS
e logical
True, if a null value was found, false otherwise.
DESCRIPTION
This routine searches for null values in the specified object (a column or an array). Note
that if the LMM is being used, the object’s data is first loaded into memory before the
cjheck is carried out, and is then released again.
ERRORS
EXAMPLES

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 123

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how null values are used.

subroutine check(thisNullable)

use dal

type(NullableT), intent(in) :: thisNullable

write(*,*) "Null defined?: ", nullDefined(thisNullable), nullType(thisNullable)
end subroutine check
program example_nullvalues

use dal
use errorhandling

implicit none

type(DataSetT) set
type(ArrayT) arrl, arr2
type(TableT) tab
type(ColumnT) coll, col2

integer (kind=int32), dimension(:), pointer :: 132

real (kind=double), dimension(:), pointer :: r64

integer (kind=int32), dimension(:,:,:), pointer :: al, a2
integer, dimension(3), parameter :: s = (/ 3,4,2 /)
integer :: i,j,k,n

I create a set

set = dataSet("test.dat",CREATE)

arrl = addArray(set, "arrayl", INTEGER32, dimensions=s)

arr2 = addArray(set, "array2", arrayDataType(arrl), dimensions=s)

! £i11 with unique numbers
al => int32Array3Data(arrl)
a2 => int32Array3Data(arrl)

n=20

do k=0,1
do j=0,3

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 124

do i=0,2
al(i,j,k) =n
a2(i,j,k) = a1(i,j,k) + 1
n=n+1
end do
end do
end do

call setNullValue(arrl, 999999)
call check(nullable(arrl))

call setToNull(arrl, O) ! Set the first element of array arrl to null.
| Would have given an error, if the null
! value of array arrl had not been set.

if(nullType(arrl) .eq. INTEGER_NULL) then !
write(*,*) "Using null value of arrl, in arr2"
call setNullValue(arr2, intNullValue(arrl))

else
call setNullValue(arr2, 999999)

end if

call check(nullable(arr2))

call setToNull(arr2, 1) ! Set the second element of array arr2 to null.
! Would have given an error, if the null
! value of array arr2 had not been set.

call release(arril)
call release(arr2)

tab = addTable(set,"some table",100)
coll = addColumn(tab,"int32",INTEGER32,units="m",comment="in32 column")

i32 => int32Data(coll)
do i=0,number0fRows (tab)-1
i32(i) = 3%i
end do
call setNullValue(coll, 999999)
call check(nullable(coll))

call setToNull(coll, O) ! Set the first element of column coll to null.

col2 = addColumn(tab,"real64" ,REAL64,units="hm",comment="real64 column")
r64 => real64Data(col2)
do i=0,number0fRows (tab)-1
r64(i) = 0.25%i
end do

! col is a non-integer column and it would be an
! an error to call setNullValue().
call check(nullable(col2))

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 125

call setToNull(col2, O) ! Set the first element of column col2 to null.

if (hasNulls(col2)) then
do i=0,number0fRows(tab)-1
if(isNull(col2, i)) then
write(*,*) "element", i, "is null"
else
write(*,*) "element", i, "is", r64(i)
endif
end do
endif

call release(coll)
call release(col2)

call release(set)

end program example_nullvalues

SEE ALSO

intNullValue isNotNull isNull nullable nullDefined nullType setNullValue setToNull

BUGS AND LIMITATIONS

None known.

NAME
hasScaling
PURPOSE
THIS INTERFACE IS NOT IMPLEMENTED. Determine if scaling factors have been set
for an array or a column.
INTERFACE
function hasScalingOfArray(array)
function hasScalingOfColumn(column)
ARGUMENTS
o type(ArrayT), intent(in) :: array
o type(ColumnT), intent(in) :: column
RETURNS
e logical
DESCRIPTION
N/A
ERRORS
EXAMPLES

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 126

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
HIGH_-MEMORY
PURPOSE
An enumeration value used to specify that the High Memory Model should be used to open
a dataset.
DESCRIPTION
This is a hint only, and may be overridden using an environment variable setting.
EXAMPLES
! ESA (C) 2000-2018
!
! This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).
]
! SAS is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
]
! SAS is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
]
! You should have received a copy of the GNU General Public License
! along with SAS. If not, see <http://www.gnu.org/licenses/>.
! This examp,e shows how to open a dataset
! with a specific memory model.
program example_memorymodel
use dal
implicit none
type(DataSetT) set
set = dataSet("test.dat",CREATE,HIGH_MEMORY)
call release(set)
set = dataSet("test.dat",HIGH_LOW_MEMORY)
call release(set)
end program example_memorymodel
SEE ALSO

HIGH_.LOW_MEMORY LOW_MEMORY

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 127

BUGS AND LIMITATIONS

None known.

NAME
HIGH_.LOW_MEMORY

PURPOSE
An enumeration value used to specify that the highlow memory model should be used to
open a dataset.

DESCRIPTION
This is a hint only, and may be overridden using an environment variable setting.

EXAMPLES

! ESA (C) 2000-2018
! This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

!
!

]

!

! SAS is free software: you can redistribute it and/or modify

! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or

! (at your option) any later version.
!

!

]

!

]

!

!

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
! along with SAS. If not, see <http://www.gnu.org/licenses/>.
! This examp,e shows how to open a dataset
! with a specific memory model.
program example_memorymodel
use dal
implicit none

type(DataSetT) set

set = dataSet("test.dat",CREATE,HIGH_MEMORY)
call release(set)

set = dataSet("test.dat",HIGH_LOW_MEMORY)
call release(set)

end program example_memorymodel

SEE ALSO
HIGH_.MEMORY

BUGS AND LIMITATIONS

None known.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

128

NAME
insertRows(table, position, count)

PURPOSE
Insert a range of rows in a table.

ARGUMENTS

o type(TableT), intent(in) :: table

The handle of a table within which the specified range of rows should be inserted.

e integer, intent(in) :: position

This specifies at which row to insert the range of rows, which must be in the range 0

to n, where n is the number of rows in the table.

e integer, intent(in), optional :: count
The nunber of rows to be inserted.

RETURNS None
DESCRIPTION

This operation is very expensive and should be used minimally.

ERRORS

EXAMPLES

ESA (C) 2000-2018

(at your option) any later version.

]
]
]
|
|
1
]
]
|
|
|
!
! GNU General Public License for more detai
|

|

|

]

program example_insertrows
use dal
implicit none
type (DataSetT) set

type(TableT) tab
type(ColumnT) coll, col2

integer (kind=int32), dimension(:), pointer ::

real (kind=single), dimension(:), pointer ::
integer i, r

xmmsas_20230412_1735-21.0.0

SAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

1s.

i32
r32

SAS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

See the

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.
This examples show how to use the insertRows() subroutine.

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

XMM-Newton Science Analysis System

Page:

129

dataSet ("test.dat",CREATE)
addTable(set,"some table",5)

set
tab

coll = addColumn(tab,"coll",INTEGER32,units="m",comment="in32 column")

i32 => int32Data(coll)
do i=0,4

i32(i) = 3*i
end do

call release(coll)

col2 = addColumn(tab,"col2",REAL32,units="Dm",comment="real32 column")

r32 => real32Data(col2)

do i=0,4
r32(i) = 0.5%i
end do

call release(col2)

! insert 5 additional rows, at the end of the table
call insertRows(tab, 5, 5)

! copy the first 5 rows to the new rows.
call copyRows(tab, 0, 5, 5) ! copy range [0,4] to [5,9]

i32 => int32Data(coll)
r32 => real32Data(col?2)

do i = 0, numberOfRows(tab) - 1
write(*,*) i132(i), r32(i)
end do

call release(coll)
call release(col2)

r =20

doi=20, 9
i32 => int32Data(coll)
if(132(r) .eq. 6) then

write(*,*) "deleting row number ", i
call deleteRows(tab, r, 1)
else
r=r+1
end if
call release(coll)
end do

i32 => int32Data(coll)
r32 => real32Data(col?2)

do i = 0, numberOfRows(tab) - 1

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

130

write(*,*) i32(i), r32(i)
end do

call release(set)

end program example_insertrows

SEE ALSO
copyRows deleteRows

BUGS AND LIMITATIONS

None known.

NAME
INTS

PURPOSE
An enumeration value which is used to indicate int8 data.

DESCRIPTION

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
int8Array2Data

PURPOSE
Get the int8 data from an array or column cell containing 2-dimensional array data.

INTERFACE
function int8ColumnArray2DataElement(column, row)
function int8 ArrayArray2Data(array)

ARGUMENTS

type(ArrayT), intent(in) :: array
A handle of the array for which the data is to be retrieved.

type(ColumnT), intent(in) :: column
A handle of the column for which the data is to be retrieved.

integer, intent(in) :: row
The column row number (cell number) for which the data is to be retrieved.

RETURNS

integer (kind=INT8), dimension(:,:), pointer

DESCRIPTION

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 131

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how to use the int8Array2Data interface.

In the example a dataset is created (opened) containing

a table with 2 columns of two 2-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_cellarray2data

use dal
use errorhandling

implicit none

type (DataSetT) set

type(TableT) tab

type (ColumnT) coll, col2

integer (kind=INT8), dimension(:,:), pointer :: cl, c2
integer, dimension(2), parameter :: s = (/ 3,4 /)
integer :: i,j,k,n

| create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columnl", INTEGERS, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

I £i11 with unique numbers

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 132

n=20
do k=0,numberOfRows(tab) - 1
cl => int8Array2Data(coll,k)
c2 => int8Array2Data(col2,k)
do j=0,3
do i=0,2
c1(i,j) =n
c2(i,j) = c1(i,j)
n=n+1
end do
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_cellarray2data
ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how to use the int8Array2Data interface.

In the example a dataset is created (opened) containing

a table with 2 2-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_arrayarray2data

use dal
use errorhandling

implicit none

type(DataSetT) set
type(TableT) tab

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 133

type(ArrayT) arrl, arr2

integer (kind=INT8), dimension(:,:), pointer :: al, a2
integer, dimension(2), parameter :: s = (/ 3,4 /)
integer :: i,j,n

! create a set

set = dataSet("test.dat",CREATE)

arrl = addArray(set, "arrayl", INTEGER8, s, "km", "array comment")
arr2 = addArray(set, "array2", INTEGER8, s, "km", "array comment")

! £i11 with unique numbers
n=20

al => int8Array2Data(arrl)
a2 => int8Array2Data(arr2)

do j=0,3
do i=0,2
al(i,j) =n
a2(i,j) = a1(i,j)
n=n+1
end do
end do

call release(arrl)
call release(arr2)
call release(set)

end program example_arrayarray2data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
int8Array2Data
PURPOSE
Get the int8 data from a column containing 2-dimensional array data.
INTERFACE
function int8ColumnArray2Data(column)
ARGUMENTS
o type(ColumnT), intent(in) :: column
A handle of the column which contains the data to be accessed.
RETURNS
o integer(kind=INTS), dimension(:,:,:), pointer
The 2-dimensional data is returned as a 3-dimensional array.
DESCRIPTION

The data is returned as a 3-dimensional array, since the column’s data is arranged as a
vector of 2-dimensional elements. The column should be released after the data is no longer
required.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 134

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

!
]

!

!

!

!

!

]

!

! SAS is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
]

]

!

!

!

!

!

]

!

!

!

]

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two 2-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised before the
dataset is released (closed).
program example_array2data

use dal
use errorhandling

implicit none
type (DataSetT) set

type(TableT) tab
type(ColumnT) coll, col2

integer (kind=INT8), dimension(:,:,:), pointer :: cl, c2
integer, dimension(2), parameter :: s = (/ 3,4 /)
integer :: i,j,k,n

! create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columni", INTEGER8, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i1l with unique numbers

cl => int8Array2Data(coll)
c2 => int8Array2Data(col2)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

135

n=20
do k=0,number0OfRows(tab) - 1
do j=0,3
do i=0,2

c1(i,j,k) =n
c2(i,j,k) = c1(i,j,k)
n=n+1
end do
end do
end do

call release(coll)
call release(col2)

call release(set)

end program example_array2data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
int8Array3Data

PURPOSE
Get the int8 data from an array or column cell containing 3-dimensional array data.

INTERFACE
function int8ColumnArray3DataElement(column, row)
function int8 ArrayArray3Data(array)

ARGUMENTS

type(ArrayT), intent(in) :: array
A handle of the array which contains the data to be retrieved.

type(ColumnT), intent(in) :: column
A handle of the column which contains the data to be retrieved.

integer, intent(in) :: row
The column row number (cell number) for which the data is to be retrieved.

RETURNS

integer (kind=INT8), dimension(:,:,:), pointer

DESCRIPTION

ERRORS

EXAMPLES

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 136

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two 3-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_cellarray3data

use dal
use errorhandling

implicit none
type(DataSetT) set

type(TableT) tab
type(ColumnT) coll, col2

integer (kind=INT8), dimension(:,:,:), pointer :: cl, c2
integer, dimension(3), parameter :: s = (/ 3,4,5 /)
integer :: i,j,k,1,n

I create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columnl", INTEGERS, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers

n=20
do 1=0,numberOfRows(tab) - 1
cl => int8Array3Data(coll,l)
c2 => int8Array3Data(col2,1)
do k=0,4
do j=0,3

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 137

do i=0,2
c1(i,j,k) =n
c2(i,j,k) = c1(i,j,k)
n=n+1

end do

end do
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_cellarray3data
! ESA (C) 2000-2018
!
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

along with SAS. If not, see <http://www.gnu.org/licenses/>.
This example shows how to use the int8Array2Data interface.
In the example a dataset is created (opened) containing
a table with 2 3-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_arrayarray3data

!
!
]
!
!
]
!
!
!
!
!
!
! You should have received a copy of the GNU General Public License
!
!
!
]
!
]
!
1
]
!
]
]

use dal
use errorhandling

implicit none
type (DataSetT) set

type(TableT) tab
type(ArrayT) arril, arr2

integer (kind=INT8), dimension(:,:,:), pointer :: al, a2
integer, dimension(3), parameter :: s = (/ 3,4,5 /)
integer :: i,j,k,n

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

138

I create a set
set = dataSet("test.dat",CREATE)

arrl

arr2
! £i11 with unique numbers
n=20

al => int8Array3Data(arrl)
a2 => int8Array3Data(arr2)

do k=0,4
do j=0,3
do i=0,2
al(i,j,k) =n
a2(i,j,k) = a1(i,j,k)
n=n+1
end do
end do
end do

call release(arrl)
call release(arr2)
call release(set)

end program example_arrayarray3data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
int8Array3Data
PURPOSE
Get the int8 data from a column containing 3-dimensional array data.
INTERFACE
function int8ColumnArray3Data(column)
ARGUMENTS
o type(ColumnT), intent(in) :: column
A handle of the column which contains the data to be retrieved.
RETURNS
o integer(kind=INTS), dimension(:,:,:,:), pointer
The 2-dimensional data is returned as a 4-dimensional array.
DESCRIPTION
The data is returned as a 4-dimensional array, since the column’s data is arranged as a
vector of 3-dimensional elements.
ERRORS

xmmsas_20230412_1735-21.0.0

addArray(set, "arrayl", INTEGER8, s, "km", "array comment")
addArray(set, "array2", INTEGER8, s, "km", "array comment")

XMM-Newton Science Analysis System Page: 139

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

!

]

]

]

]

!

]

]

!

! SAS is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
]

!

!

!

]

]

]

!

!

]

]

]

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two 3-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised before the
dataset is released (closed).
program example_array3data

use dal
use errorhandling

implicit none
type (DataSetT) set

type(TableT) tab
type(ColumnT) coll, col2

integer (kind=INT8), dimension(:,:,:,:), pointer :: cl, c2
integer, dimension(3), parameter :: s = (/ 3,4,5 /)
integer :: i,j,k,1,n

! create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columnl", INTEGERS, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers
cl => int8Array3Data(coll)
c2 => int8Array3Data(coll)

n=20

do 1=0,numberOfRows(tab) - 1
do k = 0,4

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

140

do j=0,3
do i=0,2
c1(i,j,k,1) =n
c2(i,j,k,1) = c1(i,j,k,1)
n=n+1
end do
end do
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_array3data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
int8Array4Data

PURPOSE
Get the int8 data from a column cell containing 4-dimensional array data.

INTERFACE
function int8ColumnArray4DataElement(column, row)

ARGUMENTS

o type(ColumnT), intent(in) :: column
A handle of the column which contains the data to be retrieved.

e integer, intent(in) :: row

The column row number (cell number) which contains the data to be retrieved.

RETURNS

o integer(kind=INTS), dimension(:,:,:,:), pointer

DESCRIPTION

ERRORS

EXAMPLES

ESA (C) 2000-2018

!
!
! This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).
!
!

SAS is free software: you can redistribute it and/or modify

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 141

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two 4-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_cellarray4data

use dal
use errorhandling

implicit none
type(DataSetT) set

type(TableT) tab
type(ColumnT) coll, col2

integer (kind=INT8), dimension(:,:,:,:), pointer :: cl, c2
integer, dimension(4), parameter :: s = (/ 3,4,5,6 /)
integer :: i,j,k,1,m,n

| create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columnl", INTEGERS, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers

n=20
do m=0,numberOfRows(tab) - 1
cl => int8Array4Data(coll,m)
c2 => int8Array4Data(col2,m)
do 1=0,5
do k=0,4
do j=0,3
do i=0,2
c1(i,j,k,1) = n
c2(i,j,k,1) = c1(i,j,k,1)
n=n+1

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

142

end do
end do
end do
end do
end do

call release(coll)
call release(col2)

call release(set)

end program example_cellarray4data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
int8Array4Data
PURPOSE
Get the int8 data from a column containing 4-dimensional array data.
INTERFACE
function int8ColumnArray4Data(column)
ARGUMENTS
e type(ColumnT), intent(in) :: column
A handle of the column containing the data is to be retrieved.
RETURNS
e integer(kind=INTS), dimension(:,:,:,:,:), pointer
The 5-dimensional data is returned as a 4-dimensional array.
DESCRIPTION
The data is returned as a 5-dimensional array, since the column’s data is arranged as a
vector of 4-dimensional elements.
ERRORS
EXAMPLES

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

!
!
!
!
! SAS is free software: you can redistribute it and/or modify
!
!
! (at your option) any later version.

!

!

SAS is distributed in the hope that it will be useful,

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 143

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two 4-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised before the
dataset is released (closed).

program example_array4data

use dal
use errorhandling

implicit none
type(DataSetT) set

type(TableT) tab
type (ColumnT) coll, col2

integer (kind=INT8), dimension(:,:,:,:,:), pointer :: cl, c2
integer, dimension(4), parameter :: s = (/ 3,4,5,6 /)
integer :: i,j,k,1,m,n

| create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll addColumn(tab, "columnl", INTEGER8, "km", s, "column comment")
col2

I £i11 with unique numbers
cl => int8Array4Data(coll)
c2 => int8Array4Data(coll)

n=20
do m=0,numberOfRows(tab) - 1
do 1=0,5
do k=0,4
do j=0,3
do i=0,2
c1(i,j,k,1,m) =n
c2(i,j,k,1,m) c1(i,j,k,1,m)
n=n+1
end do
end do
end do
end do
end do

xmmsas_20230412_1735-21.0.0

addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

XMM-Newton Science Analysis System Page: 144

call release(coll)
call release(col2)
call release(set)

end program example_array4data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
int8Attribute

PURPOSE
Get the value of an attribute as an int8.

INTERFACE
function int8ArrayAttribute(array, name)
function int8AttributableAttribute(attributable, name)
function int8 Attribute(attribute)
function int8BlockAttribute(Block, name)
function int8ColumnAttribute(column, name)
function int8DataSetAttribute(dataSet, name)
function int8TableAttribute(table, name)

ARGUMENTS

o type(ArrayT), intent(in) :: array
A handle of the array containing the required attribute.
o type(AttributableT), intent(in) :: attributable
A handle of the attributable containing the required attribute.

o type(AttributeT), intent(in) :: attribute

A handle of the attribute.
e type(BlockT), intent(in) :: block

A handle of the block containing the required attribute.
e type(ColumnT), intent(in) :: column

A handle of the column containing the required attribute.
o type(DataSetT), intent(in) :: dataSet

A handle of the column containing the required attribute.
e character(len=%*), intent(in) :: name

The name of the required attribute.
o type(TableT), intent(in) :: table

A handle of the table containing the required attribute.

RETURNS

e integer(kind=INTS)
The attribute’s internal value is returned as an int8-integer (type conversion taking
place, if possible, as necessary).

DESCRIPTION
In the event that the attribute’s value cannot be type converted an error is raised.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

145

ERRORS

EXAMPLES

write(*,*) int8Attribute(att)

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with SAS.

If not, see <http://www.gnu.org/licenses/>.

This example shows how int8 attributes are used.

The program creates a dataset containing two int8 attributes,
together with a table containing two int8 attributes.

The attributes are then accessed, by name, with

the int8Attribute() function.

Also, it is shown how to access the attributes by position.
program example_int8attribute

use dal
use errorhandling
implicit none

type(DataSetT) set
type(TableT) tab
type(AttributeT) att
integer i

set = dataSet("test.dat",CREATE)

call setAttribute(set,"intl1",1,"int comment")

call setAttribute(set,"int2",2,"int comment")

tab = addTable(set,"table",10);

call setAttribute(tab,"int1",3,"int comment")

call setAttribute(tab,"int2",4,"int comment")
write(*,*) int8Attribute(set, "intl") ! output ’1’
write(*,*) int8Attribute(set, "int2") ! output ’2’
write(*,*) int8Attribute(tab, "intl") ! output ’3’
write(*,*) int8Attribute(tab, "int2") ! output ’4’

do i =
att

attribute(set, i)

xmmsas_20230412_1735-21.0.0

0, numberOfAttributes(set) - 1

! output the sequence 1, 2

XMM-Newton Science Analysis System Page: 146

end do
call release(set)

end program example_int8attribute

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
int8Data
PURPOSE
Get the int8 data from an array, column or column cell.
INTERFACE
function int8ArrayData(array)
function int8ColumnData(column)
function int8ColumnDataElement(column, row)
ARGUMENTS
o type(ArrayT), intent(in) :: array
A handle of the array containing the required data.
o type(ColumnT), intent(in) :: column
A handle of the column containing the required data.
e integer, intent(in) :: row
The row number of the column cell containing the required data.
RETURNS
o integer(kind=INTS), dimension(:), pointer
The data is returned as a flat vector regardless of the dimensionality of the data.
DESCRIPTION
The data is returned in a vector regardles of the dimensionality of the data. In particular,
when accessing a scalar column cell, a vector of length 1 is returned, which contains the
single scalar value.
ERRORS
EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).
it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

!
!
!
!
! SAS is free software: you can redistribute it and/or modify
!
!
! (at your option) any later version.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 147

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two 4-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, and then the second column
is output by accessing the column’s data as a flat vector.

program example_int8data

use dal
use errorhandling

implicit none

type (DataSetT) set

type(TableT) tab

type(ColumnT) coll, col2

integer (kind=INT8), dimension(:,:,:,:,:), pointer :: cl, c2
integer (kind=INT8), dimension(:), pointer :: cd

integer, dimension(4), parameter :: s = (/ 3,4,5,6 /)
integer :: i,j,k,1,m,n

! create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 5, "table comment")

coll = addColumn(tab, "columni", INTEGER8, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers
cl => int8Array4Data(coll)
c2 => int8Array4Data(col2)

n=20
do m=0,number0OfRows(tab) - 1
do 1=0,5
do k=0,4
do j=0,3
do i=0,2
c1(i,j,k,1,m) =n
c2(i,j,k,1,m) c1(i,j,k,1,m)
n=n+1
end do
end do
end do

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 148

end do
end do

call release(coll)
call release(col2)

! Output the col2
cd => int8Data(col2) ! Access the column’s 4-dimensional data as a flat vector.

do n = O,numberOfElements(coll) * numberOfRows(tab) - 1
write(*,*) cd(n)

end do

call release(col2)
call release(set)

end program example_int8data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
int8VectorData

PURPOSE
Get the int8 data from an array or column cell containing vector data.

INTERFACE
function int8 ArrayVectorData(array)
function int8ColumnVectorDataElement(column, row)

ARGUMENTS
o type(ArrayT), intent(in) :: array
A handle of the array containing the required data.
e type(ColumnT), intent(in) :: column
A handle of the column containing the required data.
e integer(kind=INT32), intent(in) :: row
The row number of the column cell containing the data to be accessed.
RETURNS
e integer(kind=INTS), dimension(:), pointer
DESCRIPTION
ERRORS
EXAMPLES

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 149

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two vector arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_cellvectordata

use dal
use errorhandling

implicit none

type(DataSetT) set

type(TableT) tab

type(ColumnT) coll, col2

integer (kind=INT8), dimension(:), pointer :: cl, c2
integer, dimension(1l), parameter :: s = (/ 3 /)
integer :: i,m,n

I create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columnl", INTEGERS, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers

n=20
do m=0,number0OfRows(tab) - 1
cl => int8VectorData(coll,m)
c2 => int8VectorData(col2,m)
do i=0,2
cl(i) = n

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 150

c2(i) = c1(i)
n=n+1
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_cellvectordata
! ESA (C) 2000-2018
!

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how to use the int8Array2Data interface.

In the example a dataset is created (opened) containing

a table with 2 vector arrays.

!
!
]
!
]
!
!
!
]
]
]
!
!
]
]
]
]
!
! The second array has the same data type as the first; this

! is ensured by using the arrayDataType() function to determine
! the data type of the first array.

]

! The array is then initialised,

program example_arrayvectordata

use dal
use errorhandling

implicit none

type(DataSetT) set

type(TableT) tab

type(ArrayT) arrl, arr2

integer (kind=INT8), dimension(:), pointer :: al, a2
integer, dimension(1), parameter :: s = (/ 3 /)
integer :: i,n

! create a set

set = dataSet("test.dat",CREATE)

arrl = addArray(set, "arrayl", INTEGER8, s, "km", "array comment")
arr2 = addArray(set, "array2", INTEGER8, s, "km", "array comment")

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 151

! £i11 with unique numbers

n=20
al => int8VectorData(arri)
a2 => int8VectorData(arr2)

do i=0,2
al(i) = n
a2(i) = al1(i)
n=n+1
end do

call release(arril)
call release(arr2)
call release(set)

end program example_arrayvectordata

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
int8VectorData

PURPOSE
Get the int8 data from a column containing vector data.

INTERFACE
function int8ColumnVectorData(column) result(ptr)

ARGUMENTS

o type(ColumnT), intent(in) :: column
A handle of the column containing the required data.

RETURNS

e integer(kind=INTS), dimension(:,:), pointer

DESCRIPTION

The column must contain vector data.

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

!
!
!
!
!
! it under the terms of the GNU General Public License as published by

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 152

the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two vector arrays.

The second column has the same data type as the first; this
is ensured by using the columnDataType() function to determine
the data type of the first array.

The columns are then initialised before the
dataset is released (closed).

program example_columnvectordata

use dal
use errorhandling

implicit none

type (DataSetT) set

type(TableT) tab

type(ColumnT) coll, col2

integer (kind=INT8), dimension(:,:), pointer :: cl, c2
integer, dimension(1), parameter :: s = (/ 3 /)
integer :: i,m,n

I create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 10, "table comment")

coll = addColumn(tab, "columni", INTEGER8, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

I £i11l with unique numbers
cl => int8VectorData(coll)
c2 => int8VectorData(col2)

n=20
do m=0,numberOfRows(tab) - 1
do i=0,2
ci(i,m) = n
c2(i,m) = c1(i,m)
n=n+1
end do
end do

call release(coll)
call release(col2)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 153

call release(set)
end program example_columnvectordata

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
INT16

PURPOSE
An enumeration value which is used to indicate that integer16 data is being used.

DESCRIPTION

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
intl16Array2Data

PURPOSE
Get the int16 data from an array or column cell containing 2-dimensional array data.

INTERFACE
function int16ArrayArray2Data(array)
function int16ColumnArray2DataElement(column, row)

ARGUMENTS

o type(ArrayT), intent(in) :: array
A handle of the array which contains the data to be accessed.

o type(ColumnT), intent(in) :: column
A handle of the column which contains the data to be accessed.

e integer, intent(in) :: row
The number of the column cell which contains the data to be accessed.

RETURNS
o integer(kind=INT16), dimension(:,:), pointer
DESCRIPTION

ERRORS

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 154

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how to use the intl6Array2Data interface.

In the example a dataset is created (opened) containing

a table with 2 columns of two 2-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_cellarray2data

use dal
use errorhandling

implicit none

type(DataSetT) set

type(TableT) tab

type(ColumnT) coll, col2

integer(kind=INT16), dimension(:,:), pointer :: cl, c2
integer, dimension(2), parameter :: s = (/ 3,4 /)
integer :: i,j,k,n

! create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columnl", INTEGER16, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers
n=20

do k=0,number0OfRows(tab) - 1
cl => intl16Array2Data(coll,k)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 155

c2 => intl16Array2Data(col2,k)

do j=0,3
do i=0,2
c1(i,j) =n
c2(i,j) = c1(i,j)
n=n+1
end do
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_cellarray2data
! ESA (C) 2000-2018
!
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

along with SAS. If not, see <http://www.gnu.org/licenses/>.
This example shows how to use the intl6Array2Data interface.
In the example a dataset is created (opened) containing
a table with 2 2-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_arrayarray2data

!
!
!
!
!
!
!
!
!
!
!
!
! You should have received a copy of the GNU General Public License
!
!
!
!
!
!
!
!
!
!
!
!

use dal
use errorhandling

implicit none

type(DataSetT) set

type(TableT) tab

type(ArrayT) arrl, arr2

integer (kind=INT16), dimension(:,:), pointer :: al, a2
integer, dimension(2), parameter :: s = (/ 3,4 /)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

156

integer :: i,j,n

| create a set
set = dataSet("test.dat",CREATE)

arrl = addArray(set, "arrayl", INTEGER16, s, "km", "array comment")
arr2 = addArray(set, "array2", INTEGER16, s, "km", "array comment")

! £i11 with unique numbers

n=20
al => intl6Array2Data(arrl)
a2 => intl6Array2Data(arr2)

do j=0,3
do i=0,2
al(i,j) =n
a2(i,j) = al(4i,j)
n=n+1
end do
end do

call release(arrl)
call release(arr2)
call release(set)

end program example_arrayarray2data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
int16Array2Data

PURPOSE

Get the int16 data from a column containing 2-dimensional array data.

INTERFACE
function int16ColumnArray2Data(column)

ARGUMENTS

o type(ColumnT), intent(in) :: column
A handle of the column which contains the data to be accessed.

RETURNS

o integer(kind=INT16), dimension(:,:,:), pointer
The 2-dimensional data is returned as a 3-dimensional array.

DESCRIPTION

ERRORS

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 157

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

!

]

]

]

]

!

]

]

!

! SAS is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
]

!

!

!

]

]

]

!

!

]

]

]

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two 2-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised before the
dataset is released (closed).
program example_array2data

use dal
use errorhandling

implicit none
type (DataSetT) set

type(TableT) tab
type(ColumnT) coll, col2

integer (kind=INT16), dimension(:,:,:), pointer :: cl, c2
integer, dimension(2), parameter :: s = (/ 3,4 /
integer :: i,j,k,n

! create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columnl", INTEGER16, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers
cl => intl16Array2Data(coll)
c2 => intl16Array2Data(col2)

n=20

do k=0,number0OfRows(tab) - 1
do j=0,3

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

158

SEE ALSO

do i=0,2
c1(i,j,k) =n
c2(i,j,k) = c1(i,j,k)
n=n+1
end do
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_array2data

BUGS AND LIMITATIONS

NAME

PURPOSE

None known.

intl16Array3Data

Get the int16 data from an array or column cell containing 3-dimensional array data.

INTERFACE

function int16ArrayArray3Data(array)
function int16ColumnArray3DataElement(column, row)

ARGUMENTS

RETURNS

type(ArrayT), intent(in) :: array
A handle of the array containing the required data.

type(ColumnT), intent(in) :: column
A handle of the column containing the required data.

integer, intent(in) :: row
The row number of the column cell containing the required data.

o integer(kind=INT16), dimension(:,:,:), pointer

DESCRIPTION

ERRORS

EXAMPLES

ESA (C) 2000-2018

!
!
! This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).
!
!

SAS is free software: you can redistribute it and/or modify

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 159

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two 3-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_cellarray3data

use dal
use errorhandling

implicit none
type(DataSetT) set

type(TableT) tab
type(ColumnT) coll, col2

integer (kind=INT16), dimension(:,:,:), pointer :: cl, c2
integer, dimension(3), parameter :: s = (/ 3,4,5 /)
integer :: i,j,k,1,n

| create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columnl", INTEGER16, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers

n=20

do 1=0,number0OfRows(tab) - 1
cl => int16Array3Data(coll,l)
c2 => intl16Array3Data(col2,1)

do k=0,4
do j=0,3
do i=0,2
c1(i,j,k) =n
c2(i,j,k) = c1(i,j,k)
n=n+1
end do

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 160

end do
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_cellarray3data
ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how to use the int8Array2Data interface.

In the example a dataset is created (opened) containing

a table with 2 3-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

1
1
1
1
1
|
1
1
1
1
|
1
1
1
1
|
|
1
1
1
]
|
1
I
! The columns are then initialised, on a row-by-row

! basis (i.e. accessing the column’s data cell-by-cell),
! before the dataset is released (closed).

program example_arrayarray3data

use dal
use errorhandling

implicit none
type (DataSetT) set

type(TableT) tab
type(ArrayT) arrl, arr2

integer (kind=INT16), dimension(:,:,:), pointer :: al, a2
integer, dimension(3), parameter :: s = (/ 3,4,5 /)
integer :: i,j,k,n

| create a set

set = dataSet("test.dat",CREATE)

arrl = addArray(set, "arrayl", INTEGER16, s, "km", "array comment")
arr2 addArray(set, "array2", INTEGER16, s, "km", "array comment")

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 161

! £fill with unique numbers

n=20
al => intl16Array3Data(arrl)
a2 => intl16Array3Data(arr2)

do k=0,4
do j=0,3
do i=0,2
al(i,j,k) =n
a2(i,j,k) = a1(i,j,k)
n=n+1
end do
end do
end do

call release(arri)
call release(arr2)
call release(set)

end program example_arrayarray3data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
intl16Array3Data

PURPOSE
Get the int16 data from a column containing 3-dimensional array data.

INTERFACE
function int16ColumnArray3Data(column)

ARGUMENTS
e type(ColumnT), intent(in) :: column
RETURNS
e integer(kind=INT16), dimension(:,:,:,:), pointer
The 3-dimensional data is returned as a 4-dimensional array.
DESCRIPTION
ERRORS

EXAMPLES

! ESA (C) 2000-2018
!

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 162

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two 3-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised before the
dataset is released (closed).
program example_array3data

use dal
use errorhandling

implicit none

type (DataSetT) set

type(TableT) tab

type(ColumnT) coll, col2

integer (kind=INT16), dimension(:,:,:,:), pointer :: cl, c2
integer, dimension(3), parameter :: s = (/ 3,4,5 /)
integer :: i,j,k,1,n

! create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columni", INTEGER16, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers
cl => int16Array3Data(coll)
c2 => int16Array3Data(coll)

n=20
do 1=0,number0OfRows(tab) - 1
do k = 0,4
do j=0,3
do i=0,2

c1(i,j,k,1) n
c2(i,j,k,1) = c1(i,j,k,1)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 163

n=n+1
end do
end do
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_array3data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
intl6Array4Data

PURPOSE
Get the int16 data from a column cell containing 4-dimensional array data.

INTERFACE
function int16ColumnArray4DataElement(column, row)

ARGUMENTS

e type(ColumnT), intent(in) :: column
A handle of the column containing the required data.

e integer, intent(in) :: row
The row number of the column cell containing the required data.

RETURNS
e integer(kind=INT16), dimension(:,:,:,:), pointer
DESCRIPTION

ERRORS

EXAMPLES

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).
SAS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

I
!
!
I
I
I
!
! (at your option) any later version.
I

I

SAS is distributed in the hope that it will be useful,

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 164

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two 4-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_cellarray4data

use dal
use errorhandling

implicit none

type(DataSetT) set

type(TableT) tab

type(ColumnT) coll, col2

integer (kind=INT16), dimension(:,:,:,:), pointer :: cl, c2
integer, dimension(4), parameter :: s = (/ 3,4,5,6 /)
integer :: i,j,k,l1,m,n

| create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columnl", INTEGER16, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers

n=20
do m=0,number0fRows(tab) - 1
cl => intl16Array4Data(coll,m)
c2 => intl16Array4Data(col2,m)
do 1=0,5
do k=0,4
do j=0,3
do i=0,2
c1(i,j,k,1) = n
c2(i,j,k,1) = c1(i,j,k,1)
n=n+1
end do
end do
end do
end do
end do

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

165

call release(coll)
call release(col2)
call release(set)

end program example_cellarray4data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
intl6Array4Data

PURPOSE
Get the int16 data from a column containing 4-dimensional array data.

INTERFACE
function int16ColumnArray4Data(column)

ARGUMENTS
e type(ColumnT), intent(in) :: column
A handle of the column containing the required data.

RETURNS

The 4-dimensional column data is returned as a 5-dimensional array.

DESCRIPTION

ERRORS

EXAMPLES

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

SAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

!

!

!

!

!

!

!

! (at your option) any later version.

!

!

!

!

! GNU General Public License for more details.
!
!

You should have received a copy of the GNU General Public License

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page: 166

along with SAS.

If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing
a table with 2 columns of two 4-dimensional arrays.

The second array has the same data type as

the first; this

is ensured by using the arrayDataType() function to determine

the data type of the first array.

The columns are then
dataset is released (closed).

program example_array4data

use dal
use errorhandling

implicit none
type(DataSetT) set

type (TableT) tab
type(ColumnT) coll, col2

integer (kind=INT16), dimension(:,:,:,:,:),
integer, dimension(4), parameter :: s = (/
integer :: i,j,k,1l1,m,n

I create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100,

coll = addColumn(tab, "columnl", INTEGER16,
col2 = addColumn(tab, "column2",

I £i11 with unique numbers

cl => intl16Array4Data(coll)
c2 => intl6Array4Data(coll)

n=20
do m=0,number0OfRows(tab) - 1
do 1=0,5
do k=0,4
do j=0,3
do i=0,2
c1(i,j,k,1,m)
c2(i,j,k,1,m)
n+1

=n
c1(i,j,k,1l,m)

n =
end do
end do
end do
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_array4data

xmmsas_20230412_1735-21.0.0

columnDataType(coll), "km", s,

initialised before the

pointer :: cl, c2

3,4,5,6 /

"table comment")

"column comment")
"column comment")

Ilkmll, s,

XMM-Newton Science Analysis System Page:

167

SEE ALSO

BUGS AND LIMITATIONS

NAME

PURPOSE

None known.

int16Attribute

Get the value of an attribute as an int16.

INTERFACE
function int16ArrayAttribute(array, name)

function int16AttributableAttribute(attributable, name)
function int16Attribute(attribute)

function int16BlockAttribute(Block, name)

function int16ColumnAttribute(column, name)

function int16DataSetAttribute(dataSet, name)
function int16TableAttribute(table, name)

ARGUMENTS

RETURNS

DESCRIPTION

ERRORS

EXAMPLES

type(ArrayT), intent(in) :: array

A handle of the array containing the required attribute.
type(AttributableT), intent(in) :: attributable

A handle of the attributable containing the required attribute.
type(AttributeT), intent(in) :: attribute

A handle of the attribute.

type(BlockT), intent(in) :: block

A handle of the block containing the required attribute.
type(ColumnT), intent(in) :: column

A handle of the column containing the required attribute.
type(DataSetT), intent(in) :: dataSet

A handle of the dataset containing the required attribute.

character(len="*), intent(in) :: name
The name of the required attribute.

type(TableT), intent(in) :: table
A handle of the table containing the required attribute.

integer(kind=INT16)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

168

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how intl6 attributes are used.

The program creates a dataset containing two intl6 attributes,

together with a table containing two intl6 attributes.

The attributes are then accessed, by name, with

the int16Attribute() function.

Also, it is shown how to access the attributes by position.

program example_intl6attribute

use dal
use errorhandling
implicit none

type(DataSetT) set
type(TableT) tab
type (AttributeT) att
integer i

set = dataSet("test.dat",CREATE)
call setAttribute(set,"intl1",1,"int comment")
call setAttribute(set,"int2",2,"int comment")

tab = addTable(set,"table",10);
call setAttribute(tab,"intl1",3,"int comment")
call setAttribute(tab,"int2",4,"int comment")

write(*,*) intl16Attribute(set, "intl") ! output ’1’
write(*,*) intl6Attribute(set, "int2") ! output ’2’
write(*,*) intl16Attribute(tab, "intl") ! output ’3’
write(*,*) intl6Attribute(tab, "int2") ! output ’4’

do i = 0, numberOfAttributes(set) - 1
att attribute(set, i)

write(*,*) intl6Attribute(att) ! output the sequence 1, 2

end do

call release(set)

end program example_intl6attribute

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 169

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
intl6Data
PURPOSE
Get the int16 data from an array, column or column cell.
INTERFACE
function int16ArrayData(array)
function int16ColumnData(column)
function int16ColumnDataElement(column, row)
ARGUMENTS
o type(ArrayT), intent(in) :: array
A handle of the array containing the required data.
o type(ColumnT), intent(in) :: column
A handle of the column containing the required data.
e integer, intent(in) :: row
The row number of the column cell containing the required data.
RETURNS
o integer(kind=INTS), dimension(:), pointer
The data is returned as a flat vector regardless of the dimensionality of the data.
DESCRIPTION
The data is returned in a vector regardles of the dimensionality of the data. In particular,
when accessing a scalar column cell, a vector of length 1 is returned, which contains the
single scalar value.
ERRORS
EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

]
!

!

!

! SAS is free software: you can redistribute it and/or modify

! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or

! (at your option) any later version.

]

! SAS is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of

! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

!

!

]

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 170

along with SAS. If not, see <http://www.gnu.org/licenses/>.
In this example add dataset is created (opened) containing
a table with 2 columns of two 4-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, and then the second column
is output by accessing the column’s data as a flat vector.

program example_intl6data

use dal
use errorhandling

implicit none

type (DataSetT) set

type (TableT) tab

type(ColumnT) coll, col2

integer (kind=INT16), dimension(:,:,:,:,:), pointer :: cl, c2
integer (kind=INT16), dimension(:), pointer :: cd

integer, dimension(4), parameter :: s = (/ 3,4,5,6 /)
integer :: i,j,k,1,m,n

! create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 5, "table comment")

coll = addColumn(tab, "columnl", INTEGER16, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers
cl => intl6Array4Data(coll)
c2 => intl16Array4Data(col2)

n=20
do m=0,number0fRows(tab) - 1
do 1=0,5
do k=0,4
do j=0,3
do i=0,2
c1(i,j,k,1,m)
c2(i,j,k,1,m)
n=n+1
end do
end do
end do
end do
end do

n
c1(i,j,k,1,m)

call release(coll)
call release(col2)

! Output the col2

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 171

cd => inti16Data(col2) ! Access the column’s 4-dimensional data as a flat vector.

do n = 0,numberOfElements(coll) * numberOfRows(tab) - 1
write(*x,*) cd(n)
end do

call release(col2)
call release(set)

end program example_intl6data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
int16VectorData

PURPOSE
Get the int16 data from an array or column cell containing vector data.

INTERFACE
function int16 ArrayVectorData(array)
function int16ColumnVectorDataElement(column, row)

ARGUMENTS

e type(ArrayT), intent(in) :: array
A handle of the array containing the required data.

o type(ColumnT), intent(in) :: column
A handle of the column containing the required data.

e integer(kind=INT32), intent(in) :: row
The row number of the column cell containing the data to be accessed.

RETURNS
e integer(kind=INT16), dimension(:), pointer
DESCRIPTION

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).
it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

!
!
!
!
! SAS is free software: you can redistribute it and/or modify
!
!
! (at your option) any later version.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 172

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

]
]
!
!
!
!
! You should have received a copy of the GNU General Public License
! along with SAS. If not, see <http://www.gnu.org/licenses/>.

! In this example add dataset is created (opened) containing

! a table with 2 columns of two vector arrays.

]

]

]

!

!

]

]

]

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_cellvectordata

use dal
use errorhandling

implicit none

type (DataSetT) set

type(TableT) tab

type(ColumnT) coll, col2

integer (kind=INT16), dimension(:), pointer :: cl, c2
integer, dimension(1), parameter :: s = (/ 3 /)
integer :: i,m,n

! create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columni", INTEGER16, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers

n=20

do m=0,number0fRows(tab) - 1
cl => inti6VectorData(coll,m)
c2 => inti6VectorData(col2,m)

do i=0,2
cl(i) = n
c2(i) = c1(i)
n=n+1
end do
end do

call release(coll)
call release(col2)
call release(set)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page: 173

end program example_cellvectordata

ESA (C) 2000-2018

! This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

GNU General Public License for more details.

See the

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how to use the intl6Array2Data interface.
In the example a dataset is created (opened) containing

a table with 2 vector arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine

the data type of the first array.

The array is then initialised,

program example_arrayvectordata

use dal
use errorhandling

implicit none

type (DataSetT) set

type(TableT) tab

type(ArrayT) arrl, arr2

integer (kind=INT16), dimension(:), pointer :: al, a2
integer, dimension(1), parameter :: s = (/ 3 /)
integer :: i,n

I create a set
set = dataSet("test.dat",CREATE)

arrl = addArray(set, "arrayl", INTEGER16, s, "km", "array comment")

arr2
I £i11 with unique numbers
n=20

al => inti16VectorData(arri)
a2 => intl16VectorData(arr2)

do i=0,2
al(i) = n
a2(i) = ail(di)

xmmsas_20230412_1735-21.0.0

addArray(set, "array2", INTEGER16, s, "km", "array comment")

XMM-Newton Science Analysis System

Page:

174

n=mn+1
end do

call release(arrl)
call release(arr2)
call release(set)

end program example_arrayvectordata

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
int16VectorData
PURPOSE
Get the int16 data from a column containing vector data.
INTERFACE
function int16ColumnVectorData(column)
ARGUMENTS
o type(ColumnT), intent(in) :: column
RETURNS
o integer(kind=INT16), dimension(:,:), pointer
DESCRIPTION
ERRORS
EXAMPLES

ESA (C) 2000-2018

I
I
I
!
!
!
!
! (at your option) any later version.
I
I
I
I
I
I
I
!

xmmsas_20230412_1735-21.0.0

SAS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

SAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
GNU General Public License for more details.

See the

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

XMM-Newton Science Analysis System Page: 175

In this example add dataset is created (opened) containing
a table with 2 columns of two vector arrays.

]
]
!
! The second column has the same data type as the first; this

! is ensured by using the columnDataType() function to determine
! the data type of the first array.

]

!

!

The columns are then initialised before the
dataset is released (closed).
program example_columnvectordata

use dal
use errorhandling

implicit none

type (DataSetT) set

type(TableT) tab

type (ColumnT) coll, col2

integer(kind=INT16), dimension(:,:), pointer :: cl, c2
integer, dimension(l), parameter :: s = (/ 3 /

integer :: i,m,n

| create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 10, "table comment")

coll = addColumn(tab, "columnl", INTEGER16, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

I £i11 with unique numbers
cl => intl16VectorData(coll)
c2 => intl16VectorData(col2)

n=20
do m=0,numberOfRows(tab) - 1
do i=0,2
ci(i,m) = n
c2(i,m) = c1(i,m)
n=n+1
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_columnvectordata

SEE ALSO

BUGS AND LIMITATIONS

None known.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 176

NAME

INT32

PURPOSE
An enumeration value which is used to indicate that integer32 data is being used.

DESCRIPTION

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
int32Array2Data

PURPOSE
Get the int32 data from an array or column cell containing 2-dimensional array data.

INTERFACE
function int32ArrayArray2Data(array)
function int32ColumnArray2DataElement(column, row)

ARGUMENTS

type(ArrayT), intent(in) :: array
A handle of the array containing the required data.

type(ColumnT), intent(in) :: column
A handle of the column containing the required data.

integer, intent(in) :: row
The row number of the column cell containing the data to be accessed.

RETURNS
o integer(kind=INT32), dimension(:,:), pointer
DESCRIPTION

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

!
I
I
I
!
!
!
! (at your option) any later version.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 177

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how to use the

int32Array2Data interface.

In the example a dataset is created (opened) containing
a table with 2 columns of two 2-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine

the data type of the first array.

The columns are then initialised,

on a row-by-row

basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).
program example_cellarray2data

use dal
use errorhandling

implicit none

type (DataSetT) set

type(TableT) tab

type(ColumnT) coll, col2

integer (kind=INT32), dimension(:,:

integer, dimension(2), parameter ::

integer :: i,j,k,n

I create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100,
coll = addColumn(tab, "columni",
col2 = addColumn(tab, "column2",

I £i11l with unique numbers

n=20
do k=0,number0OfRows(tab) - 1
cl => int32Array2Data(coll,k)
c2 => int32Array2Data(col2,k)
do j=0,3
do i=0,2
c1(i,j) = n
c2(i,j) = c1(i,j)
n=n+1
end do
end do
end do

xmmsas_20230412_1735-21.0.0

), pointer :: ci1, c2

s=(/3,4/)

"table comment")
INTEGER32, "km", s, "column comment")
columnDataType(coll), "km", s, "column comment")

XMM-Newton Science Analysis System Page: 178

call release(coll)
call release(col2)
call release(set)

end program example_cellarray2data
! ESA (C) 2000-2018
!

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

along with SAS. If not, see <http://www.gnu.org/licenses/>.
This example shows how to use the int32Array2Data interface.
In the example a dataset is created (opened) containing
a table with 2 2-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_arrayarray2data

]
!
!
]
!
!
!
!
!
!
!
!
! You should have received a copy of the GNU General Public License
!
]
!
]
!
!
!
!
]
!
!
!

use dal
use errorhandling

implicit none

type(DataSetT) set

type(TableT) tab

type(ArrayT) arrl, arr2

integer (kind=INT32), dimension(:,:), pointer :: al, a2
integer, dimension(2), parameter :: s = (/ 3,4 /)
integer :: i,j,n

| create a set

set = dataSet("test.dat",CREATE)

arrl = addArray(set, "arrayl", INTEGER32, s, "km", "array comment")
arr2 = addArray(set, "array2", INTEGER32, s, "km", "array comment")

I £i11 with unique numbers

n=20

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

179

al => int32Array2Data(arrl)
a2 => int32Array2Data(arr2)

do j=0,3
do i=0,2
al(i,j) =n
a2(i,j) = al(i,j)
n=n+1
end do
end do

call release(arrl)
call release(arr2)
call release(set)

end program example_arrayarray2data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
int32Array2Data

PURPOSE
Get the int32 data from a column containing 2-dimensional array data.

INTERFACE
function int32ColumnArray2Data(column)

ARGUMENTS

o type(ColumnT), intent(in) :: column
A handle of the column containing the required data.

RETURNS
e integer(kind=INT32), dimension(:,:,:), pointer
The 2-dimensional data is returned as a 3-dimensional array.
DESCRIPTION
ERRORS

EXAMPLES

ESA (C) 2000-2018

!
!
!
!
! SAS is free software: you can redistribute it and/or modify
!

!

xmmsas_20230412_1735-21.0.0

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

XMM-Newton Science Analysis System Page: 180

(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two 2-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised before the
dataset is released (closed).

program example_array2data

use dal
use errorhandling

implicit none
type (DataSetT) set

type(TableT) tab
type(ColumnT) coll, col2

integer (kind=INT32), dimension(:,:,:), pointer :: cl, c2
integer, dimension(2), parameter :: s = (/ 3,4 /
integer :: i,j,k,n

! create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columni", INTEGER32, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers
cl => int32Array2Data(coll)
c2 => int32Array2Data(col2)

n=20
do k=0,number0OfRows(tab) - 1
do j=0,3
do i=0,2
c1(i,j,k) =n
c2(i,j,k) = c1(i,j,k)
n=n+1
end do
end do
end do

call release(coll)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 181

call release(col2)
call release(set)

end program example_array2data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME

int32Array3Data

PURPOSE

Get the int32 data from an array or column cell containing 3-dimensional array data.

INTERFACE

function int32ArrayArray3Data(array)
function int32ColumnArray3DataElement(column, row)

ARGUMENTS

RETURNS

DESCRIPTION
ERRORS

EXAMPLES

type(ArrayT), intent(in) :: array
A handle of the array containing the required data.

type(ColumnT), intent(in) :: column
A handle of the column containing the required data.

integer, intent(in) :: row
The row number of the column cell containing the data to be accessed.

integer (kind=INT32), dimension(:,:,:), pointer

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 182

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two 3-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_cellarray3data

use dal
use errorhandling

implicit none
type(DataSetT) set

type(TableT) tab
type(ColumnT) coll, col2

integer (kind=INT32), dimension(:,:,:), pointer :: cl, c2
integer, dimension(3), parameter :: s = (/ 3,4,5 /)
integer :: i,j,k,1,n

| create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columni", INTEGER32, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers

n=20

do 1=0,numberOfRows(tab) - 1
cl => int32Array3Data(coll,l)
c2 => int32Array3Data(col2,1)

do k=0,4
do j=0,3
do i=0,2
c1(i,j,k) =n
c2(i,j,k) = c1(d,j,k)
n=n+1
end do
end do
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_cellarray3data

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 183

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how to use the int8Array2Data interface.

In the example a dataset is created (opened) containing

a table with 2 3-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_arrayarray3data

use dal
use errorhandling

implicit none
type (DataSetT) set

type(TableT) tab
type(ArrayT) arrl, arr2

integer (kind=INT32), dimension(:,:,:), pointer :: al, a2
integer, dimension(3), parameter :: s = (/ 3,4,5 /)
integer :: i,j,k,n

! create a set

set = dataSet("test.dat",CREATE)

arri addArray(set, "arrayl", INTEGER32, s, "km", "array comment")
arr2 addArray(set, "array2", INTEGER32, s, "km", "array comment")

I £i11 with unique numbers

n=20
al => int32Array3Data(arrl)
a2 => int32Array3Data(arr2)
do k=0,4
do j=0,3
do i=0,2

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

184

al(i,j,k) =n
a2(i,j,k) = al(di,j,k)
n=n+1

end do
end do
end do

call release(arril)
call release(arr2)
call release(set)

end program example_arrayarray3data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
int32Array3Data

PURPOSE

Get the int32 data from a column containing 3-dimensional array data.

INTERFACE
function int32ColumnArray3Data(column)

ARGUMENTS
e type(ColumnT), intent(in) :: column
RETURNS

e integer(kind=INT32), dimension(:,:,:,:), pointer

The 3-dimensional data is returned as a 4-dimensional array.

DESCRIPTION

ERRORS

EXAMPLES

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

!
!
!
!
! SAS is free software: you can redistribute it and/or modify

! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or

!

!

!

!

(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 185

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two 3-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised before the
dataset is released (closed).
program example_array3data

use dal
use errorhandling

implicit none

type (DataSetT) set

type(TableT) tab

type (ColumnT) coll, col2

integer (kind=INT32), dimension(:,:,:,
integer, dimension(3), parameter :: s = (/ 3,4,5 /
integer :: i,j,k,1l,n

1), pointer :: cl, c2

| create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columnl", INTEGER32, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i1l with unique numbers
cl => int32Array3Data(coll)
c2 => int32Array3Data(coll)

n=20
do 1=0,numberOfRows(tab) - 1
do k = 0,4
do j=0,3
do i=0,2
c1(i,j,k,1)
CQ(i,j,k,l)
n=n+1

n
c1(i,j,k,1)

end do
end do
end do
end do

call release(coll)

call release(col2)
call release(set)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

186

end program example_array3data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
int32Array4Data

PURPOSE
Get the int16 data from a column cell containing 4-dimensional array data.

INTERFACE
function int32ColumnArray4Data(column)
function int32ColumnArray4DataElement(column, row)

ARGUMENTS

o type(ColumnT), intent(in) :: column
A handle of the column containing the required data.

e integer, intent(in) :: row
The row number of the column cell containing the required data.

RETURNS

o integer(kind=INT32), dimension(:,:,:,:), pointer
DESCRIPTION
ERRORS

EXAMPLES

ESA (C) 2000-2018

SAS is free software: you can redistribute it and/or modify

(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

along with SAS. If not, see <http://www.gnu.org/licenses/>.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! In this example add dataset is created (opened) containing

xmmsas_20230412_1735-21.0.0

You should have received a copy of the GNU General Public License

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

XMM-Newton Science Analysis System Page: 187

a table with 2 columns of two 4-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_cellarray4data

use dal
use errorhandling

implicit none

type (DataSetT) set

type(TableT) tab

type (ColumnT) coll, col2

integer (kind=INT32), dimension(:,:,:,
integer, dimension(4), parameter :: s = (/ 3,4,5,6 /)
integer :: i,j,k,l1,m,n

:), pointer :: cl, c2

| create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columnl", INTEGER32, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

I £i11 with unique numbers

n=20
do m=0,number0fRows(tab) - 1
cl => int32Array4Data(coll,m)
c2 => int32Array4Data(col2,m)
do 1=0,5
do k=0,4
do j=0,3
do i=0,2
c1(i,j,k,1) =n
c2(i,j,k,1) = c1(i,j,k,1)
n=n+1
end do
end do
end do
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_cellarray4data

SEE ALSO

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

188

BUGS AND LIMITATIONS

None known.

NAME
int32Array4Data

PURPOSE
Get the int32 data from a column containing 4-dimensional array data.

INTERFACE
function int32ColumnArray4Data(column)

ARGUMENTS
o type(ColumnT), intent(in) :: column

RETURNS

The 4-dimensional column data is returned as a 5-dimensional array.

DESCRIPTION

ERRORS

EXAMPLES

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

!
]

!

!

!

!

]

!

]

! SAS is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
]

!

!

!

!

!

!

!

!

]

!

]

You should have received a copy of the GNU General Public License

along with SAS. If not, see <http://www.gnu.org/licenses/>.
In this example add dataset is created (opened) containing
a table with 2 columns of two 4-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine

the data type of the first array.

The columns are then initialised before the
dataset is released (closed).

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 189

program example_array4data

use dal
use errorhandling

implicit none
type(DataSetT) set

type(TableT) tab
type(ColumnT) coll, col2

integer (kind=INT32), dimension(:,:,:,:,:), pointer :: cl, c2
integer, dimension(4), parameter :: s = (/ 3,4,5,6 /)
integer :: i,j,k,l1,m,n

! create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll addColumn(tab, "columnl", INTEGER32, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers
cl => int32Array4Data(coll)
c2 => int32Array4Data(coll)

n=20
do m=0,number0fRows(tab) - 1
do 1=0,5
do k=0,4
do j=0,3
do i=0,2
c1(i,j,k,1l,m) =n
c2(i,j,k,1,m) c1(i,j,k,1,m)
n=n+1
end do
end do
end do
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_array4data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
int32Attribute

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

190

PURPOSE

Get the value of an attribute as an int32.

INTERFACE

function int32ArrayAttribute(array, name)

function int32AttributableAttribute(attributable, name)
function int32Attribute(attribute)

function int32BlockAttribute(block, name)

function int32ColumnAttribute(column, name)

function int32DataSetAttribute(dataSet, name)
function int32TableAttribute(table, name)

ARGUMENTS

RETURNS

DESCRIPTION
ERRORS

EXAMPLES

type(ArrayT), intent(in) :: array

A handle of the array containing the required attribute.
type(AttributableT), intent(in) :: attributable

A handle of the attributable containing the required attribute.
type(AttributeT), intent(in) :: attribute

A handle of the attribute.

type(BlockT), intent(in) :: block

A handle of the block containing the required attribute.
type(ColumnT), intent(in) :: column

A handle of the column containing the required attribute.

type(DataSetT), intent(in) :: dataSet
A handle of the dataset containing the required attribute.

character(len=%*), intent(in) :: name
The name of the required attribute.

type(TableT), intent(in) :: table
A handle of the table containing the required attribute.

integer (kind=INT32)

ESA (C) 2000-2018

SAS is free software: you can redistribute it and/or modify

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

SAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 191

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how int32 attributes are used.

The program creates a dataset containing two int32 attributes,

together with a table containing two int32 attributes.

The attributes are then accessed, by name, with

the int32Attribute() function.

Also, it is shown how to access the attributes by position.

program example_int32attribute

use dal
use errorhandling
implicit none

type(DataSetT) set
type(TableT) tab
type (AttributeT) att
integer i

set = dataSet("test.dat",CREATE)
call setAttribute(set,"int1",1,"int comment")
call setAttribute(set,"int2",2,"int comment")

tab = addTable(set,"table",10);
call setAttribute(tab,"intl1",3,"int comment")
call setAttribute(tab,"int2",4,"int comment")

write(*,*) int32Attribute(set, "intl") ! output ’1’
write(*,*) int32Attribute(set, "int2") ! output ’2’
write(*,*) int32Attribute(tab, "intl") ! output ’3’
write(*,*) int32Attribute(tab, "int2") ! output ’4’

do i = 0, numberOfAttributes(set) - 1
att = attribute(set, i)

write(*,*) int32Attribute(att) ! output the sequence 1, 2

end do

call release(set)

end program example_int32attribute

SEE ALSO

BUGS AND LIMITATIONS

NAME

int32Data

PURPOSE

Get the int32 data from an array, column or column cell.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 192

INTERFACE

function int32ArrayData(array)
function int32ColumnData(column)
function int32ColumnDataElement(column, row)

ARGUMENTS

RETURNS

DESCRIPTION

type(ArrayT), intent(in) :: array

A handle of the array containing the required data.
type(ColumnT), intent(in) :: column

A handle of the column containing the required data.

integer, intent(in) :: row

The row number of the column cell containing the required data.

integer (kind=INT32), dimension(:), pointer
The data is returned as a flat vector regardless of the dimensionality of the data.

The data is returned in a vector regardles of the dimensionality of the data. In particular,
when accessing a scalar column cell, a vector of length 1 is returned, which contains the
single scalar value.

ERRORS

EXAMPLES

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing
a table with 2 columns of two 4-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, and then the second column
is output by accessing the column’s data as a flat vector.

program example_int32data

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 193

use dal
use errorhandling

implicit none

type(DataSetT) set

type(TableT) tab

type (ColumnT) coll, col2

integer (kind=INT32), dimension(:,:,:,:,:), pointer :: cl, c2
integer (kind=INT32), dimension(:), pointer :: cd

integer, dimension(4), parameter :: s = (/ 3,4,5,6 /)
integer :: i,j,k,1l1,m,n

! create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 5, "table comment")

coll = addColumn(tab, "columnl", INTEGER32, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers
cl => int32Array4Data(coll)
c2 => int32Array4Data(col2)

n=20
do m=0,number0fRows(tab) - 1
do 1=0,5
do k=0,4
do j=0,3
do i=0,2
c1(i,j,k,1l,m) =n
c2(i,j,k,1,m) c1(i,j,k,1,m)
n=n+1
end do
end do

end do
end do
end do

call release(coll)
call release(col2)

! Output the col2
cd => int32Data(col2) ! Access the column’s 4-dimensional data as a flat vector.

do n = 0,numberOfElements(coll) * numberOfRows(tab) - 1
write(*,*) cd(n)

end do

call release(col2)
call release(set)

end program example_int32data

SEE ALSO

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 194

BUGS AND

NAME

PURPOSE

LIMITATIONS

None known.

int32VectorData

Get the int32 data from an array or column cell containing vector data.

INTERFACE

function int32ArrayVectorData(array)
function int32ColumnVectorDataElement(column, row)

ARGUMENTS

RETURNS

o type(ArrayT), intent(in) :: array
A handle of the array containing the required data.

e type(ColumnT), intent(in) :: column
A handle of the column containing the required data.

e integer(kind=INT32), intent(in) :: row
The row number of the column cell containing the data to be accessed.

e integer(kind=INT32), dimension(:), pointer

DESCRIPTION

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

!
]
]
]
]
!
]
]
!
! SAS is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.

]

!

!

!

]

]

]

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two vector arrays.

The second array has the same data type as the first; this

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 195

is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_cellvectordata

use dal
use errorhandling

implicit none

type (DataSetT) set

type(TableT) tab

type(ColumnT) coll, col2

integer (kind=INT32), dimension(:), pointer :: cl, c2
integer, dimension(1), parameter :: s = (/ 3 /)
integer :: i,m,n

! create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll addColumn(tab, "columnl", INTEGER32, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers

n=20

do m=0,numberOfRows(tab) - 1
cl => int32VectorData(coll,m)
c2 => int32VectorData(col2,m)

do i=0,2
ci(i) = n
c2(i) = c1(i)
n=n+1
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_cellvectordata

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).
SAS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

SAS is distributed in the hope that it will be useful,

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

196

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

]
!
]
!
! You should have received a copy of the GNU General Public License
! along with SAS. If not, see <http://www.gnu.org/licenses/>.

! This example shows how to use the int32Array2Data interface.

! In the example a dataset is created (opened) containing

! a table with 2 vector arrays.

!

]

!

]

!

!

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The array is then initialised,
program example_arrayvectordata

use dal
use errorhandling

implicit none

type(DataSetT) set

type(TableT) tab

type(ArrayT) arrl, arr2

integer (kind=INT32), dimension(:), pointer :: al, a2
integer, dimension(1l), parameter :: s = (/ 3 /)
integer :: i,n

| create a set

set = dataSet("test.dat",CREATE)

arrl = addArray(set, "arrayl", INTEGER32, s, "km", "array comment")
arr2 = addArray(set, "array2", INTEGER32, s, "km", "array comment")

! £i1l with unique numbers
n=20

al => int32VectorData(arril)
a2 => int32VectorData(arr2)

do i=0,2
al(i) = n
a2(i) = a1(i)
n=n+1
end do

call release(arrl)
call release(arr2)
call release(set)

end program example_arrayvectordata

SEE ALSO

BUGS AND LIMITATIONS

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 197

None known.

NAME
int32VectorData

PURPOSE
Get the int32 data from a column containing vector data.

INTERFACE
function int32ColumnVectorData(column)

ARGUMENTS

o type(ColumnT), intent(in) :: column
A handle of the column containing the required data.

RETURNS
integer(kind=INT32), dimension(:,:), pointer
DESCRIPTION

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

]
!

!

]

!

!

!

]

!

! SAS is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!

!

!

!

!

!

!

!

!

!

!

!

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two vector arrays.

The second column has the same data type as the first; this
is ensured by using the columnDataType() function to determine
the data type of the first array.

The columns are then initialised before the

dataset is released (closed).

program example_columnvectordata

use dal

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

198

use errorhandling
implicit none

type (DataSetT) set

type(TableT) tab

type(ColumnT) coll, col2

integer (kind=INT32), dimension(:,:), pointer :: cl, c2
integer, dimension(1), parameter :: s = (/ 3 /)
integer :: i,m,n

! create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 10, "table comment")
coll
col2

addColumn(tab, "column2", columnDataType(coll), "km", s,

! £fi1ll with unique numbers
cl => int32VectorData(coll)
c2 => int32VectorData(col?2)

n=20
do m=0,number0fRows(tab) - 1
do i=0,2
ci(i,m) = n
c2(i,m) = c1(i,m)
n=n+
end do
end do

[y

call release(coll)
call release(col2)
call release(set)

end program example_columnvectordata

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
INTEGERS

PURPOSE

An enumeration value which is used to indicate int8 data.
DESCRIPTION
EXAMPLES

SEE ALSO

xmmsas_20230412_1735-21.0.0

addColumn(tab, "columnl", INTEGER32, "km", s, "column comment")

"column comment")

XMM-Newton Science Analysis System Page: 199

BUGS AND LIMITATIONS

None known.

NAME
INTEGER16

PURPOSE
An enumeration value which is used to indicate int16 data.

DESCRIPTION

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
INTEGER32

PURPOSE

An enumeration value which is used to indicate int16 data.

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
intNullValue
PURPOSE
Get the value of the integer null value.
INTERFACE
subroutine intNullValueArray(array)
subroutine intNullValueColumn(column)
subroutine intNullValueDataComponent(dataComponent)
subroutine intNullValueNullable(nullable)
ARGUMENTS

o type(ArrayT), intent(in) :: array
A handle of the array whose null value is to be retrieved.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 200

o type(ColumnT), intent(in) :: column
A handle of the column whose null value is to be retrived.

o type(DataComponentT), intent(in) :: dataComponent
A handle of the dataComponent whose null value is to be retrieved.

e type(NullableT), intent(in) :: nullable
A handle of the nullable whose null value is to be retrieved.

RETURNS

DESCRIPTION
Get the null value of an object containing integer data. It is an error to call this function
if the object’s null value has not been defined. The logical function nullDefined() may be
used to determine if the null value of a geven object has been defined.

The null value of an object containing integer data, may be defined with a call to setNull-
Value().

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how null values are used.

subroutine check(thisNullable)

use dal

type(NullableT), intent(in) :: thisNullable

write(*,*) "Null defined?: ", nullDefined(thisNullable), nullType(thisNullable)
end subroutine check
program example_nullvalues

use dal
use errorhandling

implicit none

type (DataSetT) set

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 201

type(ArrayT) arrl, arr2
type(TableT) tab
type (ColumnT) coll, col2

integer(kind=int32), dimension(:), pointer :: i32

real (kind=double), dimension(:), pointer :: r64

integer (kind=int32), dimension(:,:,:), pointer :: al, a2
integer, dimension(3), parameter :: s = (/ 3,4,2 /)
integer :: i,j,k,n

! create a set

set = dataSet("test.dat",CREATE)

arrl = addArray(set, "arrayl", INTEGER32, dimensions=s)

arr2 = addArray(set, "array2", arrayDataType(arrl), dimensions=s)

I £i11 with unique numbers
al => int32Array3Data(arrl)
a2 => int32Array3Data(arrl)

n=20
do k=0,1
do j=0,3
do i=0,2
al(i,j,k) =n
a2(i,j,k) = a1(i,j,k) + 1
n=n+1
end do
end do
end do

call setNullValue(arrl, 999999)
call check(nullable(arrl))

call setToNull(arrl, O) ! Set the first element of array arrl to null.
! Would have given an error, if the null
! value of array arrl had not been set.

if(nullType(arrl) .eq. INTEGER_NULL) then !
write(*,*) "Using null value of arrl, in arr2"
call setNullValue(arr2, intNullValue(arrl))

else
call setNullValue(arr2, 999999)

end if

call check(nullable(arr2))
call setToNull(arr2, 1) ! Set the second element of array arr2 to null.
! Would have given an error, if the null

! value of array arr2 had not been set.

call release(arril)
call release(arr2)

tab = addTable(set,"some table",100)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 202

coll = addColumn(tab,"int32",INTEGER32,units="m",comment="in32 column")

i32 => int32Data(coll)
do i=0,numberOfRows(tab)-1
i32(i) = 3*i
end do
call setNullValue(coll, 999999)
call check(nullable(coll))

call setToNull(coll, 0) ! Set the first element of column coll to null.

col2 = addColumn(tab,"real64" ,REAL64,units="hm",comment="real64 column")
r64 => real64Data(col2)
do i=0,number0fRows (tab)-1
r64(i) = 0.25%i
end do

! col is a non-integer column and it would be an
! an error to call setNullValue().
call check(nullable(col2))

call setToNull(col2, O) ! Set the first element of column col2 to null.

if (hasNulls(col2)) then
do i=0,number0fRows(tab)-1
if (isNull(col2, i)) then
write(*,*) "element", i, "is null"
else
write(*,*) "element", i, "is", r64(i)
endif
end do
endif

call release(coll)
call release(col2)
call release(set)

end program example_nullvalues

SEE ALSO
hasNulls isNotNull isNull nullable nullDefined nullType setNullValue setToNull

BUGS AND LIMITATIONS

None known.

NAME
isNotNull

PURPOSE
NOT IMPLEMENTED Determine the state of all the values in an array or column.

INTERFACE
function isNotNull(array)
function isNotNull(column)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 203

ARGUMENTS
o type(ArrayT), intent(in) :: array
A handle of the array containing the values to be checked.

o type(ColumnT), intent(in) :: column
A handle of the column containing the values to be checked.

RETURNS
e logical, dimension(:), pointer :: isNotNullArray A vector whose elements indicate the
state of the corresponing values in the given object. If the vector element value is true,
the corresponding value in the object is null.
DESCRIPTION
ERRORS
EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how null values are used.

subroutine check(thisNullable)

use dal

type(NullableT), intent(in) :: thisNullable

write(*,*) "Null defined?: ", nullDefined(thisNullable), nullType(thisNullable)
end subroutine check
program example_nullvalues

use dal
use errorhandling

implicit none

type (DataSetT) set
type(ArrayT) arril, arr2

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 204

type(TableT) tab
type(ColumnT) coll, col2

integer(kind=int32), dimension(:), pointer :: i32

real (kind=double), dimension(:), pointer :: r64

integer (kind=int32), dimension(:,:,:), pointer :: al, a2
integer, dimension(3), parameter :: s = (/ 3,4,2 /)
integer :: i,j,k,n

| create a set

set = dataSet("test.dat",CREATE)

arrl = addArray(set, "arrayl", INTEGER32, dimensions=s)

arr2 = addArray(set, "array2", arrayDataType(arrl), dimensions=s)

I £i11 with unique numbers
al => int32Array3Data(arrl)
a2 => int32Array3Data(arrl)

n=20
do k=0,1
do j=0,3
do i=0,2
al(i,j,k) =n
a2(i,j,k) = a1(i,j,k) + 1
n=n+1
end do
end do
end do

call setNullValue(arril, 999999)
call check(nullable(arrl))

call setToNull(arrl, O) ! Set the first element of array arrl to null.
! Would have given an error, if the null
! value of array arrl had not been set.

if(nullType(arrl) .eq. INTEGER_NULL) then !
write(*,*) "Using null value of arrl, in arr2"
call setNullValue(arr2, intNullValue(arrl))

else
call setNullValue(arr2, 999999)

end if

call check(nullable(arr2))
call setToNull(arr2, 1) ! Set the second element of array arr2 to null.
! Would have given an error, if the null

! value of array arr2 had not been set.

call release(arril)
call release(arr2)

tab = addTable(set,"some table",100)

coll = addColumn(tab,"int32",INTEGER32,units="m",comment="in32 column")

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 205

i32 => int32Data(coll)
do i=0,numberOfRows(tab)-1
i32(i) = 3%i
end do
call setNullValue(coll, 999999)
call check(nullable(coll))

call setToNull(coll, O) ! Set the first element of column coll to null.

col2 addColumn(tab,"real64" ,REAL64,units="hm",comment="real64 column")
r64 => real64Data(col2)
do i=0,numberOfRows(tab)-1
r64(i) = 0.25%i
end do

! col is a non-integer column and it would be an
! an error to call setNullValue().
call check(nullable(col2))

call setToNull(col2, O) ! Set the first element of column col2 to null.

if(hasNulls(col2)) then
do i=0,numberOfRows(tab)-1
if (isNull(col2, i)) then
write(*,*) "element", i, "is null"
else
write(*,*) "element", i, "is", r64(i)
endif
end do
endif

call release(coll)
call release(col2)
call release(set)

end program example_nullvalues

SEE ALSO
hasNulls intNullValue isNull nullable nullDefined nullType setToNull setNullValue

BUGS AND LIMITATIONS

None known.

NAME
isNull

PURPOSE
Determines if a value is null.

INTERFACE
function isNullArray(array, position)
function isNullCell(column, row, position)
function isNullColumn(column, row)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 206

ARGUMENTS

e type(ArrayT), intent(in) :: array
A handle of the array containing the value to be checked.
e type(ColumnT), intent(in) :: column
A handle of the column containing the value to be checked.
e integer(kind=INT32), intent(in) :: position
The position of the value within the array (or the column cell in the case of a multi-
dimensional column) which is to be checked.
e integer(kind=INT32), intent(in) :: row
The row number of the column cell containing the value to be checked.

RETURNS

e logical
True, if the value is null, false otherwise.

DESCRIPTION
In the case of integer values, an error will be raised if the object (array or column) does not
have a null-value defined.

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how null values are used.

subroutine check(thisNullable)

use dal

type(NullableT), intent(in) :: thisNullable

write(*,*) "Null defined?: ", nullDefined(thisNullable), nullType(thisNullable)

end subroutine check
program example_nullvalues

use dal
use errorhandling

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 207

implicit none

type(DataSetT) set
type(ArrayT) arrl, arr2
type(TableT) tab
type(ColumnT) coll, col2

integer(kind=int32), dimension(:), pointer :: i32

real (kind=double), dimension(:), pointer :: r64

integer (kind=int32), dimension(:,:,:), pointer :: al, a2
integer, dimension(3), parameter :: s = (/ 3,4,2 /)
integer :: i,j,k,n

I create a set

set = dataSet("test.dat",CREATE)

arrl = addArray(set, "arrayl", INTEGER32, dimensions=s)

arr2 = addArray(set, "array2", arrayDataType(arrl), dimensions=s)

! £i1l1 with unique numbers
al => int32Array3Data(arrl)
a2 => int32Array3Data(arrl)

n=20
do k=0,1
do j=0,3
do i=0,2
al(i,j,k) =n
a2(i,j,k) = a1(i,j,k) + 1
n=mn+1
end do
end do
end do

call setNullValue(arril, 999999)
call check(nullable(arrl))

call setToNull(arrl, O) ! Set the first element of array arrl to null.
! Would have given an error, if the null
! value of array arrl had not been set.

if(nullType(arrl) .eq. INTEGER_NULL) then !
write(*,*) "Using null value of arrl, in arr2"
call setNullValue(arr2, intNullValue(arrl))

else
call setNullValue(arr2, 999999)

end if

call check(nullable(arr2))
call setToNull(arr2, 1) ! Set the second element of array arr2 to null.
! Would have given an error, if the null

! value of array arr2 had not been set.

call release(arrl)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 208

call release(arr2)
tab = addTable(set,"some table",100)
coll = addColumn(tab,"int32",INTEGER32,units="m",comment="in32 column")

i32 => int32Data(coll)
do i=0,numberOfRows(tab)-1
i32(i) = 3*i
end do
call setNullValue(coll, 999999)
call check(nullable(coll))

call setToNull(coll, O) ! Set the first element of column coll to null.

col2 = addColumn(tab,"real64" ,REAL64,units="hm",comment="real64 column")
r64 => real64Data(col2)
do i=0,numberOfRows(tab)-1
r64(i) = 0.25%i
end do

! col is a non-integer column and it would be an
! an error to call setNullValue().
call check(nullable(col2))

call setToNull(col2, 0) ! Set the first element of column col2 to null.

if (hasNulls(col2)) then
do i=0,numberOfRows(tab)-1
if (isNull(col2, i)) then
write(*,*) "element", i, "is null"
else
write(*,*) "element", i, "is", r64(i)
endif
end do
endif

call release(coll)
call release(col2)
call release(set)

end program example_nullvalues

SEE ALSO
hasNulls intNullValue isNotNull nullable nullDefined nullType setNullValue setToNull

BUGS AND LIMITATIONS

None known.

NAME
keepDataSet

PURPOSE
Tells the data set server object to not to discard the named data set.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page: 209

ARGUMENTS

e character(len=*), intent(in) :: dataSetName
The name of the dataset.

RETURNS
None

DESCRIPTION
The named data set will not be released from memory.

This subroutine must only be called by Meta Tasks.
ERRORS

EXAMPLES

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
GNU General Public License for more details.

See the

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how to use the keepDataSet
subroutine
program example_keepdiscarddataset
use dal
implicit none

type(DataSetT) set

set = dataSet("test.dat",CREATE)

call release(set) ! The dataset will be released from memory

]
]
]
]
]
]
]
]
]
! SAS is distributed in the hope that it will be useful,
]
]
]
!
!
]
]
]

call keepDataSet("test.dat") ! Tell the dataset server not to discard

! the dataset with name "test.dat"

set = dataSet("test.dat",READ)

call release(set) ! The dataset will not be released from memory

set = dataSet("test.dat",READ) ! The dataset is already in memory, so this

! operation has virtually no overhead.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 210

call release(set) ! The dataset will not be released from memory
call discardDataSet("test.dat") ! Tell the dataset server to discard and
| release the dataset with name "test.dat"

end program example_keepdiscarddataset

SEE ALSO
discardDataSet

BUGS AND LIMITATIONS

None known.

NAME
label

PURPOSE
Get the label (comment) of an object.

INTERFACE
function arrayAttributeComment(array, name)
function attributableAttributeComment(attributable, name)
function blockAttributeComment(block, name)
function columnAttributeComment(column, name)
function dataSetAttributeComment(dataSet, name)
function labelOfAttributable(attributable)
function labelOfAttribute(attribute)
function labelOfArray(array)
function labelOfBlock(block)
function labelOfColumn(column)
function labelOfDataSet(dataSet)
function labelOfLabelled(labelled)
function labelOfTable(table)
function tableAttributeComment(table, name)

ARGUMENTS

o type(ArrayT) :: array
A handle of an array.
o type(AttributableT) :: attributable
A handle of an attributable.
o type(AttributeT), intent(in) :: attribute
A handle of an attribute.
e type(BlockT) :: block
A handle of a block.

o type(ColumnT) :: column
A handle of a column.

o type(DataSetT) :: dataSet
A handle of a dataset.
o type(LabelledT) :: labelled
A handle of a labelled.
o character(len="*), intent(in) :: name
The name of the attribute from which the comment is to be retrieved.

o type(TableT) :: table
A handle of a table.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 211

RETURNS
e character(len=IdentifierLength)
DESCRIPTION
ERRORS
EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with SAS. If not, see <http://www.gnu.org/licenses/>.
This example shows how the label, relabel, name and rename interfaces are used.
subroutine displayLabelled(1)
use dal

implicit none

type(LabelledT), intent(in) :: 1

write(*,*) "the object with name ", name(1), " has label: ", label(1l)
end subroutine displayLabelled

subroutine display(set)
use dal

implicit none

type (DataSetT) set
type(ArrayT) arr
type(TableT) tab
type (ColumnT) col
type (AttributeT) att

att = attribute(set, 0)

write(*,*) name(att), label(att)
call displayLabelled(labelled(att))

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 212

arr = array(set, 0, READ)
write(*,*) name(arr), label(arr)
call displayLabelled(labelled(arr))

att = attribute(arr, 0)
write(*,*) name(att), label(att)
call displayLabelled(labelled(att))

tab = table(set, 1)
write(*,*) name(tab), label(tab)
call displayLabelled(labelled(tab))

att = attribute(tab, 0)
write(*,*) name(att), label(att)
call displayLabelled(labelled(att))

col = column(tab, O, READ)
write(*,*) name(col), label(col)
call displayLabelled(labelled(col))

att = attribute(col, 0)
write(*,*) name(att), label(att)
call displayLabelled(labelled(att))

end subroutine display
program example_labelled
use dal
implicit none

type (DataSetT) set

type(ArrayT) arr

type (TableT) tab

type (ColumnT) col

I type(AttributeT) att

! integer(kind=int32), dimension(:,:,:), pointer :: a
integer, dimension(3), parameter :: s = (/ 3,4,2 /)

| create a set

set = dataSet("test.dat",CREATE)

call setAttribute(set,"attl","valuel","a dataset attribute comment")

arr = addArray(set, "array", INTEGER32, comment="an array comment", dimensions=s)
call setAttribute(arr,"att2","value2","an array attribute comment")

tab = addTable(set, "table", 10, comment="a table comment")

call setAttribute(tab,"att3","value3","a table attribute comment")

col = addColumn(tab,"int8",INTEGERS, comment="a column comment")

call setAttribute(col,"TLMAX","value4","a column attribute comment")

call display(set)

call relabel(tab, "a new table comment")
call rename(col, "newcolnm")

call display(set)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

213

SEE ALSO

call release(set)

end program example_labelled

BUGS AND LIMITATIONS

NAME

PURPOSE

None known.

labelled

INTERFACE
function arrayLabelled(array)

function attributableLabelled(attributable)
function attributeLabelled(attribute)
function blockLabelled(block)

function columnLabelled(column)

function datasetLabelled(dataSet)
function tableLabelled(table)

ARGUMENTS

RETURNS

DESCRIPTION

ERRORS

EXAMPLES

type(ArrayT), intent(in) :: array
A handle of an array.

type(AttributableT), intent(in) :: attributable
A handle of an attributable.

type(AttributeT), intent(in) :: attribute
A handle of an attribute.

type(BlockT), intent(in) :: block

A handle of a block.

type(ColumnT), intent(in) :: column

A handle of a column.

type(DataSetT), intent(in) :: dataSet
A handle of a dataSet.

type(TableT), intent(in) :: table
A handle of a table.

type(LabelledT)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 214

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with SAS. If not, see <http://www.gnu.org/licenses/>.
This example shows how the label, relabel, name and rename interfaces are used.
subroutine displayLabelled(1)
use dal

implicit none

type(LabelledT), intent(in) :: 1

write(*,*) "the object with name ", name(1), " has label: ", label(l)
end subroutine displaylLabelled

subroutine display(set)
use dal

implicit none

type(DataSetT) set
type (ArrayT) arr
type(TableT) tab
type (ColumnT) col
type (AttributeT) att

att = attribute(set, 0)
write(*,*) name(att), label(att)
call displayLabelled(labelled(att))

arr = array(set, 0, READ)
write(*,*) name(arr), label(arr)
call displayLabelled(labelled(arr))

att = attribute(arr, 0)
write(*,*) name(att), label(att)
call displaylLabelled(labelled(att))

tab = table(set, 1)

write(*,*) name(tab), label(tab)
call displayLabelled(labelled(tab))

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

215

att = attribute(tab,
write(*,*) name(att),
call displayLabelled(

col = column(tab, O,
write(*,*) name(col),
call displayLabelled(

att = attribute(col,
write(*,*) name(att),

0)
label(att)
labelled(att))

READ)
label(col)
labelled(col))

0)
label(att)

call displayLabelled(labelled(att))
end subroutine display
program example_labelled

use dal

implicit none

type (DataSetT) set

type (ArrayT) arr

type(TableT) tab

type (ColumnT) col

I type(AttributeT) att

! integer(kind=int32), dimension(:,:,:), pointer :: a
integer, dimension(3), parameter :: s = (/ 3,4,2 /)

| create a set

set = dataSet("test.dat",CREATE)

call setAttribute(set,"attl","valuel","a dataset attribute comment")

arr = addArray(set, "array", INTEGER32, comment="an array comment", dimensions=s)
call setAttribute(arr,"att2","value2","an array attribute comment")

tab = addTable(set, "table", 10, comment="a table comment")

call setAttribute(tab,"att3","value3","a table attribute comment")

col = addColumn(tab,"int8",INTEGERS, comment="a column comment")

call setAttribute(col,"TLMAX","value4","a column attribute comment")

call display(set)

call relabel(tab, "a new table comment")
call rename(col, "newcolnm")

call display(set)

call release(set)

end program example_labelled

SEE ALSO

BUGS AND LIMITATIONS

None known.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 216

NAME
LabelledT

PURPOSE
A derived type which is used to declare Labelled handle objects.

DESCRIPTION

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with SAS. If not, see <http://www.gnu.org/licenses/>.
This example shows how the label, relabel, name and rename interfaces are used.
subroutine displayLabelled(1)
use dal

implicit none

type(LabelledT), intent(in) :: 1

write(*,*) "the object with name ", name(1), " has label: ", label(1l)
end subroutine displaylLabelled

subroutine display(set)
use dal

implicit none

type(DataSetT) set
type (ArrayT) arr
type(TableT) tab
type (ColumnT) col
type (AttributeT) att

att = attribute(set, 0)
write(*,*) name(att), label(att)
call displayLabelled(labelled(att))

arr = array(set, 0, READ)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 217

write(*,*) name(arr), label(arr)
call displayLabelled(labelled(arr))

att = attribute(arr, 0)
write(*,*) name(att), label(att)
call displayLabelled(labelled(att))

tab = table(set, 1)
write(*,*) name(tab), label(tab)
call displayLabelled(labelled(tab))

att = attribute(tab, 0)
write(*,*) name(att), label(att)
call displayLabelled(labelled(att))

col = column(tab, O, READ)
write(*,*) name(col), label(col)
call displayLabelled(labelled(col))

att = attribute(col, 0)
write(*,*) name(att), label(att)
call displayLabelled(labelled(att))

end subroutine display
program example_labelled
use dal
implicit none

type(DataSetT) set

type (ArrayT) arr

type(TableT) tab

type (ColumnT) col

! type(AttributeT) att

! integer(kind=int32), dimension(:,:,:), pointer :: a
integer, dimension(3), parameter :: s = (/ 3,4,2 /)

| create a set

set = dataSet("test.dat",CREATE)

call setAttribute(set,"attl","valuel","a dataset attribute comment")

arr = addArray(set, "array", INTEGER32, comment="an array comment", dimensions=s)
call setAttribute(arr,"att2","value2","an array attribute comment")

tab = addTable(set, "table", 10, comment="a table comment")

call setAttribute(tab,"att3","value3","a table attribute comment")

col = addColumn(tab,"int8",INTEGERS, comment="a column comment")

call setAttribute(col,"TLMAX","valued4","a column attribute comment")

call display(set)

call relabel(tab, "a new table comment")
call rename(col, "newcolnm")

call display(set)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 218

call release(set)

end program example_labelled

SEE ALSO
label name

BUGS AND LIMITATIONS

None known.

NAME
LOW_MEMORY

PURPOSE
An enumeration value which is used to indicate that the Low Memory Modelshould be used
to open a dataset.

DESCRIPTION

ERRORS

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
mode(dataSet)

PURPOSE
Get the access mode of an object.

ARGUMENTS
o type(DataSetT) :: dataSet
RETURNS
e integer
The value returned is one of the enumeratioin values: READ, CREATE, MODIFY,
TEMP
DESCRIPTION
ERRORS

EXAMPLES

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 219

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

! This example shows how the mode()

! function is used.

function addTableToSet(s, n, r)

!
!
|
!
!
! SAS is distributed in the hope that it will be useful,
!
|
!
!
!
!

use dal

implicit none

type(DataSetT), intent(in) :: s
character(len=%*), intent(in) :: n
integer, intent(in) :: r

type(TableT) :: addTableToSet

if(mode(s).eq.READ) then

write(*,*) ’The table with name ’, n, ’ is read only’
else

addTableToSet = addTable(s,n,r)
end if

end function addTableToSet
program example_mode
use dal
implicit none
type (DataSetT) set
type(TableT) tab
type (BlockT) blk

integer i
type(TableT) :: addTableToSet

set dataSet ("test.dat",CREATE)
tab = addTableToSet(set,"tablel",10)
call release(set)

set dataSet ("test.dat",READ)
tab addTableToSet (set,"table2",10)
call release(set)

end program example_mode

SEE ALSO

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 220

READ CREATE MODIFY TEMP
BUGS AND LIMITATIONS

None known.

NAME
MODIFY

PURPOSE
An enumeration value which is used to indicate that modify (Read and Write) mode should
be used.

DESCRIPTION

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME

name

PURPOSE
Get the name of an object.

INTERFACE
function nameOfArray(array)
function nameOfAttributable(attributable)
function nameOfAttribute(attribute)
function nameOfBlock(block)
function nameOfColumn(column)
function nameOfDataSet(dataSet)
function nameOfLabelled(labelled)
function nameOfTable(table)

ARGUMENTS

o type(ArrayT) :: array
A handle of the array whose name is required.

o type(AttributableT) :: attributable
A handle of the attributable whose name is required.

o type(AttributeT) :: attribute
A handle of the attribute whose name is required.

o type(BlockT) :: block
A handle of the block whose name is required.

e type(ColumnT) :: column
A handle of the column whose name is required.

e type(DataSetT) :: dataSet
A handle of the dataset whose name is required.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 221

o type(LabelledT) :: labelled
A handle of the labelled whose name is required.

e type(TableT) :: table
A handle of the table whose name is required.

RETURNS
o character(len=IdentifierLength) :: nameOfAttribute
DESCRIPTION
ERRORS
EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with SAS. If not, see <http://www.gnu.org/licenses/>.
This example shows how the label, relabel, name and rename interfaces are used.
subroutine displayLabelled(1)
use dal

implicit none

type(LabelledT), intent(in) :: 1

write(*,*) "the object with name ", name(1), " has label: ", label(1l)
end subroutine displayLabelled

subroutine display(set)
use dal

implicit none

type(DataSetT) set
type (ArrayT) arr
type(TableT) tab
type (ColumnT) col
type (AttributeT) att

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 222

att = attribute(set, 0)
write(*,*) name(att), label(att)
call displayLabelled(labelled(att))

arr = array(set, O, READ)
write(*,*) name(arr), label(arr)
call displayLabelled(labelled(arr))

att = attribute(arr, 0)
write(*,*) name(att), label(att)
call displayLabelled(labelled(att))

tab = table(set, 1)
write(*,*) name(tab), label(tab)
call displayLabelled(labelled(tab))

att = attribute(tab, 0)
write(*,*) name(att), label(att)
call displayLabelled(labelled(att))

col = column(tab, O, READ)
write(*,*) name(col), label(col)
call displayLabelled(labelled(col))

att = attribute(col, 0)
write(*,*) name(att), label(att)
call displayLabelled(labelled(att))

end subroutine display
program example_labelled
use dal
implicit none

type (DataSetT) set

type (ArrayT) arr

type(TableT) tab

type (ColumnT) col

I type(AttributeT) att

! integer(kind=int32), dimension(:,:,:), pointer :: a
integer, dimension(3), parameter :: s = (/ 3,4,2 /)

| create a set

set = dataSet("test.dat",CREATE)

call setAttribute(set,"attl","valuel","a dataset attribute comment")

arr = addArray(set, "array", INTEGER32, comment="an array comment", dimensions=s)
call setAttribute(arr,"att2","value2","an array attribute comment")

tab = addTable(set, "table", 10, comment="a table comment")

call setAttribute(tab,"att3","value3","a table attribute comment")

col = addColumn(tab,"int8",INTEGERS, comment="a column comment")

call setAttribute(col,"TLMAX","value4","a column attribute comment")

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

223

call display(set)

call relabel(tab, "a new table comment")
call rename(col, "newcolnm")

call display(set)

call release(set)

end program example_labelled

SEE ALSO
label LabelledT

BUGS AND LIMITATIONS

None known.

NAME

next

PURPOSE
Iterate to the next subtable.

INTERFACE
function subTableNext(subTable)

ARGUMENTS

o type(SubTableT), intent(in) :: subTable
A handle of the subTable.

RETURNS

e logical

DESCRIPTION

ERRORS

EXAMPLES
TBD

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
nullable

PURPOSE
Convert a subclass of Nullable to Nullable.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 224

INTERFACE
function arrayNullable(array)
function columnNullable(column)
function dataComponentNullable(dataComponent)

ARGUMENTS
e type(ArrayT), intent(in) :: array
The handle of an array which is to be converted to a DataComponent
o type(ColumnT), intent(in) :: column
The handle of a column which is to be converted to a DataComponent

o type(DataComponentT), intent(in) :: dataComponent
The handle of a dataComponent object which is to be converted to a Nullable object.

RETURNS
o type(DataComponentT)
The converted object is returned as a handle to a DataComponent object.
DESCRIPTION
ERRORS
EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

!
!

!

!

! SAS is free software: you can redistribute it and/or modify

! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or

! (at your option) any later version.
!

]

!

!

!

!

]

!

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.
! This example illustrates the use of the dataComponent() function.
! The units of objects with data type BOOLEAN and STRING are meaningless
! and so are not displayed.
subroutine displayUnits(dcomponent)
use dal

implicit none

type (DataComponentT) dcomponent
integer dattype

dattype = dataType(dcomponent)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 225

write(*,*) dattype

if (dattype.eq.INTEGER8.or.dattype.eq.INTEGER16.0or.dattype.eq. INTEGER32 &
.or.dattype.eq.REAL32.or.dattype.eq.REAL64) then
write(*,*) units(dcomponent)

end if

end subroutine displayUnits
program example_datacomponent
use dal
implicit none

type (ArrayT) arr

type (BlockT) blk

type (ColumnT) col

type(DataSetT) set

type(TableT) tab

integer i, j

integer, dimension(3), parameter :: s = (/ 2,3,4 /)

set = dataSet("test.dat",CREATE)
tab = addTable(set,"some table",100)

col = addColumn(tab, "bool" ,BOOLEAN)

col = addColumn(tab,"int8",INTEGER8,units="cm",comment="int8 column")

col = addColumn(tab,"int16",INTEGER16,units="dm",comment="int16 column")

col = addColumn(tab,"int32",INTEGER32,units="m",comment="in32 column")

col = addColumn(tab,"real32",REAL32,units="Dm",comment="real32 column")

col = addColumn(tab,"real64",REAL64,units="hm",comment="real64 column")

col = addColumn(tab,"string",STRING, comment="string column",dimensions=(/80/))
arr = addArray(set, "arrayl", INTEGER16, dimensions=s, units="klm")

arr = addArray(set, "array2", INTEGER32, dimensions=s, units="kla")

do i = 0, numberOfBlocks(set) - 1
blk = block(set, i, READ)
if (blockType(blk).eq.ARRAY_BLOCK) then
arr = array(set, name(blk), READ)
call displayUnits(dataComponent(arr))
else
tab = table(set, name(blk))
do j = 0, number0OfColumns(tab) - 1
col = column(tab, j, READ)
call displayUnits(dataComponent(col))
end do
end if
end do
call release(set)

end program example_datacomponent

SEE ALSO

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 226

BUGS AND LIMITATIONS

None known.

NAME
nullDefined

PURPOSE
Determine if the integer null value has been set.

INTERFACE
function nullDefined Array(array)
function nullDefinedColumn(column)
function nullDefinedDataComponent(dataComponent)
function nullDefinedNullable(nullable)

ARGUMENTS

e type(ArrayT), intent(in) :: array
A handle of the array.

type(ColumnT), intent(in) :: column
A handle of the column.

type(DataComponentT), intent(in) :: dataComponent
A handle of the dataComponent.

type(NullableT), intent(in) :: nullable
A handle of the nullable.

RETURNS

logical

DESCRIPTION
This function is only relevant for objects containing boolean data.

For real objects, this function always returns true.

The null value of an object containing integer data may be defined by calling setNullValue().
ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

!
]
!
!
! SAS is free software: you can redistribute it and/or modify

! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or

! (at your option) any later version.

!

1

]

!

!

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 227

]
! You should have received a copy of the GNU General Public License
! along with SAS. If not, see <http://www.gnu.org/licenses/>.
! This example shows how null values are used.
subroutine check(thisNullable)

use dal

type(NullableT), intent(in) :: thisNullable

write(*,*) "Null defined?: ", nullDefined(thisNullable), nullType(thisNullable)
end subroutine check
program example_nullvalues

use dal
use errorhandling

implicit none

type(DataSetT) set
type(ArrayT) arrl, arr2
type(TableT) tab
type(ColumnT) coll, col2

integer(kind=int32), dimension(:), pointer :: i32

real (kind=double), dimension(:), pointer :: r64

integer (kind=int32), dimension(:,:,:), pointer :: al, a2
integer, dimension(3), parameter :: s = (/ 3,4,2 /)
integer :: i,j,k,n

I create a set

set = dataSet("test.dat",CREATE)

arrl = addArray(set, "arrayl", INTEGER32, dimensions=s)

arr2 = addArray(set, "array2", arrayDataType(arrl), dimensions=s)

! £il1l with unique numbers
al => int32Array3Data(arrl)
a2 => int32Array3Data(arrl)

n=20
do k=0,1
do j=0,3
do i=0,2
al(i,j,k) =n
a2(i,j,k) = a1(i,j,k) + 1
n=mn+1
end do
end do
end do

call setNullValue(arril, 999999)
call check(nullable(arrl))

call setToNull(arrl, O) ! Set the first element of array arrl to null.
! Would have given an error, if the null

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 228

! value of array arrl had not been set.

if(nullType(arrl) .eq. INTEGER_NULL) then !
write(*,*) "Using null value of arrl, in arr2"
call setNullValue(arr2, intNullValue(arrl))

else
call setNullValue(arr2, 999999)

end if

call check(nullable(arr2))

call setToNull(arr2, 1) ! Set the second element of array arr2 to null.
! Would have given an error, if the null
! value of array arr2 had not been set.

call release(arrl)
call release(arr2)

tab = addTable(set,"some table",100)
coll = addColumn(tab,"int32",INTEGER32,units="m",comment="in32 column")

i32 => int32Data(coll)
do i=0,numberOfRows(tab)-1
i32(i) = 3*i
end do
call setNullValue(coll, 999999)
call check(nullable(coll))

call setToNull(coll, O) ! Set the first element of column coll to null.

col2 = addColumn(tab,"real64" ,REAL64,units="hm",comment="real64 column")
r64 => real64Data(col2)
do i=0,numberOfRows(tab)-1
r64(i) = 0.25%i
end do

! col is a non-integer column and it would be an
! an error to call setNullValue().
call check(nullable(col2))

call setToNull(col2, O) ! Set the first element of column col2 to null.

if (hasNulls(col2)) then
do i=0,numberOfRows(tab)-1
if (isNull(col2, i)) then
write(*,*) "element", i, "is null"
else
write(*,*) "element", i, "is", r64(i)
endif
end do
endif

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 229

call release(coll)
call release(col2)
call release(set)

end program example_nullvalues

SEE ALSO

hasNulls intNullValue isNotNull isNull nullable nullType setNullValue setToNull

BUGS AND LIMITATIONS

None known.

NAME
nullType
PURPOSE
Gets the null value type of an object.
INTERFACE
function nullTypeArray(array)
function nullTypeColumn(column)
function nullType(dataComponent)
function nullTypeNullable(nullable)
ARGUMENTS
o type(ArrayT), intent(in) :: array
A handle of the array.
e type(ColumnT), intent(in) :: column
A handle of the column.
e type(DataComponentT), intent(in) :: dataComponent
A handle of the dataComponent.
o type(NullableT), intent(in) :: nullable
A handle of the nullable.
RETURNS
e integer
Returns one of: INTEGER_NULL, REAL_NULL, STRING_NULL, UNDEFINED_NULL
DESCRIPTION
ERRORS
EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).
SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

!
!
|
1
1
]
! the Free Software Foundation, either version 3 of the License, or

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 230
! (at your option) any later version.
|
! SAS is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
|
! You should have received a copy of the GNU General Public License
! along with SAS. If not, see <http://www.gnu.org/licenses/>.
! This example shows how null values are used.
subroutine check(thisNullable)
use dal
type(NullableT), intent(in) :: thisNullable
write(*,*) "Null defined?: ", nullDefined(thisNullable), nullType(thisNullable)

end subroutine check

program example_nullvalues

use dal
use errorhandling

implicit none

type(DataSetT) set
type(ArrayT) arrl, arr2
type(TableT) tab
type(ColumnT) coll, col2

integer (kind=int32), dimension(:), pointer :: i32
real (kind=double), dimension(:), pointer :: r64
integer (kind=int32), dimension(:,:,:), pointer :: al,
integer, dimension(3), parameter :: s = (/ 3,4,2 /)
integer :: i,j,k,n

| create a set
set = dataSet("test.dat",CREATE)

a2

arrl = addArray(set, "arrayl", INTEGER32, dimensions=s)

arr2 = addArray(set, "array2", arrayDataType(arrl), dimensions=s)

I £i11 with unique numbers
al => int32Array3Data(arrl)
a2 => int32Array3Data(arrl)

n=20
do k=0,1
do j=0,3
do i=0,2

al(i,j,k) =n
a2(i,j,k) = a1(i,j,k) + 1
n=n+1
end do
end do
end do

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 231

call setNullValue(arril, 999999)
call check(nullable(arrl))

call setToNull(arrl, O) ! Set the first element of array arrl to null.
! Would have given an error, if the null
! value of array arrl had not been set.

if(nullType(arrl) .eq. INTEGER_NULL) then !
write(*,*) "Using null value of arrl, in arr2"
call setNullValue(arr2, intNullValue(arrl))

else
call setNullValue(arr2, 999999)

end if

call check(nullable(arr2))

call setToNull(arr2, 1) ! Set the second element of array arr2 to null.
! Would have given an error, if the null
! value of array arr2 had not been set.

call release(arrl)
call release(arr2)

tab = addTable(set,"some table",100)
coll = addColumn(tab,"int32",INTEGER32,units="m",comment="in32 column")

i32 => int32Data(coll)
do i=0,numberOfRows(tab)-1
i32(i) = 3%i
end do
call setNullValue(coll, 999999)
call check(nullable(coll))

call setToNull(coll, O) ! Set the first element of column coll to null.

col2 = addColumn(tab,"real64" ,REAL64,units="hm",comment="real64 column")
r64 => real64Data(col2)
do i=0,numberOfRows(tab)-1
r64(i) = 0.25%i
end do

! col is a non-integer column and it would be an
! an error to call setNullValue().
call check(nullable(col2))

call setToNull(col2, O) ! Set the first element of column col2 to null.

if(hasNulls(col2)) then
do i=0,numberOfRows(tab)-1
if (isNull(col2, i)) then
write(*,*) "element", i, "is null"

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 232

else
write(*,*) "element", i, "is", r64(i)
endif
end do
endif

call release(coll)
call release(col2)
call release(set)

end program example_nullvalues

SEE ALSO
hasNulls intNullValue isNotNull isNull nullable nullDefined setNullValue setToNull

BUGS AND LIMITATIONS

None known.

NAME
numberOfAttributes

PURPOSE
Get the number of attributes in an object.

INTERFACE
function numberOfAttributesOfArray(array)
function numberOfAttributesOfAttrib(attributable)
function numberOfAttributesOfBlock(block)
function numberOfAttributesOfColumn(column)
function numberOfAttributesOfDataSet(dataSet)
function numberOfAttributesOfTable(table)

ARGUMENTS

o type(ArrayT), intent(in) :: array

A handle of the array for which the number of attributes is required.
o type(AttributableT), intent(in) :: attributable

A handle of the attributable for which the number of attributes is required.
o type(BlockT), intent(in) :: block

A handle of the block for which the number of attributes is required.
o type(ColumnT), intent(in) :: column

A handle of the column for which the number of attributes is required.
o type(DataSetT), intent(in) :: dataSet

A handle of the dataset for which the number of attributes is required.
o type(TableT), intent(in) :: table

A handle of the table for which the number of attributes is required.

RETURNS

e integer
DESCRIPTION
ERRORS

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 233

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example show how the numberOfAttributes interface

is used.

program example_numberofattributes

use dal
implicit none

type (DataSetT) set
type(TableT) tab

set = dataSet("test.dat",CREATE)
call setAttribute(set,"sbooll",.false.,"dataset bool comment")
call setAttribute(set,"sbool2",.false.,"dataset bool comment")

write (*,*) numberOfAttributes(set) ! 2 attributes

tab = addTable(set,"table",10);

call addAttributes(attributable(tab) ,attributable(set))

call setAttribute(tab,"sbool3",.false.,"dataset bool comment")
write(*,*) numberOfAttributes(tab) ! 3 attributes

call release(set)

end program example_numberofattributes

SEE ALSO

setAttribute

BUGS AND LIMITATIONS

None known.

NAME

number0fBlocks(dataSet)

PURPOSE

Get the number of blocks in a dataset.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 234

ARGUMENTS

o type(DataSetT), intent(in) :: dataSet

RETURNS

e integer
DESCRIPTION
ERRORS
EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how the numberOfBlocks interface

is used.

program example_numberofblocks

use dal
implicit none

type(DataSetT) set
type(TableT) tab
type (BlockT) blk
integer i

set = dataSet("test.dat",CREATE)
tab = addTable(set,"tablel",10)

tab = addTable(set,"table2",100)
tab = addTable(set,"table3",1000)

write(*,*) number0OfBlocks(set) ! 3 blocks

! For each block, display the name, and
! add a comment.
do i=0,number0fBlocks(set) - 1

blk = block(set, i, MODIFY)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

235

write(*,*) name(blk)
call addComment(blk, "A table comment")
end do

call release(set)

end program example_numberofblocks

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
number0fColumns(table)

PURPOSE
Get the number of columns in a table.

ARGUMENTS

e type(TableT), intent(in) :: table
RETURNS

e integer

DESCRIPTION

ERRORS

EXAMPLES

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
GNU General Public License for more details.

!
!
!
!
!
!
!
! (at your option) any later version.
!
!
!
!
!
!
I

You should have received a copy of the GNU General Public License

See the

! along with SAS. If not, see <http://www.gnu.org/licenses/>.

! This examples shows how the number0OfColumns ()
! function is used.
program example_numberofcolumns

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 236

use dal

implicit none

type (DataSetT) set
type(TableT) tab
type (ColumnT) col
integer i

set = dataSet("test.dat",CREATE)

tab = addTable(set,"some table",100)

col addColumn(tab, "bool" ,BOOLEAN)

col = addColumn(tab,"int8",INTEGER8,units="cm",comment="int8 column")

col = addColumn(tab,"int16",INTEGER16,units="dm",comment="int16 column")

col addColumn (tab,"int32" ,INTEGER32,units="m",comment="in32 column")

col addColumn(tab,"real32",REAL32,units="Dm",comment="real32 column")

col addColumn(tab,"real64" ,REAL64,units="hm",comment="real64 column")

col = addColumn(tab,"string",STRING, comment="string column",dimensions=(/80/))

write (*,*) numberOfColumns(tab) ! 7 columns

! For each column, display the name and
! add an attribute.
do i=0, numberOfColumns(tab) - 1
col = column(tab, i, MODIFY)
write(*,*) name(col)
call setAttribute(col, "TLMAX", 10, "tlmax attribute")
end do

call release(set)

end program example_numberofcolumns

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
numberOfDimensions

PURPOSE
Get the number of dimensions of the data contained in an object.

INTERFACE
function numberOfDimensionsOfArray(array)
function numberOfDimensionsOfColumn(column)

ARGUMENTS

o type(ArrayT), intent(in) :: array
A handle of the array for which the number of dimensions is required.

o type(ColumnT), intent(in) :: column
A handle of the column for which the number of dimensions is required.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 237

RETURNS

e integer
The number of the dimensions of the given object.

DESCRIPTION
For arrays the number of dimensions is between 1 and 3, and for columns is between 1 and
4.

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

two 3-dimensional arrays, and one table.

It illustrates the use of the numberofdimensions interface.

The second array has the same data type as the first; this

is ensured by using the arrayDataType() function to determine
the data type of the first array.

program example_numberofdimensions

use dal
use errorhandling

implicit none

type (DataSetT) set
type(ArrayT) arr
type(TableT) tab
type(ColumnT) col
integer :: 1i,]j

! create a set

set = dataSet("test.dat",CREATE)

arr = addArray(set, "arrayl", INTEGER32, dimensions=(/3/))

arr = addArray(set, "array2", dataType(arr), dimensions=(/3,4/))

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 238

arr = addArray(set, "array3", dataType(arr), dimensions=(/3,4,5/))

tab = addTable(set,"table",10)

col = addColumn(tab,"coll",INTEGER8) ! scalar

col = addColumn(tab,"col2",dataType(col) ,dimensions=(/3/)) ! vector

col = addColumn(tab,"col3",dataType(col) ,dimensions=(/3,4/)) ! 2-dimensions

col = addColumn(tab,"col4",dataType(col) ,dimensions=(/3,4,5/)) ! 3-dimensions
col = addColumn(tab,"colb",dataType(col) ,dimensions=(/3,4,5,6/)) ! 4-dimensions

do i = 0, numberOfBlocks(set) - 1
! For each block which is an array, display the
! name and number of dimensions.
if (blockType(set, i).eq.ARRAY_BLOCK) then
arr = array(set, i, READ)
write(*,*) name(arr), numberOfDimensions(arr)
else
tab = table(set, i)
do j = 0, number0OfColumns(tab) - 1
! For each column, display the name
! and the number of dimensions.
col = column(tab, j, READ)
write(*,*) name(col), numberOfDimensions(col)
end do
end if
end do

call release(set)

end program example_numberofdimensions

SEE ALSO
addArray addColumn

BUGS AND LIMITATIONS

None known.

NAME
numberOfElements

PURPOSE
Get the number of data elements in an object.

INTERFACE
function numberOfElementsOfColumn(column)
A handle of the column for which the number of elements is required. function numberOfEle-
mentsOfArray(array) A handle of the array for which the number of elements is required.

ARGUMENTS

e type(ArrayT), intent(in) :: array
A handle of the array for which the number of elements is required.

e type(ColumnT), intent(in) :: column

RETURNS

e integer

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 239

DESCRIPTION

For fixed-length columns the number of elements in each cell is returned. The total number
of elements in a column is therefore calculated by multiplying the number of the rows in the
column by the result of this function. For variable-lenghth columns, zero is returned.

ERRORS

EXAMPLES

Thi

In
two

It

The
is

the
progr

use
use

imp

typ
typ
typ
typ
int

I ¢
set
arr
arr
arr
tab
col

ESA (C) 2000-2018

s file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

this example add dataset is created (opened) containing
3-dimensional arrays, and one table.

illustrates the use of the numberofelements interface.

second array has the same data type as the first; this
ensured by using the arrayDataType() function to determine
data type of the first array.
am example_numberofdimensions

dal
errorhandling

licit none

e(DataSetT) set
e(ArrayT) arr
e(TableT) tab
e(ColumnT) col
eger :: 1,j

reate a set

dataSet ("test.dat",CREATE)

= addArray(set, "arrayl", INTEGER32, dimensions=(/3/))

= addArray(set, "array2", dataType(arr), dimensions=(/3,4/))

= addArray(set, "array3", dataType(arr), dimensions=(/3,4,5/))
= addTable(set,"table",10)

= addColumn(tab,"coll",INTEGERS) ! scalar

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 240

SEE ALSO

col = addColumn(tab,"col2",dataType(col) ,dimensions=(/3/)) ! vector

col = addColumn(tab,"col3",dataType(col) ,dimensions=(/3,4/)) ! 2-dimensions
col = addColumn(tab,"cold",dataType(col),dimensions=(/3,4,5/)) ! 3-dimensions
col = addColumn(tab,"col5",dataType(col) ,dimensions=(/3,4,5,6/)) ! 4-dimensions

do i = 0, numberOfBlocks(set) - 1
! For each block which is an array, display the
! name, number of dimensions and the number of elements.
if (blockType(set, i).eq.ARRAY_BLOCK) then
arr = array(set, i, READ)
write(*,*) name(arr), numberOfDimensions(arr), numberOfElements(arr)
else
tab = table(set, i)
do j = 0, number0OfColumns(tab) - 1
! For each column, display the name,
! number of dimensions and total number of elements.
col = column(tab, j, READ)
write(*,*) name(col), numberOfDimensions(col), numberOfRows(col) * numberOfElements
end do
end if
end do

call release(set)

end program example_numberofdimensions

addArray addColumn

BUGS AND LIMITATIONS

NAME

PURPOSE

None known.

number0fRows(table)

Get the number of rows in a table.

INTERFACE

function numberOfRowsInColumn(column)
function numberOfRowsInTable(table)

ARGUMENTS

RETURNS

e type(ColumnT), intent(in) :: column

A handle of the column for which the number of rows is required.
e type(TableT), intent(in) :: table

A handle of the table for which the number of rows is required.

e integer
The number of rows.

DESCRIPTION

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 241

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how the numberOfRows

interface is used.

program example_numberofrows

use dal
implicit none
type(DataSetT) set

type(TableT) tab
integer i

dataSet ("test.dat",CREATE)
addTable(set,"tablel",10)

addTable(set,"table2",100)
addTable(set,"table3",1000)

set
tab
tab
tab

do i=0,number0fBlocks(set) - 1

tab = table(set, i)

write(*,*) name(tab), numberOfRows(tab)
end do

call release(set)

end program example_numberofrows

SEE ALSO
addTable

BUGS AND LIMITATIONS

None known.

NAME
parent

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

242

PURPOSE
Get the parent object of an object.

INTERFACE
function parentAttributable(attribute)

ARGUMENTS

o type(AttributeT), intent(in) :: attribute

RETURNS
o type(AttributableT)
DESCRIPTION
ERRORS
EXAMPLES

ESA (C) 2000-2018

(at your option) any later version.

!
]
!
!
!
!
!
]
!
!
!
]
]
!
]
!
! This example shows how the parent interface
!

is used.
subroutine testl1(set, tab, arr, col)

use dal

type(DataSetT), intent(in) :: set
type(TableT), intent(in) :: tab
type(ArrayT), intent(in) :: arr

type (ColumnT), intent(in) :: col
type (AttributeT) att

att = attribute(set,0)

xmmsas_20230412_1735-21.0.0

SAS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

SAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
GNU General Public License for more details.

See the

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

XMM-Newton Science Analysis System

Page:

243

write(*,*) name(parent(att))
if(name(parent(att)) /= name(

call error(’internalError’,"problem
end if

att = attribute(tab,0)
write(*,*) name(parent(att))
if (name(parent(att)) /= name(

call error(’internalError’,"problem
end if

write(*,*) name(parent(tab))
if(name(parent(tab)) /= name(

call error(’internalError’,"problem
end if

att = attribute(arr,0)
write(*,*) name(parent(att))
if (name(parent(att)) /= name(

call error(’internalError’,"problem
end if

write(*,*) name(parent(arr))

if (name(parent(arr)) /= name(
call error(’internalError’,"problem
end if

att = attribute(col,0)
write(*,*) name(parent(att))
if(name(parent(att)) /= name(

call error(’internalError’,"problem
end if

write(*,*) name(parent(col))
if (name(parent(col)) /= name(

call error(’internalError’,"problem
end if

set)) then
in parent method"

tab)) then
in parent method"

set)) then
in parent method"

arr)) then
in parent method"

set)) then
in parent method"

col)) then
in parent method"

tab)) then
in parent method"

write(*,*) name(parent(parent(col)))

if (name(parent(parent(col)))
call error(’internalError’,"problem
end if

end subroutine testl

program example_parent
use dal

implicit none

xmmsas_20230412_1735-21.0.0

/= name(set)) then
in parent method")

XMM-Newton Science Analysis System Page: 244

type(DataSetT) set

type(TableT) tab

type (ColumnT) col

type (ArrayT) arr

integer, dimension(3), parameter :: s = (/ 3,4,2 /)

set = dataSet("test.dat",CREATE)

call setAttribute(set,"sint8",1_int8,"int8 unit","set int8 comment")
tab = addTable(set,"some table",100)

call setAttribute(tab,"sint8",1_int8,"int8 unit","set int8 comment")
arr = addArray(set, "some array", INTEGER32, dimensions=s)

call setAttribute(arr,"sint8",1_int8,"int8 unit","set int8 comment")
col = addColumn(tab,"bool",BOOLEAN)

call setAttribute(col,"TLMIN",1_int8,"int8 unit","set int8 comment")

call testl(set,tab,arr,col)

call release(set)

set = dataSet("test.dat",READ)
tab = table(set,0)

arr = array(set,1,READ)

col = column(tab,0,READ)

call testl(set,tab,arr,col)
call release(set)

end program example_parent

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME

parent

PURPOSE
Get the parent object of an object.

INTERFACE
function parentDataSetOfArray(array)

ARGUMENTS

o type(ArrayT), intent(in) :: array

RETURNS

o type(DataSetT)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

245

DESCRIPTION

ERRORS

EXAMPLES
See above.

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
parent

PURPOSE
Get the parent object of an object.

INTERFACE
function parentDataSetOfBlock(block)

ARGUMENTS
e type(BlockT), intent(in) :: block

RETURNS

o type(DataSetT)

DESCRIPTION

ERRORS

EXAMPLES
See above.

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
parent

PURPOSE
Get the parent object of an object.

INTERFACE
function parentDataSetOfTable(table)

ARGUMENTS

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

246

o type(TableT), intent(in) :: table

RETURNS

o type(DataSetT)

DESCRIPTION

ERRORS

EXAMPLES
See above.

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME

parent

PURPOSE
Get the parent object of an object.

INTERFACE
function parentTable(column)

ARGUMENTS

o type(ColumnT), intent(in) :: column

RETURNS
o type(TableT)

DESCRIPTION
ERRORS
EXAMPLES

See above.

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
qualifiedName

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

247

PURPOSE

Get the fully qualified name of an object.

INTERFACE
function qualifiedNameOfArray(array)

function qualifiedNameOfAttributable(attributable)
function qualifiedNameOfAttribute(attribute)
function qualifiedNameOfBlock(block)

function qualifiedNameOfColumn(column)

function qualifiedNameOfDataSet(dataSet)
function qualifiedNameOfLabelled(labelled)
function qualifiedNameOfTable(table)

ARGUMENTS

RETURNS

DESCRIPTION

ERRORS

EXAMPLES

type(ArrayT) :: array
A handle of the array whose fully qualified name is required.

type(AttributableT) :: attributable
A handle of the attributable whose fully qualified name is required.

type(AttributeT) :: attribute
A handle of the attribute whose fully qualified name is required.

type(BlockT) :: block
A handle of the block whose fully qualified name is required.

type(ColumnT) :: column
A handle of the column whose fully qualified name is required.

type(DataSetT) :: dataSet
A handle of the dataset whose fully qualified name is required.

type(LabelledT) :: labelled
A handle of the labelled whose fully qualified name is required.

type(TableT) :: table
A handle of the table whose fully qualified name is required.

character(len=IdentifierLength)

ESA (C) 2000-2018

SAS is free software: you can redistribute it and/or modify

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

SAS is distributed in the hope that it will be useful,

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page: 248

MERCHANTABILITY or
GNU General Public

!
!
!
!
!
! along with SAS.
!

!

interface is used.

but WITHOUT ANY WARRANTY; without even the implied warranty of

FITNESS FOR A PARTICULAR PURPOSE.
License for more details.

See the

You should have received a copy of the GNU General Public License
If not, see <http://www.gnu.org/licenses/>.
This example shows how the qualifiedName

program example_qualifiedname

use dal

type (DataSetT) set
type (ArrayT) arr
type(TableT) :: tab
type (ColumnT) col
type(AttributeT) :: att

set = dataSet("test.dat",create)

call setAttribute(set,

arr =

"sbool", .false.,"set bool comment")

addArray(set,"array",integer32, dimensions=(/ 1,2,3 /))
call setAttribute(arr,

"abool", .true.,"arr bool comment")

tab = addTable(set,"table",10)

call setAttribute(tab,

"tbool", .false.,"tab bool comment")

col = addColumn(tab,"column",INT32,units="UNITS",comment="Column")

call setAttribute(col,

write(*,*) "qualified
att = attribute(set,
write(*,*) "qualified
write(*,*) "qualified
att = attribute(tab,
write(*,*) "qualified
write(*,*) "qualified
att = attribute(arr,
write(*,*) "qualified
write(x,*) "qualified
att = attribute(col,
write(*,*) "qualified

call release(set)

"tlmin",1_int32,"int32 unit","col int32 comment")

data set name: ", qualifiedName(set) ! test.dat

"sbool")

data set attribute name: ", qualifiedName(att) !"test.dat:sbool
table name: ", qualifiedName(tab)! test.dat:table

"tbool")

table attribute name: ", qualifiedName(att) ! test.dat:table:tb
array name: ", qualifiedName(arr) ! test.dat:array

"abool")

array attribute name: ", qualifiedName(att) ! test.dat:array:ab
column name: ", qualifiedName(col) ! test.dat:table:column
"tlmin")

array attribute name: ", qualifiedName(att) ! test.dat:table:co

end program example_qualifiedname

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
READ

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 249

PURPOSE
An enumeration value which is used to indicate read access to an object.

DESCRIPTION

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
REAL32

PURPOSE
An enumeration value which is used to indicate an object contains data of type real32 (float).

DESCRIPTION

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
real32Array2Data

PURPOSE
Get the real32 data from an array or a column cell containing 2-dimensional array data.

INTERFACE
function real32ArrayArray2Data(array)
function real32ColumnArray2DataElement(column, row)

ARGUMENTS

o type(ArrayT), intent(in) :: array
o type(ColumnT), intent(in) :: column

e integer, intent(in) :: row

RETURNS
e real(kind=SINGLE), dimension(:,:), pointer
DESCRIPTION

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 250

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how to use the real32Array2Data interface.

In the example a dataset is created (opened) containing

a table with 2 columns of two 2-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_cellarray2data

use dal
use errorhandling

implicit none

type (DataSetT) set

type(TableT) tab

type (ColumnT) coll, col2

real (kind=SINGLE), dimension(:,:), pointer :: cl, c2
integer, dimension(2), parameter :: s = (/ 3,4 /)
integer :: i,j,k,n

| create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columnl", REAL32, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

I £i11 with unique numbers

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 251

n=20
do k=0,numberOfRows(tab) - 1
cl => real32Array2Data(coll,k)
c2 => real32Array2Data(col2,k)
do j=0,3
do i=0,2
c1(i,j) =n
c2(i,j) = c1(i,j)
n=n+1
end do
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_cellarray2data
ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how to use the real32Array2Data interface.

In the example a dataset is created (opened) containing

a table with 2 2-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_arrayarray2data

use dal
use errorhandling

implicit none

type(DataSetT) set
type(TableT) tab

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

252

type(ArrayT) arrl, arr2

real (kind=SINGLE), dimension(:,:), pointer :: al, a2
integer, dimension(2), parameter :: s = (/ 3,4 /)
integer :: i,j,n

I create a set
set = dataSet("test.dat",CREATE)

arrl = addArray(set, "arrayl", REAL32, s, "km", "array comment")
addArray(set, "array2", REAL32, s, "km", "array comment")

arr2
! £i11 with unique numbers
n=20

al => real32Array2Data(arrl)
a2 => real32Array2Data(arr2)

do j=0,3
do i=0,2
al(i,j) =n
a2(i,j) = a1(i,j)
n=n+1
end do
end do

call release(arrl)
call release(arr2)
call release(set)

end program example_arrayarray2data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
real32Array2Data

PURPOSE
Get the real32 data from a column containing 2-dimensional array data.

INTERFACE
function real32ColumnArray2Data(column)

ARGUMENTS

o type(ColumnT), intent(in) :: column
RETURNS

e real(kind=SINGLE), dimension(:,:,:), pointer

The 2-dimensional column data is returned as a 3-dimensional array.

DESCRIPTION

ERRORS

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 253

EXAMPLES

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two 2-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine

the data type of the first array.

The columns are then initialised before the

dataset is released (closed).

program example_array2data

use dal
use errorhandling

implicit none

type (DataSetT) set

type(TableT) tab

type(ColumnT) coll, col2

real (kind=SINGLE), dimension(:,:,

integer, dimension(2), parameter ::

integer :: i,j,k,n

! create a set

set = dataSet("test.dat",CREATE)
tab = addTable(set, "table", 100,
coll = addColumn(tab, "columni",
col2 = addColumn(tab, "column2",

! £i11 with unique numbers
cl => real32Array2Data(coll)
c2 => real32Array2Data(col2)

n=20
do k=0,number0OfRows(tab) - 1
do j=0,3

xmmsas_20230412_1735-21.0.0

1), pointer :: cl, c2

s =(/3,4/)

"table comment")
REAL32, "km", s, "column comment")
columnDataType(coll), "km", s, "column comment")

XMM-Newton Science Analysis System Page: 254

do i=0,2
c1(i,j,k) =n
c2(i,j,k) = c1(i,j,k)
n=n+1
end do
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_array2data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
real32Array3Data

PURPOSE
Get the real32 data from an an array or a column cell containing 3-dimensional array data.

INTERFACE
function real32ArrayArray3Data(array)
function real32ColumnArray3DataElement(column, row)

ARGUMENTS
o type(ArrayT), intent(in) :: array
e type(ColumnT), intent(in) :: column
e integer, intent(in) :: row
RETURNS
e real(kind=SINGLE), dimension(:,:,:), pointer
DESCRIPTION
ERRORS
EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).
it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

!
!
!
!
! SAS is free software: you can redistribute it and/or modify
!
!
! (at your option) any later version.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 255

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

]
]
!
!
!
!
! You should have received a copy of the GNU General Public License
! along with SAS. If not, see <http://www.gnu.org/licenses/>.

! In this example add dataset is created (opened) containing

! a table with 2 columns of two 3-dimensional arrays.

]

]

]

!

!

]

]

]

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_cellarray3data

use dal
use errorhandling

implicit none
type (DataSetT) set

type(TableT) tab
type(ColumnT) coll, col2

real (kind=SINGLE), dimension(:,:,:), pointer :: cl, c2
integer, dimension(3), parameter :: s = (/ 3,4,5 /)
integer :: i,j,k,1,n

! create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columni", REAL32, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers

n=20

do 1=0,numberOfRows(tab) - 1
cl => real32Array3Data(coll,l)
c2 => real32Array3Data(col2,1)

do k=0,4
do j=0,3
do i=0,2
c1(i,j,k) =n
c2(i,j,k) = c1(i,j,k)
n=n+1
end do
end do
end do
end do

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 256

call release(coll)
call release(col2)
call release(set)

end program example_cellarray3data
! ESA (C) 2000-2018
!
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

along with SAS. If not, see <http://www.gnu.org/licenses/>.
This example shows how to use the int8Array2Data interface.
In the example a dataset is created (opened) containing
a table with 2 3-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_arrayarray3data

!
!
!
!
!
!
!
!
!
!
!
!
! You should have received a copy of the GNU General Public License
!
!
!
!
!
!
!
!
!
!
!
!

use dal
use errorhandling

implicit none
type (DataSetT) set

type(TableT) tab
type(ArrayT) arrl, arr2

real (kind=SINGLE), dimension(:,:,:), pointer :: al, a2
integer, dimension(3), parameter :: s = (/ 3,4,5 /)
integer :: i,j,k,n

! create a set

set = dataSet("test.dat",CREATE)

arrl = addArray(set, "arrayl", REAL32, s, "km", "array comment")
arr2 = addArray(set, "array2", REAL32, s, "km", "array comment")

! £i11 with unique numbers

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

257

n=20
al => real32Array3Data(arrl)
a2 => real32Array3Data(arr2)

do k=0,4
do j=0,3
do i=0,2
al(i,j,k) =n
a2(i,j,k) = a1(i,j,k)
n=n+1
end do
end do
end do

call release(arrl)
call release(arr2)
call release(set)

end program example_arrayarray3data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME

real32Array3Data

PURPOSE

Get the real32 data from an column containing 3-dimensional array data.

INTERFACE

function real32ColumnArray3Data(column)

ARGUMENTS

RETURNS

o type(ColumnT), intent(in) :: column

e real(kind=SINGLE), dimension(:,:,:,:), pointer

The 3-dimensional column data is returned as a 4-dimensional array.

DESCRIPTION

ERRORS

EXAMPLES

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

258

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

]
!
]
!
!
]
!
!
!
! You should have received a copy of the GNU General Public License
! along with SAS. If not, see <http://www.gnu.org/licenses/>.

! In this example add dataset is created (opened) containing
! a table with 2 columns of two 3-dimensional arrays.
!

!

!

!

]

]

!

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised before the
dataset is released (closed).
program example_array3data

use dal
use errorhandling

implicit none
type(DataSetT) set

type(TableT) tab
type (ColumnT) coll, col2

real (kind=SINGLE), dimension(:,:,:,:), pointer :: cl, c2
integer, dimension(3), parameter :: s = (/ 3,4,5 /)
integer :: i,j,k,1,n

| create a set
set = dataSet("test.dat",CREATE)
tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columnl", REAL32, "km", s, "column comment")
col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

I £i11 with unique numbers
cl => real32Array3Data(coll)
c2 => real32Array3Data(coll)

n=20
do 1=0,numberOfRows(tab) - 1
do k = 0,4
do j=0,3
do i=0,2
c1(i,j,k,1) =n
c2(i,j,k,l) Ci(i,j,k,l)
n=n+1
end do
end do

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 259

end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_array3data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
real32Array4Data
PURPOSE
Get the real32 data from a column cell containing 4-dimensional array data.
INTERFACE
function real32ColumnArray4DataElement(column, row)
ARGUMENTS
o type(ColumnT), intent(in) :: column
e integer, intent(in) :: row
RETURNS
e real(kind=SINGLE), dimension(:,:,:,:), pointer
DESCRIPTION
ERRORS
EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

!
]
]
!
! SAS is free software: you can redistribute it and/or modify

! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or

! (at your option) any later version.

!

]

!

!

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 260

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two 4-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_cellarray4data

use dal
use errorhandling

implicit none

type (DataSetT) set

type(TableT) tab

type (ColumnT) coll, col2

real (kind=SINGLE), dimension(:,:,:,:), pointer :: cl, c2
integer, dimension(4), parameter :: s = (/ 3,4,5,6 /)

integer :: i,j,k,1l,m,n

| create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columnl", REAL32, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i1l with unique numbers

n=20
do m=0,number0fRows(tab) - 1
cl => real32Array4Data(coll,m)
c2 => real32Array4Data(col2,m)
do 1=0,5
do k=0,4
do j=0,3
do i=0,2
c1(i,j,k,1) =n
cZ(i,j,k,l) Cl(i,j,k,l)
n=n+1
end do
end do
end do
end do
end do

call release(coll)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

261

call release(col2)
call release(set)

end program example_cellarray4data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
real32Array4Data

PURPOSE
Get the real32 data from a column containing 4-dimensional array data.

INTERFACE
function real32ColumnArray4Data(column)

ARGUMENTS

o type(ColumnT), intent(in) :: column

RETURNS

The 4-dimensional data is returned as a 5-dimensional array.

DESCRIPTION

ERRORS

EXAMPLES

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with SAS. If not, see <http://www.gnu.org/licenses/>.
In this example add dataset is created (opened) containing

!
!
!
!
!
!
!
!
!
! SAS is distributed in the hope that it will be useful,
!
!
!
!
!
!
!
! a table with 2 columns of two 4-dimensional arrays.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 262

]
! The second array has the same data type as the first; this

! is ensured by using the arrayDataType() function to determine
! the data type of the first array.
]
]
]

The columns are then initialised before the
dataset is released (closed).
program example_array4data

use dal
use errorhandling

implicit none

type (DataSetT) set

type(TableT) tab

type(ColumnT) coll, col2

real (kind=SINGLE), dimension(:,:,:,:,:), pointer :: cl, c2
integer, dimension(4), parameter :: s = (/ 3,4,5,6 /)
integer :: i,j,k,1,m,n

! create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columni", REAL32, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers
cl => real32Array4Data(coll)
c2 => real32Array4Data(coll)

n=20
do m=0,number0fRows(tab) - 1
do 1=0,5
do k=0,4
do j=0,3
do i=0,2
c1(i,j,k,1,m) =n
c2(i,j,k,1,m) c1(i,j,k,1,m)
n=n-+1
end do
end do
end do
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_array4data

SEE ALSO

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

263

BUGS AND LIMITATIONS

None known.

NAME
real32Attribute

PURPOSE
Get the value of an attribute as a real32.

INTERFACE
function real32ArrayAttribute(array, name)
function real32AttributableAttribute(attributable, name)
function real32Attribute(attribute)
function real32BlockAttribute(Block, name)
function real32ColumnAttribute(column, name)
function real32DataSetAttribute(dataSet, name)
function real32TableAttribute(table, name)

ARGUMENTS
o type(ArrayT), intent(in) :: array
A handle of the array containing the required attribute.

o type(AttributableT), intent(in) :: attributable
A handle of the attributable containing the required attribute.

o type(AttributeT), intent(in) :: attribute
A handle of the attribute.

e type(BlockT), intent(in) :: block
A handle of the block containing the required attribute.

o type(ColumnT), intent(in) :: column
A handle of the column containing the required attribute.

o type(DataSetT), intent(in) :: dataSet
A handle of the dataset containing the required attribute.

e character(len="*), intent(in) :: name
The name of the required attribute.

e type(TableT), intent(in) :: table
A handle of the table containing the required attribute.

RETURNS
e real(kind=SINGLE)

DESCRIPTION

ERRORS

EXAMPLES

ESA (C) 2000-2018

xmmsas_20230412_1735-21.0.0

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

XMM-Newton Science Analysis System Page: 264

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how real32 attributes are used.

The program creates a dataset containing two real32 attributes,

together with a table containing two real32 attributes.

The attributes are then accessed, by name, with

the real32Attribute() function.

Also, it is shown how to access the attributes by position.

program example_real32attribute

use dal
use errorhandling
implicit none

type (DataSetT) set
type(TableT) tab
type (AttributeT) att
integer i

set = dataSet("test.dat",CREATE)
call setAttribute(set,"reall",1.0,"real comment")
call setAttribute(set,"real2",2.0,"real comment")

tab = addTable(set,"table",10);
call setAttribute(tab,"reall",3.0,"real comment")
call setAttribute(tab,"real2",4.0,"real comment")

write(*,*) real32Attribute(set, "reall") ! output ’1.0’
write(*,*) real32Attribute(set, "real2") ! output ’2.0’
write(*,*) real32Attribute(tab, "reall") ! output ’3.0’
write(*,*) real32Attribute(tab, "real2") ! output ’4.0’°

do i = 0, numberOfAttributes(set) - 1
att attribute(set, i)
write(*,*) real32Attribute(att) ! output the sequence 1.0, 2.0
end do

call release(set)
end program example_real32attribute

SEE ALSO

BUGS AND LIMITATIONS

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 265

NAME
real32Data
PURPOSE
Get the real32 data from an array, column or column cell.
INTERFACE
function real32ArrayData(array)
function real32ColumnData(column)
function real32ColumnDataElement(column, row)
ARGUMENTS
o type(ArrayT), intent(in) :: array A handle of the array containing the required data.
e type(ColumnT), intent(in) :: column A handle of the column containing the required
data.
o integer, intent(in) :: row The row number of the column cell containing the required
data.
RETURNS
e real(kind=SINGLE), dimension(:), pointer
The data is returned as a flat vector regardless of the dimensionality of the
DESCRIPTION
The data is returned in a vector regardles of the dimensionality of the data. In particular,
when accessing a scalar column cell, a vector of length 1 is returned, which contains the
single scalar value.
ERRORS
EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
! You should have received a copy of the GNU General Public License
! along with SAS. If not, see <http://www.gnu.org/licenses/>.

! In this example add dataset is created (opened) containing

! a table with 2 columns of two 4-dimensional arrays.

!

!

The second array has the same data type as the first; this

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 266

is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, and then the second column
is output by accessing the column’s data as a flat vector.
program example_real32data

use dal
use errorhandling

implicit none

type(DataSetT) set

type(TableT) tab

type(ColumnT) coll, col2

real (kind=SINGLE), dimension(:,:,:,:,:), pointer :: cl, c2
real (kind=SINGLE), dimension(:), pointer :: cd

integer, dimension(4), parameter :: s = (/ 3,4,5,6 /)
integer :: i,j,k,1,m,n

! create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 5, "table comment")

coll addColumn(tab, "columnl", REAL32, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers
cl => real32Array4Data(coll)
c2 => real32Array4Data(col2)

n=20
do m=0,number0fRows(tab) - 1
do 1=0,5
do k=0,4
do j=0,3
do i=0,2
c1(i,j,k,1,m)
c2(i,j,k,1,m)
n=n+1
end do
end do
end do
end do
end do

n
c1(i,j,k,1,m)

call release(coll)
call release(col2)

! Output the col2
cd => real32Data(col2) ! Access the column’s 4-dimensional data as a flat vector.

do n = 0,numberOfElements(coll) * numberOfRows(tab) - 1

write(*,*) cd(n)
end do

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 267

call release(col2)
call release(set)

end program example_real32data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
real32VectorData
PURPOSE
Get the real32 data from an array or column cell containing vector data.
INTERFACE
function real32ArrayVectorData(array)
function real32ColumnVectorDataElement(column, row)
ARGUMENTS
e type(ArrayT), intent(in) :: array
A handle of the array containing the required data.
o type(ColumnT), intent(in) :: column
A handle of the column containing the required data.
e integer(kind=INT32), intent(in) :: row
The row number of the column cell containing the data to be accessed.
RETURNS
e real(kind=SINGLE), dimension(:), pointer
DESCRIPTION
ERRORS
EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

]
!
]
!
! SAS is free software: you can redistribute it and/or modify

! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or

! (at your option) any later version.

!

!

!

!

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 268

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two vector arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_cellvectordata

use dal
use errorhandling

implicit none

type (DataSetT) set

type(TableT) tab

type (ColumnT) coll, col2

real (kind=SINGLE), dimension(:), pointer :: cl1, c2
integer, dimension(1l), parameter :: s = (/ 3 /)
integer :: i,m,n

| create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columnl", REAL32, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i1l with unique numbers

n=20

do m=0,number0fRows(tab) - 1
cl => real32VectorData(coll,m)
c2 => real32VectorData(col2,m)

do i=0,2
cl(i) = n
c2(i) = c1(i)
n=n+1
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_cellvectordata

! ESA (C) 2000-2018
!

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 269

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how to use the int32Array2Data interface.

In the example a dataset is created (opened) containing

a table with 2 vector arrays.

]
]
!
!
!
]
]
!
!
]
]
]
]
!
!
]
]
]
! The second array has the same data type as the first; this

! is ensured by using the arrayDataType() function to determine
! the data type of the first array.

]

! The array is then initialised,

program example_arrayvectordata

use dal
use errorhandling

implicit none

type (DataSetT) set

type(TableT) tab

type(ArrayT) arrl, arr2

real (kind=SINGLE), dimension(:), pointer :: al, a2
integer, dimension(1), parameter :: s = (/ 3 /)
integer :: i,n

! create a set

set = dataSet("test.dat",CREATE)

arrl = addArray(set, "arrayl", REAL32, s, "km", "array comment")
arr2 = addArray(set, "array2", REAL32, s, "km", "array comment")

! £i11 with unique numbers
n=20

al => real32VectorData(arril)
a2 => real32VectorData(arr2)

do i=0,2
al(i) = n
a2(i) = a1(i)
n=n+1
end do

call release(arrl)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 270

call release(arr2)
call release(set)

end program example_arrayvectordata

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME

real32VectorData

PURPOSE

Get the real32 data from a column containing vector data.

INTERFACE

function real32ColumnVectorData(column)

ARGUMENTS

RETURNS

o type(ColumnT), intent(in) :: column
A handle of the column containing the required data.

real(kind=SINGLE), dimension(:,:), pointer

DESCRIPTION

ERRORS

EXAMPLES

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing
a table with 2 columns of two vector arrays.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 271

]

! The second column has the same data type as the first; this

! is ensured by using the columnDataType() function to determine
! the data type of the first array.
]
]
]

The columns are then initialised before the
dataset is released (closed).
program example_columnvectordata

use dal
use errorhandling

implicit none

type (DataSetT) set

type(TableT) tab

type(ColumnT) coll, col2

real (kind=SINGLE), dimension(:,:), pointer :: cl, c2
integer, dimension(1), parameter :: s = (/ 3 /)
integer :: i,m,n

! create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 10, "table comment")

coll = addColumn(tab, "columni", REAL32, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers
cl => real32VectorData(coll)
c2 => real32VectorData(col2)

n=20
do m=0,number0fRows(tab) - 1
do i=0,2
ci(i,m) = n
c2(i,m) = c1(i,m)
n=n+
end do
end do

[y

call release(coll)
call release(col2)
call release(set)

end program example_columnvectordata

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
REALG64

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 272

PURPOSE

An enumeration value which is used to indicate an object contains data of type real64
(double).

DESCRIPTION

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
real64Array2Data
PURPOSE
Get the real64 data from an array or column cell containing 2-dimensional array data.
INTERFACE
function real64 Array Array2Data(array) result(ptr) function real64ColumnArray2DataElement(
column, row) result(ptr)
ARGUMENTS
o type(ArrayT), intent(in) :: array
o type(ColumnT), intent(in) :: column
e integer, intent(in) :: row
RETURNS
o real(kind=DOUBLE), dimension(:,:), pointer
DESCRIPTION
ERRORS
EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).
it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

!
!
!
!
! SAS is free software: you can redistribute it and/or modify
!
!
! (at your option) any later version.

!

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 273

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

]
!
]
!
!
! You should have received a copy of the GNU General Public License
! along with SAS. If not, see <http://www.gnu.org/licenses/>.

! This example shows how to use the real64Array2Data interface.

! In the example a dataset is created (opened) containing

! a table with 2 columns of two 2-dimensional arrays.

]

!

]

!

!

]

!

]

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_cellarray2data

use dal
use errorhandling

implicit none

type(DataSetT) set

type(TableT) tab

type(ColumnT) coll, col2

real (kind=DOUBLE), dimension(:,:), pointer :: cl, c2
integer, dimension(2), parameter :: s = (/ 3,4 /)
integer :: i,j,k,n

! create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columni", REAL64, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers

n=20

do k=0,numberOfRows(tab) - 1
cl => real64Array2Data(coll, k)
c2 => real64Array2Data(col2,k)

do j=0,3
do i=0,2
c1(i,j) =n
c2(i,j) = c1(i,j)
n=n+1
end do
end do
end do

call release(coll)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 274

call release(col2)
call release(set)

end program example_cellarray2data

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how to use the real64Array2Data interface.

In the example a dataset is created (opened) containing

a table with 2 2-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_arrayarray2data

use dal
use errorhandling

implicit none

type (DataSetT) set

type(TableT) tab

type(ArrayT) arrl, arr2

real (kind=DOUBLE), dimension(:,:), pointer :: al, a2
integer, dimension(2), parameter :: s = (/ 3,4 /)
integer :: i,j,n

| create a set

set = dataSet("test.dat",CREATE)

arrl = addArray(set, "arrayl", REAL64, s, "km", "array comment")
arr2 = addArray(set, "array2", REAL64, s, "km", "array comment")

I £i11 with unique numbers

n=20
al => real64Array2Data(arrl)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

275

a2 => real64Array2Data(arr2)

do j=0,3
do i=0,2
al(i,j) =n
a2(i,j) = a1(4,j)
n=n+1
end do
end do

call release(arrl)
call release(arr2)
call release(set)

end program example_arrayarray2data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
real64Array2Data
PURPOSE
Get the real64 data from a column containing 2-dimensional array data.
INTERFACE
function real64ColumnArray2Data(column)
ARGUMENTS
o type(ColumnT), intent(in) :: column
RETURNS
o real(kind=DOUBLE), dimension(:,:,:), pointer
DESCRIPTION
ERRORS
EXAMPLES

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 276

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two 2-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine

the data type of the first array.

The columns are then initialised before the

dataset is released (closed).

program example_array2data

use dal
use errorhandling

implicit none

type (DataSetT) set

type(TableT) tab

type(ColumnT) coll, col2

real (kind=DOUBLE), dimension(:,:,

integer, dimension(2), parameter ::

integer :: i,j,k,n

I create a set

set = dataSet("test.dat",CREATE)
tab = addTable(set, "table", 100,
coll = addColumn(tab, "columni",
col2 = addColumn(tab, "column2",

! £i11 with unique numbers
cl => real64Array2Data(coll)
c2 => real64Array2Data(col2)

n=20
do k=0,number0OfRows(tab) - 1
do j=0,3
do i=0,2
c1(i,j,k) =n
c2(i,j,k) = c1(i,j,k)
n=n+1
end do
end do
end do

call release(coll)
call release(col2)

xmmsas_20230412_1735-21.0.0

1), pointer :: cl, c2

s =(/ 3,4/

"table comment")
REAL64, "km", s, "column comment")
columnDataType(coll), "km", s, "column comment")

XMM-Newton Science Analysis System Page: 277

call release(set)

end program example_array2data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
real64Array3Data

PURPOSE
Get the real64 data from an array or a column cell containing 3-dimensional array data.

INTERFACE
function real64Array Array3Data(array)
function real64ColumnArray3DataElement(column, row)

ARGUMENTS

o type(ArrayT), intent(in) :: array
o type(ColumnT), intent(in) :: column

e integer, intent(in) :: row

RETURNS
o real(kind=DOUBLE), dimension(:,:,:), pointer
DESCRIPTION

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

!
]

!

!

! SAS is free software: you can redistribute it and/or modify

! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or

! (at your option) any later version.

]

! SAS is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of

! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

!

!

!

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

278

along with SAS.

If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing
a table with 2 columns of two 3-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine

the data type of the first array.

The columns are then

initialised, on a row-by-row

basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_cellarray3data

use dal
use errorhandling

implicit none
type (DataSetT) set

type(TableT) tab
type(ColumnT) coll, col2

real (kind=DOUBLE), dimension(:,:
integer, dimension(3), parameter ::

integer :: i,j,k,1,n

I create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table",

coll = addColumn(tab, "columnl",
col2 = addColumn(tab, "column2",

! £i11 with unique numbers

n=20
do 1=0,numberOfRows(tab) - 1

cl => real64Array3Data(coll,l)
c2 => real64Array3Data(col2,1)

do k=0,4
do j=0,3
do i=0,2
c1(i,j,k) =n
c2(i,j,k) = c1(i,j,k)
n=n+1
end do
end do
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_cellarray3data

! ESA (C) 2000-2018

xmmsas_20230412_1735-21.0.0

1), pointer ::
s = (/ 3,4,5 /)

cl, c2

"table comment")

REAL64, "km", s,

columnDataType(coll), "km", s,

"column comment")
"column comment")

XMM-Newton Science Analysis System Page: 279

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how to use the int8Array2Data interface.

In the example a dataset is created (opened) containing

a table with 2 3-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).

program example_arrayarray3data

use dal
use errorhandling

implicit none
type(DataSetT) set

type(TableT) tab
type(ArrayT) arrl, arr2

real (kind=DOUBLE), dimension(:,:,:), pointer :: al, a2
integer, dimension(3), parameter :: s = (/ 3,4,5 /)
integer :: i,j,k,n

! create a set

set = dataSet("test.dat",CREATE)

arrl = addArray(set, "arrayl", REAL64, s, "km", "array comment")
arr2 = addArray(set, "array2", REAL64, s, "km", "array comment")

I £i11 with unique numbers

n=20
al => real64Array3Data(arrl)
a2 => real64Array3Data(arr2)
do k=0,4
do j=0,3
do i=0,2
al(i,j,k) =n

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

280

a2(i,j,k) = a1(i,j,k)
n=mn+1
end do
end do
end do

call release(arril)
call release(arr2)
call release(set)

end program example_arrayarray3data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
real64Array3Data
PURPOSE
Get the real64 data from a column containing 3-dimensional array data.
INTERFACE
function real64ColumnArray3Data(column)
ARGUMENTS
e type(ColumnT), intent(in) :: column
RETURNS
e real(kind=DOUBLE), dimension(:,:,:,:), pointer
DESCRIPTION
ERRORS
EXAMPLES

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

!
!
!
!
! SAS is free software: you can redistribute it and/or modify

! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or

!

!

!

!

(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 281

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing

a table with 2 columns of two 3-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised before the
dataset is released (closed).
program example_array3data

use dal
use errorhandling

implicit none
type (DataSetT) set

type(TableT) tab
type (ColumnT) coll, col2

real (kind=DOUBLE), dimension(:,:,:,:), pointer :: cl, c2
integer, dimension(3), parameter :: s = (/ 3,4,5 /)
integer :: i,j,k,1l,n

| create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll = addColumn(tab, "columnl", REAL64, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i1l with unique numbers
cl => real64Array3Data(coll)
c2 => real64Array3Data(coll)

n=20
do 1=0,numberOfRows(tab) - 1
do k = 0,4
do j=0,3
do i=0,2
c1(i,j,k,1)
CQ(i,j,k,l)
n=n+1

n
c1(i,j,k,1)

end do
end do
end do
end do

call release(coll)

call release(col2)
call release(set)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

282

end program example_array3data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
real64Array4Data
PURPOSE
Get the real64 data from a column cell containing 4-dimensional array data.
INTERFACE
function real64ColumnArray4DataElement(column, row)
ARGUMENTS
e type(ColumnT), intent(in) :: column
e integer, intent(in) :: row
RETURNS
e real(kind=DOUBLE), dimension(:,:,:,:), pointer
DESCRIPTION
ERRORS
EXAMPLES

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with SAS. If not, see <http://www.gnu.org/licenses/>.
In this example add dataset is created (opened) containing

!
!
]
!
!
!
!
]
!
! SAS is distributed in the hope that it will be useful,
]
!
]
!
!
!
!
! a table with 2 columns of two 4-dimensional arrays.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page: 283

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine

the data type of the first array.

The columns are then

initialised, on a row-by-row

basis (i.e. accessing the column’s data cell-by-cell),
before the dataset is released (closed).
program example_cellarray4data

use dal
use errorhandling

implicit none
type(DataSetT) set

type(TableT) tab
type(ColumnT) coll, col2

real (kind=DOUBLE), dimension(:,:,:
integer, dimension(4), parameter ::

integer :: i,j,k,1l,m,n

I create a set

set = dataSet("test.dat",CREATE)
tab =
coll =

! £i11 with unique numbers

n=20
do m=0,number0fRows(tab) - 1
cl => real64Array4Data(coll,m)
c2 => real64Array4Data(col2,m)
do 1=0,5
do k=0,4
do j=0,3
do i=0,2
c1(i,j,k,1) =n
c2(i,j,k,1)
n=n-+1
end do
end do
end do
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_cellarray4data

SEE ALSO

xmmsas_20230412_1735-21.0.0

addTable(set, "table", 100, "table comment")
addColumn(tab, "columnl", REAL64, "km", s,
col2 = addColumn(tab, "column2", columnDataType(coll), "km", s,

c1(i,j,k,1)

,:), pointer ::
s = (/ 3,4,5,6 /)

cl, c2

"column comment")
"column comment")

XMM-Newton Science Analysis System Page:

284

BUGS AND LIMITATIONS

None known.

NAME
real64Array4Data
PURPOSE
Get the real64 data from a column containing 4-dimensional array data.
INTERFACE
function real64ColumnArray4Data(column)
ARGUMENTS
o type(ColumnT), intent(in) :: column
RETURNS
o real(kind=DOUBLE), dimension(:,:,:,:,:), pointer
DESCRIPTION
ERRORS
EXAMPLES

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

]
]

!

]

]

]

!

!

!

! SAS is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!

]

]

]

!

!

]

]

]

!

!

]

You should have received a copy of the GNU General Public License

along with SAS. If not, see <http://www.gnu.org/licenses/>.
In this example add dataset is created (opened) containing
a table with 2 columns of two 4-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine
the data type of the first array.

The columns are then initialised before the

dataset is released (closed).
program example_array4data

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 285

use dal
use errorhandling

implicit none

type(DataSetT) set

type(TableT) tab

type (ColumnT) coll, col2

real (kind=DOUBLE), dimension(:,:,:,:,:), pointer :: cl, c2
integer, dimension(4), parameter :: s = (/ 3,4,5,6 /)
integer :: i,j,k,1,m,n

| create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")

coll addColumn(tab, "columnl", REAL64, "km", s, "column comment")

col2 addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

I £i11 with unique numbers
cl => real64Array4Data(coll)
c2 => real64Array4Data(coll)

n=20
do m=0,numberOfRows(tab) - 1
do 1=0,5
do k=0,4
do j=0,3
do i=0,2
c1(i,j,k,1,m) =n
c2(i,j,k,1,m) c1(i,j,k,1l,m)
n=n+1
end do
end do
end do
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_array4data

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
real64Attribute

PURPOSE
Get the value of an attribute as a real64.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

286

INTERFACE

function real64ArrayAttribute(array, name)

function real64AttributableAttribute(attributable, name)
function real64Attribute(attribute)

function real64BlockAttribute(Block, name)

function real64ColumnAttribute(column, name)

function real64DataSetAttribute(dataSet, name)
function real64TableAttribute(table, name)

ARGUMENTS

RETURNS

DESCRIPTION
ERRORS

EXAMPLES

type(ArrayT), intent(in) :: array
type(AttributableT), intent(in) :: attributable
type(AttributeT), intent(in) :: attribute
type(BlockT), intent(in) :: block
type(ColumnT), intent(in) :: column
type(DataSetT), intent(in) :: dataSet
character(len=%*), intent(in) :: name

type(TableT), intent(in) :: table

real(kind=DOUBLE)

ESA (C) 2000-2018

SAS is free software: you can redistribute it and/or modify

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 287

! You should have received a copy of the GNU General Public License
! along with SAS. If not, see <http://www.gnu.org/licenses/>.

! This example shows how real64 attributes are used.

! The program creates a dataset containing two real64 attributes,

! together with a table containing two real64 attributes.

! The attributes are then accessed, by name, with

! the real64Attribute() function.

! Also, it is shown how to access the attributes by position.

program example_real64attribute

use dal
use errorhandling
implicit none

type (DataSetT) set
type(TableT) tab
type (AttributeT) att
integer i

set = dataSet("test.dat",CREATE)
call setAttribute(set,"reall",1.0,"real comment")
call setAttribute(set,"real2",2.0,"real comment")

tab = addTable(set,"table",10);
call setAttribute(tab,"reall",3.0,"real comment")
call setAttribute(tab,"real2",4.0,"real comment")

write(*,*) real64Attribute(set, "reall") ! output ’1.0’
write(*,*) real64Attribute(set, "real2") ! output ’2.0’
write(*,*) real64Attribute(tab, "reall") ! output ’3.0’°
write(*,*) real64Attribute(tab, "real2") ! output ’4.0’°

do i = 0, numberOfAttributes(set) - 1
att attribute(set, i)
write(*,*) real64Attribute(att) ! output the sequence 1.0, 2.0
end do

call release(set)
end program example_real64attribute

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
real64Data

PURPOSE
Get the real64 data from an array, column or column cell.

INTERFACE
function real64ArrayData(array)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

288

function real64ColumnData(column)
function real64ColumnDataElement(column, row)

ARGUMENTS

o type(ArrayT), intent(in) :: array
o type(ColumnT), intent(in) :: column

e integer, intent(in) :: row

RETURNS
e real(kind=DOUBLE), dimension(:), pointer
DESCRIPTION
ERRORS
EXAMPLES

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

You should have received a copy of the GNU General Public License

See the

along with SAS. If not, see <http://www.gnu.org/licenses/>.

In this example add dataset is created (opened) containing
a table with 2 columns of two 4-dimensional arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine

the data type of the first array.

The columns are then initialised, and then the second column
is output by accessing the column’s data as a flat vector.

program example_real64data

use dal
use errorhandling

xmmsas_20230412_1735-21.0.0

!
!
!
!
!
!
!
!
!
!
!
!
! GNU General Public License for more details.
!
!
!
!
!
!
|
!
!
!
!
|

XMM-Newton Science Analysis System Page: 289

implicit none

type (DataSetT) set

type(TableT) tab

type(ColumnT) coll, col2

real (kind=DOUBLE), dimension(:,:,:,:,:), pointer :: cl, c2
real (kind=DOUBLE), dimension(:), pointer :: cd

integer, dimension(4), parameter :: s = (/ 3,4,5,6 /)
integer :: i,j,k,1,m,n

! create a set

set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 5, "table comment")

colil addColumn(tab, "columnl", REAL64, "km", s, "column comment")

col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers
cl => real64Array4Data(coll)
c2 => real64Array4Data(col2)

n=20
do m=0,number0fRows(tab) - 1
do 1=0,5
do k=0,4
do j=0,3
do i=0,2

c1(i,j,k,1,m)
c2(i,j,k,1,m)
n=n+1

n
c1(i,j,k,1,m)

end do
end do
end do
end do
end do

call release(coll)
call release(col2)

! OQutput the col2
cd => real64Data(col2) ! Access the column’s 4-dimensional data as a flat vector.

do n = O,numberOfElements(coll) * numberOfRows(tab) - 1
write(*,*) cd(n)

end do

call release(col2)
call release(set)

end program example_real64data

SEE ALSO

BUGS AND LIMITATIONS

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

290

None known.

NAME
real64VectorData

PURPOSE
Get the real64 data from an array or column cell containing vector data.

INTERFACE
function real64ArrayVectorData(array)
function real64ColumnVectorDataElement(column, row)

ARGUMENTS

o type(ArrayT), intent(in) :: array
e type(ColumnT), intent(in) :: column

e integer, intent(in) :: row
RETURNS
e real(kind=DOUBLE), dimension(:), pointer

DESCRIPTION

ERRORS

EXAMPLES

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

!
!

!

]

!

1

]

]

]

! SAS is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!

!

!

]

!

]

!

!

!

]

!

]

You should have received a copy of the GNU General Public License

along with SAS. If not, see <http://www.gnu.org/licenses/>.
In this example add dataset is created (opened) containing
a table with 2 columns of two vector arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine

the data type of the first array.

The columns are then initialised, on a row-by-row
basis (i.e. accessing the column’s data cell-by-cell),

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 291

! before the dataset is released (closed).
program example_cellvectordata

use dal
use errorhandling

implicit none

type (DataSetT) set

type(TableT) tab

type(ColumnT) coll, col2

real (kind=DOUBLE), dimension(:), pointer :: cl, c2
integer, dimension(1), parameter :: s = (/ 3 /)
integer :: i,m,n

I create a set
set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 100, "table comment")
coll = addColumn(tab, "columni", REAL64, "km", s, "column comment")
col2 = addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

! £i11 with unique numbers

n=20

do m=0,numberOfRows(tab) - 1
cl => real64VectorData(coll,m)
c2 => real64VectorData(col2,m)

do i=0,2
ci(i) =n
c2(i) = c1(d)
n=n+1
end do
end do

call release(coll)
call release(col2)
call release(set)

end program example_cellvectordata
! ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

292

along with SAS. If not, see <http://www.gnu.org/licenses/>.
This example shows how to use the int64Array2Data interface.
In the example a dataset is created (opened) containing
a table with 2 vector arrays.

The second array has the same data type as the first; this
is ensured by using the arrayDataType() function to determine

the data type of the first array.

The array is then initialised,

program example_arrayvectordata

use dal
use errorhandling

implicit none

type(DataSetT) set

type(TableT) tab

type(ArrayT) arrl, arr2

real (kind=DOUBLE), dimension(:), pointer :: al, a2
integer, dimension(1), parameter :: s = (/ 3 /)
integer :: i,n

| create a set

set = dataSet("test.dat",CREATE)

arrl = addArray(set, "arrayl", REAL64, s, "km", "array comment")
arr2 = addArray(set, "array2", REAL64, s, "km", "array comment")

I £i11 with unique numbers
n=20

al => real64VectorData(arril)
a2 => real64VectorData(arr2)

do i=0,2
al(i) = n
a2(i) = a1(i)
n=n+1
end do

call release(arrl)
call release(arr2)
call release(set)

end program example_arrayvectordata

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME

real64VectorData

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

293

PURPOSE
Get the real64 data from a column containing vector data.

INTERFACE
function real64ColumnVectorData(column)

ARGUMENTS

o type(ArrayT), intent(in) :: array
o type(ColumnT), intent(in) :: column

e integer, intent(in) :: row

RETURNS
e real(kind=DOUBLE), dimension(:,:), pointer
DESCRIPTION
ERRORS
EXAMPLES

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

]
!

]

!

!

]

!

!

!

! SAS is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!

!

]

]

!

]

!

!

!

!

]

!

You should have received a copy of the GNU General Public License

along with SAS. If not, see <http://www.gnu.org/licenses/>.
In this example add dataset is created (opened) containing
a table with 2 columns of two vector arrays.

The second column has the same data type as the first; this
is ensured by using the columnDataType() function to determine
the data type of the first array.

The columns are then initialised before the

dataset is released (closed).

program example_columnvectordata

use dal

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page: 294

use errorhandling
implicit none

type (DataSetT) set

type(TableT) tab

type(ColumnT) coll, col2

real (kind=DOUBLE), dimension(:,:), pointer ::

cl, c2

integer, dimension(1), parameter :: s = (/ 3 /)

integer :: i,m,n

I create a set
set = dataSet("test.dat",CREATE)

tab = addTable(set, "table", 10, "table comment")

coll
col2

! £fi1ll with unique numbers
cl => real64VectorData(coll)
c2 => real64VectorData(col2)

n=20
do m=0,number0fRows(tab) - 1
do i=0,2
ci(i,m) = n
c2(i,m) = c1(i,m)
n=n+
end do
end do

[y

call release(coll)
call release(col2)
call release(set)

end program example_columnvectordata

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
relabel

PURPOSE
Relabel an object.

INTERFACE
subroutine relabelArray(array, newLabel)
subroutine relabelAttributable(attributable, newLabel)
subroutine relabel Attribute(attribute, newLabel)
subroutine relabelBlock(block, newLabel)
subroutine relabelColumn(column, newLabel)
subroutine relabelDataSet(dataSet, newLabel)

xmmsas_20230412_1735-21.0.0

addColumn(tab, "columnl", REAL64, "km", s, "column comment")
addColumn(tab, "column2", columnDataType(coll), "km", s, "column comment")

XMM-Newton Science Analysis System Page: 295

subroutine relabelLabelled(labelled, newLabel)
subroutine relabelTable(table, newLabel)

ARGUMENTS

o type(ArrayT), intent(in) :: array

o type(AttributableT), intent(in) :: attributable
o type(AttributeT), intent(in) :: attribute

o type(BlockT), intent(in) :: block

e type(ColumnT), intent(in) :: column

o type(DataSetT), intent(in) :: dataSet

o type(LabelledT), intent(in) :: labelled

e character(len="*), intent(in) :: newLabel

o type(TableT), intent(in) :: table

RETURNS
DESCRIPTION

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with SAS. If not, see <http://www.gnu.org/licenses/>.
This example shows how the label, relabel, name and rename interfaces are used.
subroutine displayLabelled(1)
use dal

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 296

implicit none

type(LabelledT), intent(in) :: 1

write(*,*) "the object with name ", name(1), " has label: ", label(l)
end subroutine displayLabelled

subroutine display(set)
use dal

implicit none

type (DataSetT) set
type (ArrayT) arr
type(TableT) tab
type (ColumnT) col
type (AttributeT) att

att = attribute(set, 0)
write(*,*) name(att), label(att)
call displayLabelled(labelled(att))

arr = array(set, O, READ)
write(*,*) name(arr), label(arr)
call displayLabelled(labelled(arr))

att = attribute(arr, 0)
write(*,*) name(att), label(att)
call displayLabelled(labelled(att))

tab = table(set, 1)

write(*,*) name(tab), label(tab)

call displayLabelled(labelled(tab))

att = attribute(tab, 0)

write(*,*) name(att), label(att)

call displayLabelled(labelled(att))

col = column(tab, O, READ)

write(*,*) name(col), label(col)

call displayLabelled(labelled(col))

att = attribute(col, 0)

write(*,*) name(att), label(att)

call displayLabelled(labelled(att))
end subroutine display

program example_labelled

use dal

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 297

implicit none

type (DataSetT) set

type (ArrayT) arr

type(TableT) tab

type (ColumnT) col

! type(AttributeT) att

! integer(kind=int32), dimension(:,:,:), pointer :: a
integer, dimension(3), parameter :: s = (/ 3,4,2 /)

! create a set

set = dataSet("test.dat",CREATE)

call setAttribute(set,"attl","valuel","a dataset attribute comment")

arr = addArray(set, "array", INTEGER32, comment="an array comment", dimensions=s)
call setAttribute(arr,"att2","value2","an array attribute comment")

tab = addTable(set, "table", 10, comment="a table comment")

call setAttribute(tab,"att3","value3","a table attribute comment")

col = addColumn(tab,"int8",INTEGERS, comment="a column comment")

call setAttribute(col,"TLMAX","valued4","a column attribute comment")

call display(set)

call relabel(tab, "a new table comment")
call rename(col, "mewcolnm")

call display(set)

call release(set)
end program example_labelled

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
release

PURPOSE
Release an object.

INTERFACE
subroutine releaseArray(array)
subroutine releaseBlock(block)
subroutine releaseColumn(column)
subroutine releaseDataSet(dataSet)
subroutine releaseTable(table)

ARGUMENTS

o type(ArrayT), intent(in) :: array

o type(BlockT), intent(in) :: block

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

298

o type(ColumnT), intent(in) :: column
o type(DataSetT), intent(in) :: dataSet

e type(TableT), intent(in) :: table

RETURNS

DESCRIPTION

ERRORS

EXAMPLES
Most examples call the release functions.

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME

rename

PURPOSE
Rename an object.

INTERFACE
subroutine renameArray(array, newName)
subroutine renameAttributable(attributable, newName)
subroutine renameAttribute(attribute, newName)
subroutine renameBlock(block, newName)
subroutine renameColumn(column, newName)
subroutine renameDataSet(dataSet, newName)
subroutine renameLabelled(labelled, newName)
subroutine renameTable(table, newName)

ARGUMENTS

o type(ArrayT), intent(in) :: array

type(AttributableT), intent(in) :: attributable

type(AttributeT), intent(in) :: attribute

type(BlockT), intent(in) :: block

type(ColumnT), intent(in) :: column

type(DataSetT), intent(in) :: dataSet

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 299

o type(LabelledT), intent(in) :: labelled
e character(len=*), intent(in) :: newName

e type(TableT), intent(in) :: table

RETURNS
DESCRIPTION

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with SAS. If not, see <http://www.gnu.org/licenses/>.
This example shows how the label, relabel, name and rename interfaces are used.
subroutine displayLabelled(1)
use dal

implicit none

type(LabelledT), intent(in) :: 1

write(*,*) "the object with name ", name(1), " has label: ", label(l)
end subroutine displayLabelled

subroutine display(set)
use dal

implicit none
type(DataSetT) set
type (ArrayT) arr

type(TableT) tab
type (ColumnT) col

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 300

type (AttributeT) att

att = attribute(set, 0)
write(*,*) name(att), label(att)
call displayLabelled(labelled(att))

arr = array(set, 0, READ)
write(*,*) name(arr), label(arr)
call displayLabelled(labelled(arr))

att = attribute(arr, 0)
write(*,*) name(att), label(att)
call displaylLabelled(labelled(att))

tab = table(set, 1)
write(*,*) name(tab), label(tab)
call displayLabelled(labelled(tab))

att = attribute(tab, 0)
write(*,*) name(att), label(att)
call displayLabelled(labelled(att))

col = column(tab, O, READ)
write(*,*) name(col), label(col)
call displayLabelled(labelled(col))

att = attribute(col, 0)
write(*,*) name(att), label(att)
call displaylLabelled(labelled(att))

end subroutine display
program example_labelled
use dal
implicit none

type(DataSetT) set

type (ArrayT) arr

type(TableT) tab

type (ColumnT) col

! type(AttributeT) att

! integer(kind=int32), dimension(:,:,:), pointer :: a
integer, dimension(3), parameter :: s = (/ 3,4,2 /)

! create a set

set = dataSet("test.dat",CREATE)

call setAttribute(set,"attl","valuel","a dataset attribute comment")

arr = addArray(set, "array", INTEGER32, comment="an array comment", dimensions=s)
call setAttribute(arr,"att2","value2","an array attribute comment")

tab = addTable(set, "table", 10, comment="a table comment")

call setAttribute(tab,"att3","value3","a table attribute comment")

col = addColumn(tab,"int8",INTEGERS, comment="a column comment")

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 301

call setAttribute(col,"TLMAX","value4","a column attribute comment")

call display(set)

call relabel(tab, "a new table comment")
call rename(col, "newcolnm")

call display(set)

call release(set)
end program example_labelled

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
RowT

PURPOSE
A derived type which is used to declare objects of type RowT.

DESCRIPTION

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
scale

PURPOSE
THIS INTERFACE IS NOT IMPLEMENTED. Get the scale factor of an object’s data.

INTERFACE
function scaleOfArray(array)
function scaleOfColumn(column)

ARGUMENTS

e type(ArrayT), intent(in) :: array

o type(ColumnT), intent(in) :: column

RETURNS
e real(kind=DOUBLE)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 302

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

NAME
setAttribute

PURPOSE
Create/Copy/Set an attribute.

INTERFACE
subroutine arraySetAttribute(array, attribute)
subroutine attributableSetAttribute(attributable, attribute)
subroutine blockSetAttribute(block, attribute)
subroutine columnSetAttribute(column, attribute)
subroutine datasetSetAttribute(dataset, attribute)
subroutine setBooleanArrayAttribute(array, name, booleanValue, comment)
subroutine setBooleanAttributableAttribute(attributable, name, booleanValue, comment)
subroutine setBooleanAttribute(attribute, booleanValue, comment)
subroutine setBooleanBlockAttribute(block, name, booleanValue, comment)
subroutine setBooleanColumnAttribute(column, name, booleanValue, comment)
subroutine setBooleanDataSetAttribute(dataSet, name, booleanValue, comment)
subroutine setBooleanTableAttribute(table, name, booleanValue, comment)
subroutine setInt8 ArrayAttribute(array, name, int8Value, units, comment)
subroutine setInt8AttributableAttribute(attributable, name, int8Value, units, comment)
subroutine setInt8Attribute(attribute, int8Value, units, comment)
subroutine setInt8BlockAttribute(block, name, int8Value, units, comment)
subroutine setInt8ColumnAttribute(column, name, int8Value, units, comment)
subroutine setInt8DataSet Attribute(dataSet, name, int8Value, units, comment) subroutine
setInt8TableAttribute(table, name, int8Value, units, comment)
subroutine setInt16ArrayAttribute(array, name, int16Value, units, comment)
subroutine setInt16AttributableAttribute(attributable, name, int16Value, units, comment
) subroutine setInt16Attribute(attribute, int16Value, units, comment)
subroutine setInt16BlockAttribute(block, name, int16Value, units, comment)
subroutine setInt16ColumnAttribute(column, name, int16Value, units, comment)
subroutine setInt16DataSet Attribute(dataSet, name, int16Value, units, comment)
subroutine setInt16TableAttribute(table, name, int16Value, units, comment)
subroutine setInt32ArrayAttribute(array, name, int32Value, units, comment)
subroutine setInt32AttributableAttribute(attributable, name, int32Value, units, comment
)
subroutine setInt32Attribute(attribute, int32Value, units, comment)
subroutine setInt32BlockAttribute(block, name, int32Value, units, comment)
subroutine setInt32ColumnAttribute(column, name, int32Value, units, comment)
subroutine setInt32DataSet Attribute(dataSet, name, int32Value, units, comment)
subroutine setInt32TableAttribute(table, name, int32Value, units, comment)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 303

subroutine setReal32ArrayAttribute(array, name, real32Value, units, comment)
subroutine setReal32AttributableAttribute(attributable, name, real32Value, units, com-
ment)

subroutine setReal32Attribute(attribute, real32Value, units, comment)

subroutine setReal32BlockAttribute(block, name, real32Value, units, comment)
subroutine setReal32ColumnAttribute(column, name, real32value, units, comment)
subroutine setReal32DataSetAttribute(dataSet, name, real32Value, units, comment)
subroutine setReal32TableAttribute(table, name, real32Value, units, comment)
subroutine setReal64ArrayAttribute(array, name, real64Value, units, comment)
subroutine setReal64AttributableAttribute(attributable, name, real64Value, units, com-
ment)

subroutine setReal64Attribute(attribute, real64Value, units, comment)

subroutine setReal64BlockAttribute(block, name, real64Value, units, comment)
subroutine setReal64ColumnAttribute(column, name, real64Value, units, comment)
subroutine setReal64DataSet Attribute(dataSet, name, real64Value, units, comment)
subroutine setReal64TableAttribute(table, name, real64Value, units, comment)
subroutine setStringArrayAttribute(array, name, stringValue, comment)

subroutine setStringAttributableAttribute(attributable, name, stringValue, comment)
subroutine setStringAttribute(attribute, stringValue, comment)

subroutine setStringBlock Attribute(block, name, stringValue, comment)

subroutine setStringColumnAttribute(column, name, stringValue, comment)
subroutine setStringDataSet Attribute(dataSet, name, stringValue, comment,)
subroutine setStringTableAttribute(table, name, stringValue, comment)

subroutine tableSetAttribute(table, attribute)

ARGUMENTS

o type(ArrayT), intent(in) :: array

o type(AttributableT), intent(in) :: attributable
o type(AttributeT), intent(in) :: attribute

e type(BlockT), intent(in) :: block

e logical, intent(in) :: booleanValue

e type(ColumnT), intent(in) :: column

e character(len="*), intent(in), optional :: comment
o type(DataSetT), intent(in) :: dataset

e type(TableT), intent(in) :: table

e character(len=%*), intent(in), optional :: units
o integer(kind=INTS), intent(in) :: int8Value

o integer(kind=INT16), intent(in) :: int16Value

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 304

o integer(kind=INT32), intent(in) :: int32Value
o real(kind=SINGLE), intent(in) :: real32Value
e real(kind=DOUBLE), intent(in) :: real64Value

e character(len="*), intent(in) :: stringValue

RETURNS N/A
DESCRIPTION

ERRORS

EXAMPLES

ESA (C) 2000-2018

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).
SAS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
SAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how the setAttribute

!
]
]
]
!
!
]
]
]
]
!
]
]
]
!
!
!
! interface is used.

program example_setattribute
use dal
implicit none
type (DataSetT) set
set = dataSet("test.dat",CREATE)

call setAttribute(set,"testl","some value","some comment to the attribute")

call setAttribute(set,"TELESCOP","XMM","Telescope (mission) name")
write (*,*) numberOfAttributes(set) ! 2 attributes
call release(set)

end program example_setattribute

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 305

SEE ALSO
attribute AttributeT

BUGS AND LIMITATIONS

None known.

NAME
setAttributes(attributable, origin)
PURPOSE
Replace the attributes in an attributable set with the attributes in a source set.
ARGUMENTS
o type(AttributableT), intent(in) :: attributable
e type(AttributableT), intent(in) :: origin
RETURNS
DESCRIPTION
The attributes in source are copied to destination. Attributes, which have the same name
are overwritten.
ERRORS
EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how the setAttributes interface

is used.

program example_setattributes

use dal
use errorhandling
implicit none

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

306

type(DataSetT) set
type(TableT) tab

set = dataSet("test.dat",CREATE)
call setAttribute(set,"sbooll",.false.,"dataset bool comment")

call setAttribute(set,"sbool2",.false.,"dataset bool comment")

tab = addTable(set,"table",10);
call setAttributes(attributable(tab),attributable(set))

write(*,*) numberOfAttributes(tab) ! 2 attributes
call release(set)

end program example_setattributes

SEE ALSO

addAttributes

BUGS AND LIMITATIONS

None known.

NAME
setData

PURPOSE
Set the data in a variable length column.

INTERFACE
subroutine setBoolCell(column, row, booleanValues)
subroutine setInt8Cell(column, row, int8Values)
subroutine setInt16Cell(column, row, int16Values)
subroutine setInt32Cell(column, row, int32Values)
subroutine setReal32Cell(column, row, real32values)
subroutine setReal64Cell(column, row, real64Values)
subroutine setStringVariableCell(column, row, stringValues)

ARGUMENTS

e logical(kind=BOOL), dimension(:), intent(in) :: booleanValues
o type(ColumnT), intent(in) :: column

e integer(kind=INTS), dimension(:), intent(in) :: int8Values

e integer(kind=INT16), dimension(:), intent(in) :: int16Values

e integer(kind=INT32), dimension(:), intent(in) :: int32Values

o real(kind=SINGLE), dimension(:), intent(in) :: real32Values

e real(kind=DOUBLE), dimension(:), intent(in) :: real64Values

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 307

o integer(kind=INT32), intent(in) :: row

o character(len="*) :: stringValues

RETURNS
DESCRIPTION

ERRORS

EXAMPLES

ESA (C) 2000-2018

SAS is free software: you can redistribute it and/or modify

the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

! This example shows how to set the data in

! a variable length column.

program example_setdata

use dal
implicit none

integer, parameter :: nRows = 10

integer, parameter :: maxCellSize = 100

integer, dimension(0) :: zeroSize

integer (kind=INT32) :: i

type(DataSetT) :: set

type(TableT) :: tab

type(ColumnT) :: i8coll, i8col2, il6coll, il6col2, i32coll, i32col2
type(ColumnT) :: r32coll, r32col2, r64coll, r64col2

type(ColumnT) :: scoll, scol2, bcoll, bcol2

logical (kind=bool), dimension(maxCellSize) :: b
integer (kind=INT8), dimension(maxCellSize) :: i8
integer (kind=INT16), dimension(maxCellSize) :: il16
integer (kind=INT32), dimension(maxCellSize) :: 132
real (kind=SINGLE), dimension(maxCellSize) :: r32
real (kind=DOUBLE), dimension(maxCellSize) :: r64

xmmsas_20230412_1735-21.0.0

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

it under the terms of the GNU General Public License as published by

XMM-Newton Science Analysis System

Page:

308

character(len=maxCellSize) :: s
real (kind=SINGLE), dimension(:), pointer :: r32Data

s = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
do i = 1, maxCellSize

i8(i) = 1
i16(i) =i
i32(1) = i
r32(i) =1
r64(i) = 1
b(i) = ((1 / 2).eq.0)
end do
set = dataSet("test.dat",Create)

tab addTable(set,"someTable" ,nRows)

bcoll = addColumn(tab,"bcoll",Boolean, &
dimensions=zeroSize,comment="bool data")

bcol2 = addColumn(tab,"bcol2",Boolean, &
dimensions=zeroSize,comment="bool data")

i8coll = addColumn(tab,"i8coll",Integer8,units="m", &
dimensions=zeroSize,comment="int8 data")

i8c0l2 = addColumn(tab,"i8col2",Integer8,units="m", &
dimensions=zeroSize,comment="int8 data")

il6coll
dimensions=zeroSize,comment="int16 data")

i16co0l2 = addColumn(tab,"il6col2",Integer16,units="m",
dimensions=zeroSize,comment="int16 data")
i32co0ll = addColumn(tab,"i32coll",Integer32,units="m",

dimensions=zeroSize,comment="int32 data")

i32col2
dimensions=zeroSize,comment="int32 data")

r32coll addColumn (tab,"r32coll",Real32,units="m", &
dimensions=zeroSize,comment="real32 data")

r32col2 addColumn(tab,"r32col2",Real32,units="m", &
dimensions=zeroSize,comment="real32 data")

r64coll addColumn (tab,"r64coll" ,Real64,units="m", &
dimensions=zeroSize,comment="real64 data")

r64col2 = addColumn(tab,"r64col2",Real64,units="m", &
dimensions=zeroSize,comment="real64 data")

scoll = addColumn(tab,"scoll",String,units="m", &

xmmsas_20230412_1735-21.0.0

addColumn(tab,"il6coll",Integer16,units="m",

addColumn(tab,"i32co0l2",Integer32,units="m",

&

&

&

&

XMM-Newton Science Analysis System

Page:

309

dimensions=zeroSize,comment="string data")

scol2 = addColumn(tab,"scol2",String, &
dimensions=zeroSize,comment="string data")

do i=0,nRows - 1
call setData(bcoll, i, b(1 : i + 1))
call setData(bcol2, i, b(1 : nRows - i))
call setData(i8coll, i, i8(1 : i + 1))
call setData(i8col2, i, i8(1 : nRows - i))

call setData(il16coll, i, i16(1
call setData(i16col2, i, i16(1
call setData(i32coll, i, i32(1
call setData(i32col2, i, i32(1 : nRows - i))
call setData(r32coll, i, r32(1
call setData(r32col2, i, r32(1
call setData(r64coll, i, r64(1

i+ 1))
: nRows - 1))
i+1))

i+ 1))
: nRows - 1))
i+ 1))

call setData(r64col2, i, r64(1 : nRows - i))
call setData(scoll, i, s(1 : i+ 1))
call setData(scol2, i, s(1 : nRows - i))

end do

call release(set)

set = dataSet("test.dat",Modify)
tab = table(set,"someTable")

bcoll = column(tab,"bcoll",Read)
bcol2 = column(tab,"bcol2",Read)

i8coll =

column(tab,"i8coll" ,Read)

i8co0l2 = column(tab,"i8col2",Read)

il6coll =
il6col2 =
i32coll =
i32col2 =
r32coll =
r32col2 =
r64coll =
r64col2 =

column(tab,"il16coll",Read)
column(tab,"il6col2",Read)
column(tab,"i32col1",Read)
column(tab,"i32co0l2" ,Read)
column(tab,"r32coll",Read)
column(tab,"r32co0l2",Read)
column(tab,"r64coll",Read)
column(tab,"r64col2",Read)

scoll = column(tab,"scoll",Read)
scol2 = column(tab,"scol2",Read)

do i = 0, nRows - 1

write (*,*)
write (*,*)
write(k,*)
write(*,*)
write(*,*)
write (*,*)
write (*,*)
write (k, %)
write (*,*)
write (*,*)
write (*,*)

xmmsas_20230412_1735-21

boolData(bcoll, i)
boolData(bcol2, i)
int8Data(i8coll, i
int8Data(i8col2, i
inti6Data(i16coll,
int16Data(i16col2,
int32Data(i32coll,
int32Data(i32col2,
real32Data(r32coll, i)
real32Data(r32col2, i)
real64Data(r64coll, i)

[R NG A 7

N

XMM-Newton Science Analysis System

Page:

310

write(*,*) real64Data(r64col2, i)
write(*,*) stringCell(scoll, i)
write(*,*) stringCell(scol2, i)

end do
call release(set)

end program example_setdata

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
setExists(setName)

PURPOSE
Determine if a dataset exists.

ARGUMENTS

e character(len="*), intent(in) ::

RETURNS

e logical
DESCRIPTION
ERRORS

EXAMPLES

ESA (C) 2000-2018

xmmsas_20230412_1735-21.0.0

setName

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
GNU General Public License for more details.

See the

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

XMM-Newton Science Analysis System

Page:

311

! This example shows how the setexists()
! function is used.
program example_setexists

use dal
implicit none
type (DataSetT) set

set = dataSet("test.dat",CREATE)
call release(set)

if(setExists("test.dat")) then
write(*,*) ’Very strange’
end if
end program example_setexists

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
setNullValue

PURPOSE
Set the value of the integer null value.

INTERFACE
subroutine setNullValue
subroutine setNullValue
subroutine setNullValue
subroutine setNullValue

array, value)

column, value)
dataComponent, value)
nullable, value)

A~~~ A~

ARGUMENTS
o type(ArrayT), intent(in) :: array
A handle of the array whose null value is to be set.

o type(ColumnT), intent(in) :: column
A handle of the column whose null value is to be set.

o type(DataComponentT), intent(in) :: dataComponent
A handle of the dataComponent whose null value is to be set.

e type(NullableT), intent(in) :: nullable
A handle of the nullable whose null value is to be set.

o integer(kind=INT32), intent(in) :: value
The value of the null value.

RETURNS
DESCRIPTION

This function is only relevant for objects containing integer data, and should not be called

for objects containing other data types.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 312

ERRORS

EXAMPLES

The null value of an object containing integer data (if it has been defined) may be obtained
with the function intNullValue().

The logical function nullDefined() may be used to determine if the null value has been
defined.

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how null values are used.

subroutine check(thisNullable)

use dal

type(NullableT), intent(in) :: thisNullable

write(*,*) "Null defined?: ", nullDefined(thisNullable), nullType(thisNullable)

end subroutine check
program example_nullvalues

use dal
use errorhandling

implicit none

type (DataSetT) set
type(ArrayT) arrl, arr2
type(TableT) tab
type(ColumnT) coll, col2

integer(kind=int32), dimension(:), pointer :: i32

real (kind=double), dimension(:), pointer :: r64

integer (kind=int32), dimension(:,:,:), pointer :: al, a2
integer, dimension(3), parameter :: s = (/ 3,4,2 /)
integer :: i,j,k,n

| create a set
set = dataSet("test.dat",CREATE)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 313

arrl
arr2

addArray(set, "arrayl", INTEGER32, dimensions=s)
addArray(set, "array2", arrayDataType(arrl), dimensions=s)

I £i11 with unique numbers
al => int32Array3Data(arrl)
a2 => int32Array3Data(arrl)

n=20
do k=0,1
do j=0,3
do i=0,2
al(i,j,k) =n
a2(i,j,k) = al(i,j,k) + 1
n=n+1
end do
end do
end do

call setNullValue(arrl, 999999)
call check(nullable(arrl))

call setToNull(arrl, O) ! Set the first element of array arrl to null.
! Would have given an error, if the null
! value of array arrl had not been set.

if(nullType(arrl) .eq. INTEGER_NULL) then !
write(*,*) "Using null value of arrl, in arr2"
call setNullValue(arr2, intNullValue(arrl))

else
call setNullValue(arr2, 999999)

end if

call check(nullable(arr2))
call setToNull(arr2, 1) ! Set the second element of array arr2 to null.
! Would have given an error, if the null

! value of array arr2 had not been set.

call release(arril)
call release(arr2)

tab = addTable(set,"some table",100)
coll = addColumn(tab,"int32",INTEGER32,units="m",comment="in32 column")
i32 => int32Data(coll)
do i=0,number0fRows (tab)-1
i32(i) = 3*i
end do
call setNullValue(coll, 999999)
call check(nullable(coll))

call setToNull(coll, 0) ! Set the first element of column coll to null.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 314

co0l2 = addColumn(tab,"real64" ,REAL64,units="hm",comment="real64 column")
r64 => real64Data(col2)
do i=0,numberOfRows(tab)-1
r64(i) = 0.25%i
end do

! col is a non-integer column and it would be an
! an error to call setNullValue().
call check(nullable(col2))

call setToNull(col2, O) ! Set the first element of column col2 to null.

if (hasNulls(col2)) then
do i=0,number0fRows(tab)-1
if (isNull(col2, i)) then
write(*,*) "element", i, "is null"
else
write(*,*) "element", i, "is", r64(i)
endif
end do
endif

call release(coll)
call release(col2)
call release(set)

end program example_nullvalues

SEE ALSO
hasNulls intNullValue isNotNull isNull nullable nullDefined nullType setToNull

BUGS AND LIMITATIONS

None known.

NAME
setScaling
PURPOSE
NOT IMPLEMENTED. Set the scaling parameters to be applied to an object’s data.
INTERFACE
subroutine setScalingOfArray(array, zero, scale, toType)
subroutine setScalingOfColumn(column, zero, scale, toType)
ARGUMENTS
o type(ArrayT), intent(in) :: array
o type(ColumnT), intent(in) :: column
e real(kind=DOUBLE), intent(in) :: scale
e integer, intent(in) :: toType
o real(kind=DOUBLE), intent(in) :: zero
RETURNS

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 315

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

NAME

setStringCell(column, row, value)

PURPOSE

Set a cell in a string column.

ARGUMENTS

o type(ColumnT), intent(in) :: column

A handle to the column which contains the cell to be set.
e integer(kind=INT32), intent(in) :: row

Set row number of the cell to be set.

e character(len=%*) :: value
This value will be copied into the specified cell.

DESCRIPTION

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how the setStringCell()

function is used.

program example_setstringcell

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 316

use dal
implicit none

type (DataSetT) set
type(TableT) tab
type(ColumnT) col
character(len=12) :: s
integer i

s = "abcdef"

set = dataSet("test.dat",CREATE)

tab = addTable(set,"some table",100)

col = addColumn(tab,"string",STRING, comment="string column",dimensions=(/80/))

do i=0,number0fRows(tab)-1
write(s,’(A6,I2)°) "string",i
call setStringCell(col,i,s)
write(*,*) stringCell(col, i)
end do

call release(set)

end program example_setstringcell

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
setToNull
PURPOSE
Set a value to null.
INTERFACE
subroutine setToNullArray(array, position)
subroutine setToNullCell(column, row, position)
subroutine setToNullColumn(column, row)
ARGUMENTS

o type(ArrayT), intent(in) :: array
A handle of the array containing the value to be set.
o type(ColumnT), intent(in) :: column
A handle of the column containing the value to be set.
o integer(kind=INT32), intent(in) :: position
The position of the value within the array (or the column cell in the case of a multi-
dimensional column) which is to be set.
o integer(kind=INT32), intent(in) :: row
The row number of the column cell containing the value to be set.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 317

RETURNS

DESCRIPTION
In the case of integer values, an error will be raised if the object’s null value has not been
defined. The null value of an object containing integer data may be set with a call to
setNullValue(). The logical function nullDefined() determines if the null value of an object
has been defined.

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how null values are used.

subroutine check(thisNullable)

use dal

type(NullableT), intent(in) :: thisNullable

write(*,*) "Null defined?: ", nullDefined(thisNullable), nullType(thisNullable)
end subroutine check
program example_nullvalues

use dal
use errorhandling

implicit none

type(DataSetT) set
type(ArrayT) arrl, arr2
type(TableT) tab
type(ColumnT) coll, col2

integer (kind=int32), dimension(:), pointer :: i32

real (kind=double), dimension(:), pointer :: r64
integer(kind=int32), dimension(:,:,:), pointer :: al, a2
integer, dimension(3), parameter :: s = (/ 3,4,2 /)
integer :: i,j,k,n

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 318

I create a set

set = dataSet("test.dat",CREATE)

addArray(set, "arrayl", INTEGER32, dimensions=s)
addArray(set, "array2", arrayDataType(arrl), dimensions=s)

arrl

arr2

! £i11 with unique numbers
al => int32Array3Data(arrl)
a2 => int32Array3Data(arril)

n=20
do k=0,1
do j=0,3
do i=0,2
al(i,j,k) =n
a2(i,j,k) = al(i,j,k) + 1
n=n+1
end do
end do
end do

call setNullValue(arrl, 999999)
call check(nullable(arrl))

call setToNull(arrl, O) ! Set the first element of array arrl to null.
! Would have given an error, if the null
! value of array arrl had not been set.

if(nullType(arrl) .eq. INTEGER_NULL) then !
write(*,*) "Using null value of arrl, in arr2"
call setNullValue(arr2, intNullValue(arril))

else
call setNullValue(arr2, 999999)

end if

call check(nullable(arr2))

call setToNull(arr2, 1) ! Set the second element of array arr2 to null.
! Would have given an error, if the null
! value of array arr2 had not been set.

call release(arrl)
call release(arr2)

tab = addTable(set,"some table",100)
coll = addColumn(tab,"int32",INTEGER32,units="m",comment="in32 column")

i32 => int32Data(coll)
do i=0,number0fRows(tab)-1
i32(i) = 3x*i
end do
call setNullValue(coll, 999999)
call check(nullable(coll))

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 319

call setToNull(coll, O) ! Set the first element of column coll to null.

col2 = addColumn(tab,"real64" ,REAL64,units="hm",comment="real64 column")
r64 => real64Data(col2)
do i=0,number0fRows(tab)-1
r64(i) = 0.25%i
end do

! col is a non-integer column and it would be an
! an error to call setNullValue().
call check(nullable(col2))

call setToNull(col2, O) ! Set the first element of column col2 to null.

if (hasNulls(col2)) then
do i=0,number0fRows(tab)-1
if (isNull(col2, i)) then
write(*,*) "element", i, "is null"
else
write(*,*) "element", i, "is", r64(i)
endif
end do
endif

call release(coll)
call release(col2)
call release(set)

end program example_nullvalues

SEE ALSO

hasNulls intNullValue isNotNull isNull nullable nullDefined nullType setNullValue

BUGS AND LIMITATIONS

None known.

NAME

setUnits

PURPOSE

Set the units of an attribute, array or column.

INTERFACE

subroutine setArrayAttributeUnits(array, attributeName, units)

subroutine setArrayUnits(array, units)

subroutine setAttributableAttributeUnits(attributable, attributeName, units)
subroutine setAttributeUnits(attribute, units)

subroutine setBlockAttributeUnits(block, attributeName, units)

subroutine setColumnAttributeUnits(column, attributeName, units)
subroutine setColumnUnits(column, units)

subroutine setDataSetAttributeUnits(dataSet, attributeName, units)
subroutine setTableAttributeUnits(table, attributeName, units)

ARGUMENTS

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

320

RETURNS

o type(ArrayT), intent(in) :: array
o type(AttributableT), intent(in) :: attributable

o character(len="*), intent(in) :: attributeName
o type(AttributeT), intent(in) :: attribute
e type(BlockT), intent(in) :: block

o type(ColumnT), intent(in) :: column
o type(DataSetT), intent(in) :: dataSet
e type(TableT), intent(in) :: table

e character(len="*), intent(in) :: units

DESCRIPTION

ERRORS

EXAMPLES

ESA

Thi

]
]
]
]
!
!
]
]
]
]
!
]
]
]
]
!
]
I is

progr
use
imp
typ
typ
typ

set
tab

col

(C) 2000-2018

SAS is free software: you can redistribute it and/or modify

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

s example shows how the setUnits interface

used.

am example_setunits

dal
licit none
e(DataSetT) set

e(TableT) tab
e(ColumnT) col

dataSet ("test.dat",CREATE)
addTable(set,"some table",100)

xmmsas_20230412_1735-21.0.0

addColumn (tab,"int8" ,INTEGERS,units="cm",comment="int8 column")

XMM-Newton Science Analysis System Page:

321

call release(set)

set = dataSet("test.dat",MODIFY)
tab = table(set, 0)
col = column(tab, 0, MODIFY)

write(*,*) units(col)
call setUnits(col, "mm")
write(*,*) units(col)

call release(set)

end program example_setunits

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
SINGLE

PURPOSE
An enumeration value which is used to indicate single precision (real32) data.

DESCRIPTION

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
STRING

PURPOSE

An enumeration value which is used to indicate data of type character string.
DESCRIPTION
EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

322

NAME

stringAttribute

PURPOSE
Get the value of an attribute as a character string.

INTERFACE
function stringArrayAttribute(array, name)
function stringAttribute(attribute)
function stringAttributableAttribute(attributable, name)
function stringBlockAttribute(Block, name)
function stringColumnAttribute(column, name)
function stringDataSet Attribute(dataSet, name)
function stringTableAttribute(table, name)

ARGUMENTS

o type(ArrayT), intent(in) :: array

o type(AttributableT), intent(in) :: attributable
o type(AttributeT), intent(in) :: attribute

o type(BlockT), intent(in) :: block

o type(ColumnT), intent(in) :: column

o type(DataSetT), intent(in) :: dataSet

e character(len=%*), intent(in) :: name

e type(TableT), intent(in) :: table

RETURNS

o character(len=stringAttributeLength)
DESCRIPTION
ERRORS

EXAMPLES

ESA (C) 2000-2018

!
!
!
!
! SAS is free software: you can redistribute it and/or modify
!

!

xmmsas_20230412_1735-21.0.0

This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

XMM-Newton Science Analysis System Page: 323

(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how string attributes are used.

The program creates a dataset containing two string attributes,

together with a table containing two string attributes.

The attributes are then accessed, by name, with

the stringAttribute() function.

Also, it is shown how to access the attributes by position.

program example_stringattribute

use dal
use errorhandling
implicit none

type (DataSetT) set
type(TableT) tab
type(AttributeT) att
integer i

set = dataSet("test.dat",CREATE)
call setAttribute(set,"stringl","abcdef","string comment")
call setAttribute(set,"string2","ghijkl","string comment")

tab = addTable(set,"table",10);
call setAttribute(tab,"stringl","abcdef","string comment")
call setAttribute(tab,"string2","ghijkl","string comment")

write(*,*) stringAttribute(set, "stringl"
write(*,*) stringAttribute(set, "string2"
write(*,*) stringAttribute(tab, "stringl"
write(*,*) stringAttribute(tab, "string2"

! output ’abcdef
! output ’ghijkl’
! output ’abcdef
! output ’ghijkl’

N

do i = 0, numberOfAttributes(set) - 1
att attribute(set, i)

write(*,*) stringAttribute(att) ! output the sequence ’abcdef’, ’ghijkl’

end do

call release(set)

end program example_stringattribute

SEE ALSO

BUGS AND LIMITATIONS

None known.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 324

NAME
stringCell(column, row)
PURPOSE
Get the character string data from a column cell.
ARGUMENTS
e type(ColumnT), intent(in) :: column
o integer(kind=INT32), intent(in) :: row
RETURNS
e character(len=columnStringCellLength)
DESCRIPTION
ERRORS
EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

!
]

!

!

! SAS is free software: you can redistribute it and/or modify

! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or

! (at your option) any later version.
!

]

]

!

]

!

!

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
! along with SAS. If not, see <http://www.gnu.org/licenses/>.
! This example shows how the stringCell()
! function is used.
program example_stringcell

use dal

implicit none
type(DataSetT) set
type(TableT) tab

type (ColumnT) col
character(len=12) :: s

integer i

s = "abcdef"

xmmsas_20230412_1735-21.0.0

SEE ALSO

set = dataSet("test.dat",CREATE)
tab = addTable(set,"some table",100)
col =

do i=0,number0fRows (tab)-1
write(s,’(A6,I2)°) "string",i
call setStringCell(col,i,s)
write(*,*) stringCell(col, i)
end do

call release(set)

end program example_stringcell

BUGS AND LIMITATIONS

NAME

PURPOSE

None known.

subTable(table, from, to)

Get a subtable from a table.

ARGUMENTS

RETURNS

o type(TableT), intent(in) :: table
e integer, intent(in), optional :: from

e integer, intent(in), optional :: to

e type(SubTableT)

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

NAME

SubTableT

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

addColumn(tab,"string",STRING, comment="string column",dimensions=(/12/))

XMM-Newton Science Analysis System

Page:

326

PURPOSE
A derived type used to declare SubTable handles.

DESCRIPTION

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
TABLE_BLOCK

PURPOSE

An enumeration value which is used to indicate a table.

DESCRIPTION

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
table
PURPOSE
Get a table from a dataset.
INTERFACE
function tableWithName(dataSet, tableName)
function tableWithNumber(dataSet, tableNumber)
ARGUMENTS
o type(DataSetT), intent(in) :: dataSet
e character(len="*), intent(in) :: tableName
e integer, intent(in) :: tableNumber
RETURNS

e type(TableT)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 327

DESCRIPTION
The table may be specified either by number (the first block in a dataset has position zero)
or by name.

ERRORS

EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.

This example shows how the table

interface is used.

program example_table

use dal
implicit none

type(DataSetT) set
type(TableT) tab

integer i

set = dataSet("test.dat",CREATE)
tab = addTable(set,"tablel",10)
tab = addTable(set,"table2",100)
tab = addTable(set,"table3",1000)

do i=0,number0fBlocks(set) - 1
tab = table(set, i) ! Access table by number
write(*,*) name(tab)

end do

tab = table(set, "tablel") ! Access table by name
write(*,*) name(tab)

call release(set)

end program example_table

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 328

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
TableT

PURPOSE
A derived type which is used to declare Table handles.

DESCRIPTION

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
TEMP

PURPOSE
An enumeration value which is used to indicate temporary access to an object.

DESCRIPTION
All changes made to an object, which has TEMP access, will be discarded, when the object
is released.

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME

units

PURPOSE
Get the units of an object.

INTERFACE
function arrayAttributeUnits(array, name)
function arrayUnits(array)
function attributableAttributeUnits(attributable, name)
function blockAttributeUnits(block, name)
function columnAttributeUnits(column, name)
function columnUnits(column) function dataComponentUnits(dataComponent)
function dataSetAttributeUnits(dataSet, name)
function tableAttributeUnits(table, name) function unitsOfAttribute(attribute)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 329

ARGUMENTS

o type(ArrayT), intent(in) :: array
A handle of an array from which to get an attribute’s units.
o type(AttributableT), intent(in) :: attributable
A handle of an attributable from which to get an attribute’s units.
o type(AttributeT), intent(in) :: attribute
A handle of an attribute from which to get the units.
e type(BlockT), intent(in) :: block
A handle of a block from which to get an attribute’s units.
e type(ColumnT), intent(in) :: column
A handle of a column from which to get an attribute’s units.

o type(DataComponentT), intent(in) :: dataComponent
A handle of a dataComponent.

o type(DataSetT), intent(in) :: dataSet

A dataset handle from which to get an attribute’s units.
e character(len=*), intent(in) :: name

The name of the attribute.
o type(TableT), intent(in) :: table

A table handle from which to get an attribute’s units.

RETURNS
e character(len=IdentifierLength)
DESCRIPTION
ERRORS
EXAMPLES

ESA (C) 2000-2018
This file is part of ESA’s XMM-Newton Scientific Analysis System (SAS).

SAS is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SAS is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SAS. If not, see <http://www.gnu.org/licenses/>.
program example_columnunits

use dal

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 330

implicit none

type(DataSetT) set
type(TableT) tab

type (ColumnT) col
integer i, coltype

set = dataSet("test.dat",CREATE)
tab = addTable(set,"some table",100)

col = addColumn(tab, "bool",BOOLEAN)

col = addColumn(tab,"int8",INTEGERS,units="cm",comment="int8 column")

col = addColumn(tab,"int16",INTEGER16,units="dm",comment="int16 column")

col = addColumn(tab,"int32",INTEGER32,units="m",comment="in32 column")

col = addColumn(tab,"real32",REAL32,units="Dm",comment="real32 column")

col = addColumn(tab,"real64",REAL64,units="hm",comment="real64 column")

col = addColumn(tab,"string",STRING, comment="string column",dimensions=(/80/))

do i=0, numberOfColumns(tab) - 1
col = column(tab, i, READ)
coltype = columnDataType(col)
if (coltype.eq.INTEGERS.or.coltype.eq.INTEGER16.0r.coltype.eq.INTEGER32 &
.or.coltype.eq.REAL32.or.coltype.eq.REAL64) then
write(*,*) units(col)
end if
end do

call release(set)

end program example_columnunits

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME

unsetScaling

PURPOSE
NOT IMPLEMENTED. Remove the scaling factors from an object.

INTERFACE
subroutine unsetScalingOfArray(array, toType)
subroutine unsetScalingOfColumn(column, toType)

ARGUMENTS

o type(ArrayT), intent(in) :: array

o type(ColumnT), intent(in) :: column

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 331

e integer, intent(in) :: toType

RETURNS
None

DESCRIPTION
toType specifies the data type which the object should have after the (un)scaling has been
performed.

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

NAME
USE_ENVIRONMENT

PURPOSE
An enueration value which is used to indicates that the users environment should be used
to establish which option ahould be taken.

DESCRIPTION

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
WRITE

PURPOSE
An enumeration which is used to indicate that an object should be accessed with read and
modify permissions.

DESCRIPTION

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

332

NAME

zero

PURPOSE
NOT IMPLEMENTED. Get the scaling origin from an object.

INTERFACE
function zeroOfArray(array)
function zeroOfColumn(column)

ARGUMENTS

o type(ArrayT), intent(in) :: array

o type(ColumnT), intent(in) :: column

RETURNS
e real(kind=DOUBLE)

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

! Extended DAL

subroutine subTableSeek(table, from, count) type(SubTableT), intent(in) :: table integer, intent(in) ::

from, count

99 o
, errorMessage)

call error(
end subroutine

end module Dal

19 Errors

blockExists An attempt was made to add a block with the name of an exisitng block. invalidBlockPosition

The position is invalid.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 333

20 C++ API

Abstract interface definition for DAL

CLASS

PURPOSE

Dal

Information used by all Dal objects.

DERIVED FROM

TYPES

DATA

CLASS

None.

enum DataType { Bool = 1, Int8, Uint16, Int16, Uint32, Int32, Real32, Real64, DString }
Used to specify the data type of objects. These enumeration values represent
the seven fundamental data types of the DAL Data Model. These types have
the following meanings:
e Bool An 8-bit boolean object taking the values 0 (false) or 1 (true).
e Int8 An 8-bit integer object with values in the range |[...]
e Uintl6 A 16-bit unsigned integer object with values in the range [...]
e Int16 A 16-bit integer object with values in the range [...]
e Uint32 A 32-bit unsigned integer object with values in the range [...]
e Int32 A 32-bit integer object with values in the range [...]
e Real32 A 32-bit real object with values in the range [...]
e Real64 A 64-bit real object with values in the range [...]
e DString An array of character values.
enum AccessMode Read = 1, Create, Modify, Temp, AsParent

The AccessMode determines whether the data is read upon open and written
upon close.

e Create Indicates that a new dataset is to be created. In the event that a
dataset already exists with the specified name, the subsequent behaviour
is determined by the setting of the SAS_.CLOBBER environment variable.

e Modify Indicates that a dataset, table or column is to be modified.

e Read Indicates that a dataset, table or column is to be accessed but not
modified.

e Temp Indicates that a dataset, table or column is to be accessed, but all
modifications made will be discarded upon closure.

static const vectorjunsigned long; scalar
This data value is used to indicate scalar dimension.

static const vectorjunsigned long; zero
This data value is used to indicate a starting position or a zero length.

DataSetServer

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 334

PURPOSE
The DataServer is an abstract interface for an object that keeps track of opening and closing
data files. It will implement some strategy to determine which part of the file is kept in
memory. The open mode can be used as a hint how to deal with the file.

DERIVED FROM
public virtual Dal

TYPES

enum FileType { Fits = 1, Dal, Deceit }
These enumeration are used to specify the output file type of new datasets.
The values have the following meaning:

e Fits The output will be compliant to standard FITS format. This format
is guaranteed to be platform independent.

e Dal The output will be a Dal specific format, closely related to the in-
ternal format of the Dal’s data structures. This format will give the best
performance, but is not guaranteed to be platform independent.

e Deceit A special format, not for general use, which will comply as far as
is possible to the deceit-file format. This option is not implemented in the
core implementation, and requires the extended Dal.

enum MemoryModel { High = 1, HighLow, Low, UseEnvironment }
These enumeration values are used to specify which memory model a particular
dataset should be opened with. The values have the following meaning:

e High The high memory model will be used. The dataset will be loaded
into memory in it’s entirety. All subsequent dataset operations will be
performaed on the memory-loaded version of the dataset. Upon closure,
the memory is flushed back to disk. This option gives rise to high perfor-
mance, but assumes that the machines core memory wil not be exhausted.

e HighLow This option should be used when the machines core memory is
limited. When a dataset is opened with this option the data (arrays and
tables) is not loaded. Only when the data is accessed is it loaded. When
the data isrelased it will be flushed back to disk.

e Low This option is not implemented and is for future use. The intention is
that a dataset opened with this option is guaranteed to work on a machine
with very low memory.

METHODS

virtual void client(const string& name) = 0
Tell the DataServer who is accessing the datasets i.e. name of the client; can
be any arbitrary string. It is like that this name will be written any createdi
or modifed datasets.

virtual const string& client() const = 0
Get the value which was set by the client(const string&) method.

virtual void process(const string& processDescription) = 0
Register a description of the process that is going on. Can be any arbitrary
string. It is likely that this desciprtion will be writtem to any created or
modified datasets.

virtual const string& process() const = 0
Get the process description string.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 335

virtual void process(
const DataSet* dataSet,
const string& processDescription) = 0
Register a description of the process that is going on, for the given dataset.
Multiple invocations of this method is cummulative giving rise to an ordered
list of descriptions. The description will be written to the dataset upon closure
(provided it was opened for create or modify).

virtual const string& process(
const DataSet* dataSet,
unsigned int processNumber) const = 0
Get the process description string with the given ordinal number for the given
dataSet.

virtual unsigned int processes(const DataSet* dataSet) const = 0
Get the number of process description strings for the given dataset.

virtual DataSet * open(
const string & setName,
AccessMode openMode,
MemoryModel memoryModel = UseEnvironment,
DataSetReaderWriter* readerWriter) = 0
Opens a dataset. This is how datasets are created, read or modified. The
pointer which is returned by other methods to create additional components or
access existing components. In particular, this pointer must be passed to the
close() method in order to release the dataset from memory.

If a dataset is opened for modify or read, the DAL attempts to detect the
format . The format may be determined with the ouputFileFormat() method.
The output file format of newly created datasets may be specified by setting
the SAS_FORMAT environment variable appropriately. The final argument, is
currently only prototyped and should be ignored.

virtual DataSet * clone(
const string & from,
const string & to,
AccessMode openMode,
MemoryModel memoryModel = UseEnvironment,
DataSetReaderWriter* readerWriter) = 0
Clones a dataset. This method opens a dataset with the specified name (to)
and specified mode (either Dal::Modify or Dal::Temp) and fills it with the
contents of the given source dataset (from). The pointer which is returned by
other methods to create additional components or access existing components.
In particular, this pointer must be passed to the close() method in order to
release the dataset from memory.

virtual void close(DataSet * dataSet) = 0
Closes the specified dataset.

virtual void keep(const string & setName) = 0
Tell the dataset server not to discard the named dataset.

NB. This method must only be called by Meta Tasks.

virtual void discard(const string & setName) = 0
Tell the dataset server to discard the named dataset.

NB. This method must only be called by Meta Tasks.

virtual bool exists(const string & setName) const = 0
Determines if the dataset with the given name exists, in which case, true is
returned. .Otherwise false is returned.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 336

virtual void copy(const string& from, const string& to) = 0
Copies the dataset with name from, to the dataset with name to.

virtual void clobber(bool b) = 0
Activate or Deactivate the clobber mechasism. If the clobber mechanism is
activated, then datasets are overwritten when new datasets are created with
the same name. When the machism is off, it is not possible to overwrite existing
datasets, and any attempt to do so will give rise to an error.

virtual bool clobber() const = 0
Retursn the current clobber mechanism setting: ture on false off.

virtual void outputFileFormat(FileType fileType) = 0
Sets the output file format.

virtual FileType outputFileFormat() const = 0
Get the output file format.

virtual void printOn(ostreaméz os) const = 0

FUNCTION
ostream& operatorjj(ostream& os, const DataSetServer& d)

PURPOSE

DATA
extern DataSetServer* dataSetServer;

PURPOSE
Single global instance of a DataSetServer.

CLASS
Labelled

PURPOSE
An object which is derived from Labelled will have a name, together with an associated
short (typically one line) textual description (which is essentially comment).

DERVIED FROM

None
METHODS
virtual const string & name() const = 0
The name of the object is obtained with name()
virtual void rename(const string & newName) = 0
The object may be renamed with rename() and
virtual const string & label() const = 0
The short textual description is obtained with label()
virtual void relabel(const string & newLabel) = 0
The short textual description may be changed (i.e. replaced) with relabel().
virtual string qualifiedName() const = 0
qualifiedName() returns a colon-separated concatenation of the names, in hier-
archical order, or the object and all its ancesters, up to and including the data
set name.
CLASS

Attribute

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 337

PURPOSE
An attribute is an object which consists of a name, value, comment and units. Although
for non numeric values, the units are meaningless. The name and comment methods are
provided by the Labelled base class. An attribute belongs to an attributable object. The At-
tributable class is the ;managing class of attributes. The owner of a particular attribute is ob-
tained with the parent() method. An attribute is created with Attributable::addAttribute().

DERIVED FROM

public virtual Dal
public virtual Labelled
public virtual ChildjAttributablej,

TYPES

enum DataType { Bool=1, Int, Real, DString }
The fundamental types of an attribute’s value.

METHODS

virtual Attribute() {}

virtual Attribute & operator=(int value) = 0
Assign an integer value to the attribute. The current value is lost, and the data
type becomes Attribute::Int.

virtual Attribute & operator=(double value) = 0
Assign a real value to the attribute. The current value is lost and the data
type becomes Attribute::Real.

virtual Attribute & operator=(bool value) = 0
Assign a boolean to the attribute. The current value is lost and the type
becomes Attribute::Bool.

virtual Attribute & operator=(const char * value) =0
Assign a character string to the attribute. The current value is lost and the
data type becomes Attribute::DString.

virtual Attribute & operator=(const string & value) = 0
Assign a string to the attribute. The current value is lost and the data type
becomes DString.

virtual Attribute & operator=(const Attribute&) =0
Assignment operator. The value, type, comment and units are assign to the
attribute. The owner of the attribute remains unchanged.

virtual int asInt() const = 0
Returns the value of the attribute as an integer, converting it if necessary. An
error is generated in case it is not possible to convert value to an int.

virtual double asReal() const = 0
Returns the value of the attribute as a real, converting it if necessary. An error
is generated in case it is not possible to convert value to a real.

virtual string asString() const = 0
Returns the value of the attribute as a string, converting it if necessary. An
error is generated in case it is not possible to convert value to a string.

virtual bool asBool() const = 0
Returns the value of the attribute as a boolean, converting it if necessary. An
error is generated in case it is not possible to convert value to a bool.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 338

virtual const string & units() const = 0
Get the units of the attribute’s value. Only relevant for numeric types.

virtual void units(const string&) = 0
Set the units of the attribute’s value. Only relevant for numeric types.

virtual DataType dataType() const = 0
Get the data type of the attribute’s value.

virtual void dataType(DataType type) = 0
Set the data type of the attribute’s value.

virtual char* addressOfValue() const = 0
Get the memory address of attribute’s value.

virtual unsigned int dataSize() const = 0
Get the size, in bytes, of the attribute’s value.

virtual void printOn(ostreamé& os) const = 0
Output an ASCII representation of the attribute to a given stream.

FUNCTION
ostream& operatorjj(ostream& os, const Attribute& d)

PURPOSE
Output an ASCII representation of the attribute to a given stream.

CLASS
Attributable

PURPOSE
An object that is derived from Attributable has a set of attributes. An attribute is a
dictionary of keyword-value pairs. Numeric attributes have a string describing the units;
each attribute has a comment.

DERIVED FROM

public virtual Dal
public virtual Labelled

METHODS
virtual Attributable() {}

virtual Attributable& operator=(const Attributable&) = 0

2”9

virtual Attribute * addAttribute(const string & name, const string & comment =
string & units =77) =0
Create and add an attribute to the set. This does not yet define the data type
of the attribute’s value. This is done with one of the assignment operators in
the Attribute class. An attribute with name name must not already exist in
the set, otherwise an error is raised.

virtual Attribute * addAttribute(const Attribute * attribute) = 0
Create and add an attribute to the set using the name, value, comment and
units of the given attribute.

virtual void addAttributes(const Attributable*) =0
Add the attributes from the given Attributable to this attributable set.

, const

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 339

virtual bool hasAttribute(const string & attributeName) const = 0
Determines if an attribute with the specified name exists in the set. Returns
true if an attribute of the specified name exists.

virtual Attribute * attribute(const string & attributeName) = 0
Get the attribute with the given name. If it does not exist, an error is generated.

virtual const Attribute * attribute(const string & attributeName) const = 0
Same as above except applies to constant objects.

virtual unsigned int attributes() const = 0
Get the number of attributes in the set.

virtual Attribute * attribute(unsigned int number) = 0
Returns the attribute with the the given number (ordinal position within the
set). Can be used to iterate over all attributes in the set. number must be in
the range [0,n-1] where n in the number of attributes in the set.

virtual const Attribute * attribute(unsigned int number) const = 0
Same as above except applies to constant objects.

virtual void deleteAttribute(const string & name) = 0
Deletes the attribute with the given name. If the attribute was not found an
error is raised.

virtual void deleteAttribute(unsigned int number) = 0
Deletes attribute with the given number (ordinal position within the set). If
the attribute was not found an error is raised. number must be in the range
[0,n-1] where n is the number of attributes in the set.

virtual void addComment(const string& comment) = 0
Add a comment to the set. This may be any arbitrary string.

virtual unsigned int comments() const = 0
Returns the number of comment lines in the set.

virtual const string & comment(unsigned int number) const = 0
Returns comment line with the specified number starting from 0.

virtual void addHistory(const string& historyComment) = 0
Add a history record to the set. This may be any arbitrary string.

virtual unsigned int historys() const = 0
Returns the number of history records in the set.

virtual const string & history (unsigned int number) const = 0
Returns the specified history record (starting from 0).

virtual void printOn(ostreaméz os) const = 0
Output an ASCII representation of the attributable object to the given stream.

FUNCTION
ostream& operatorjj(ostreamé& os, const Attributable& d)
Output an ASCII representation of the attributable object to the given stream.

CLASS
DataSet

PURPOSE
Structure classes. These objects do not necessarily contain the data itself, but they contain
the information associated with the objects. For example, the column object can tell you its
name, data type, number of rows etc, but to access the data the data in the column itself
one of the data objects is needed. A DataSet is attributable, and contains a set of blocks,
where a block is either a data table or an array.

DERIVED FROM

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 340

public virtual Attributable
public virtual ChildjDataSetServer;,

METHODS
virtual DataSet() {}

virtual Table * addTable(const string & name, unsigned long rows, const string & label =
77 int position =-1) =0
Create and add a new table to the dataset. A pointer to the new table if
returned. The arguments are:

e name The name of the table. It may, in priciple, be any arbitrary string,
but should be limited to be FITS compliant. If a block with this name
already exists in the dataset an error is raised.

e rows Specifies the number of rows of the table. This is used internally to
ensure that all table columns have the same length.

e label A short description (typically one line) for the table.

e position The ordinal position, within the dataset, which the table is to
occupy. Existing blocks will be moved along if necessary. The default
value of -1 ensures that the table is placed at the end of the dataset.

virtual Array * addArray(const string& name, DataType dataType, const vectorjunsigned
long; & size, const string & units = 77, const string & label = 77| int position
=-1)=0
Creates and adds a new array to the dataset. A pointer to the new array is
returned. The arguments are:

e name The name of the array. Can in priciple be any arbitrary string, but
should be limited to be FITS compliant. If a block with this name already
exists in the dataset an error is raised.

e dataType The data type of the array’s data. It must be one of Int8, Int16,
Int32, Real32, Real64. Note that Bool and DString types are not supported
for arrays.

e size A vector whose elements describe the length along each dimension of
the array’s data. Note that the number of elements in this vector is the
same as the number of dimensions of the array’s data.

e units The units for the array’s data.

e label A short description (typically one line) for the array.

e position The ordinal position, within the dataset, which the array is to
occupy. Existing blocks will be moved along if necessary. The default
value of -1 ensures that the array is placed at the end of the dataset.

29

virtual Block * add(const Block * block, const string& newName =
=0
Adds a copy of the given block to the dataset. The arguments are:

, int position = -1)

e block The block to be copied to the dataset. The name may be overwridden
by the newName argument. The owner is not copied, and the owner of the
copied block is this dataset.

e newName The name for the new block. The defualt value ensures that the
given block’s name is also copied.

e position The ordinal position, within the dataset, which the block is to
occupy. Existing blocks will be moved along if necessary. The default
value of -1 ensures that the block is placed at the end of the dataset.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 341

virtual bool hasBlock(const string & blockName) const = 0
Determines if a block with the given name exists in the dataset. Returns true
if a block of the specified name exists.

virtual Table * table(unsigned int blockNumber, AccessMode=AsParent) = 0
Get the table with the given number from the dataset. The arguments are:

e blockNumber The ordinal position of the table within the dataset. Must
be in the range [0,n-1] where n is the number of blocks within the dataset.

e AccessMode The access mode which the table is to have. The default
ensures that the access mode is the same as that of the parent object.

virtual const Table * table(unsigned int blockNumber, AccessMode=AsParent) const = 0
Same as above except applies to constant objects.

virtual Table * table(const string & blockName, AccessMode=AsParent) = 0
Get the table with the given name from the dataset. The arguments are:

e blockname The name of the table to be retrieved from the dataset. In the
event that the table with name name is not found (usually because the
block is eitehr an array or does not exist at all) an error is raised.

e AccessMode The access mode which the block is to have. The default
ensures that the access mode is the same as that of the parent object.

virtual const Table * table(const string & blockName, AccessMode=AsParent) const = 0
Same as above except applies to constant objects.

virtual Array * array(unsigned int blockNumber, AccessMode=AsParent) = 0

e blockNumber The ordinal position of the array within the dataset. Must
be in the range [0,n-1] where n is the number of blocks within the table.

e AccessMode The access mode which the array is to have. The default
ensures that the access mode is the same as that of the parent object.

virtual const Array * array(unsigned int blockNumber, AccessMode=AsParent) const = 0
Same as above except applies to constant objects.

virtual Array * array(const string & blockName, AccessMode=AsParent) = 0
Get the array with the given name from the dataset. The arguments are:

e blockname The name of the array to be retrieved from the dataset. In the
event that the array with name name is not found (usually because the
block is either a table or does not exist at all) an error is raised.

e AccessMode The access mode which the block is to have. The default
ensures that the access mode is the same as that of the parent object.

virtual const Array * array(const string & blockName, AccessMode=AsParent) const = 0
Same as above except applies to constant objects.

virtual Block * block(unsigned int blockNumber, AccessMode=AsParent) = 0
Get the block with the given name from the dataset. The arguments are:

e blockNumber The ordinal position of the block within the dataset. Must
be in the range [0,n-1] where n is the number of blocks within the dataset.

e AccessMode The access mode which the block is to have. The default
ensures that the access mode is the same as that of the parent object.

virtual const Block * block(unsigned int blockNumber, AccessMode=AsParent) const = 0
Same as above except applies to constant objects.

virtual Block * block(const string & blockName, AccessMode=AsParent) = 0
Get the block with the given name from the dataset. The arguments are:

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 342

e blockname The name of the block to be retrieved from the dataset. In the
event that the block with name name is not found (usually block does not
exist at all) an error is raised.

e AccessMode The access mode which the block is to have. The default
ensures that the access mode is the same as that of the parent object.

virtual const Block * block(const string & blockName, AccessMode=AsParent) const = 0
Same as above except applies to constant objects.

virtual void deleteBlock(unsigned blockNumber) = 0
Delete the block with the given ordinal position from the dataset. In the event
that the block was not found an error is raised.

virtual void deleteBlock(const string & blockName) = 0
Delete the block with the given name from the dataset. In the event that the
block was not found an error is raised.

virtual unsigned blockNumber(const string & name) const = 0
Returns the number of the block with the given name. In the event that the
block is not found an error is raised.

virtual unsigned blocks() const = 0
Returns the number of blocks in the data set.

virtual AccessMode mode() const = 0
Get the access mode of this dataset.

virtual void printOn(ostream& os) const = 0
Output an ASCII representation of this dataset to the given stream.

FUNCTION
ostream& operatorjj(ostreamé& os, const DataSet& d)
Output an ASCII representation of the given dataset to the given stream.

CLASS
Block

PURPOSE
A Dblock is an abstract interface for all component of a DataSet.

DERIVED FROM

public virtual Attributable
public virtual ChildjDataSet;,

DATA
enum Type TableT = 1, ArrayT
These enumeration values are used to indicate the fundamental block types.
The values are:
e TableT A Table.
e ArrayT An Array.
METHODS

virtual Block() {}

virtual Type type() const = 0
Returns ArrayT if the block is an Array, and returns TableT if the block is a
table.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 343

virtual void printOn(ostreamé&) const = 0
Output an ASCII repreentation of the block to the given putput stream.

TEMPLATE CLASS T
Seekable

PURPOSE
An object which is seekable contains data which may be accessed in a restricted (as a
subrange) manner. Seekable provides the methods for setting subranges of data.

DERIVED FROM

None.
METHODS
virtual Seekable() {}
virtual void seek(T from, T count) = 0
Set a seek to the given range [from,from+count]. The arguments are:
e from The location of the start of the range.
e count The number of items to include in the range.
virtual T from() const = 0
Get the from value of the current range.
virtual T count() const = 0
Get the count value of the current range.
CLASS
Table
PURPOSE

A table is block which contains a set of columns. The columns in a table all have the same
length, but may have different data types.

DERIVED FROM

public virtual Block

public virtual Seekablejunsigned long;,
METHODS
virtual Table() {}

virtual Column * addColumn(const string& name, DataType dataType, const stringé label
= "7 const string& units = ””, const vectorjunsigned long; & size = scalar,
int position =-1) =0
Create and add a new column to the table. A pointer to the new column is
returned. The length of column is set to the number of rows of the table. The

arguments are:

e name The name of the column. It may, in priciple, be any arbitrary string,
but should be limited to be FITS compliant. If a column with this name
already exists in the dataset an error is raised.

e dataType The data type of the column’s data. It may be any one of the
enumeration values given in the Dal::dataType type.

e label A short description (typically one line) for the column.
e units The units for the column’s data.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 344

e size The dimensionality of the column’s data.

e position The ordinal position, within the table, which the column is to
occupy. Existing columns will be moved along if necessary. The default
value of -1 ensures that the column is placed at the end of the table.

79

virtual Column * add(const Column * column, const string& newName =
=-1)=0
Copy and add the given column to the table. A pointer to the new column is
returned. The given column must have the same number of rows as the table,
otherwise an error is raised. The arguments are:

, int position

e column The source column. The dataType, size, units, label, attributes
and data will be copied to the new column.

e newName The name of the new column. The default value ensures that
the name of the source column is used. If a column with this name already
exists in the table an error will be raised.

e position The ordinal position, within the table, which the column is to
occupy. Existing columns will be moved along if necessary. The default
value of -1 ensures that the column is placed at the end of the table.

virtual Column * column(unsigned columnNumber, AccessMode=AsParent) = 0
Get the column with the given ordinal position from the table. A pointer to
the required column is returned. The arguments are:

e columnNumber The ordinal position of the column within the table. Must
be in the range [0,n-1] where n is the number of columns within the table.

e AccessMode The access mode which the column is to have. The default
ensures that the access mode is the same as that of the parent object.

virtual const Column * column(unsigned columnNumber, AccessMode=AsParent) const =
0
Same as above except applies to constant objects.

virtual Column * column(const string & columnName, AccessMode=AsParent) = 0
Get the column with the given name from the table. A pointer to the required
column is returned. The arguments are:

e columnName The name of the column to retrieve. An error is raised in the
event that the column was not found.

e AccessMode The access mode which the column is to have. The default
ensures that the access mode is the same as that of the parent object.

virtual const Column * column(const string & columnName, AccessMode=AsParent) const
=0
Same as above except applies to constant objects.

virtual bool hasColumn(const string & columnName) const = 0
Determines if the table has a column with the given name.

virtual unsigned int columnNumber(const string & columnName) const = 0
Get the ordinal position of the column with the given name. In the event that
no such column exists an error is raised.

virtual void deleteColumn(unsigned columnNumber) = 0
Delete the column with the given ordinal position from the table. In the event
that no such column exists an error will be raised.

virtual void deleteColumn(const string & columnName) = 0
Delete the column with the given name from the table. In the event that no
such column exists an error will be raised.

virtual unsigned long rows() const = 0
Get the number of rows in the table.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 345

virtual unsigned columns() const = 0
Get the number of columns in the table.

virtual void copyRows(unsigned long from, unsigned long to, unsigned long count=1) = 0
Copy the specified range of rows.

virtual void deleteRows(unsigned long from, unsigned long count=1) = 0
Delete the specified range of rows from the table.

virtual void insertRows(unsigned long pos, unsigned long count=1) = 0
Insert the given number of rows into the table.

virtual void printOn(ostream& os) const = 0
Writes an ascii representation of the column to a stream. Output an ASCII
representation of the table to the given stream.

virtual void forEachSubTable(void (*callThisFunction)(Table *)) = 0
Call the given function for each subtable.

CLASS Nullable

PURPOSE
Nullable allows the values in a data component to have a designated null (or undefined)
value.

DERIVED FROM
None

METHODS
virtual Nullable() {}

enum NullType Integer = 1, Real, String, Undefined
Used to determine the null value type of an object.

virtual NullType nullType() const = 0

Get the null value type of an object.
virtual void nullValue(long value) = 0

Set the integer null value.
virtual long intNullValue() const = 0

Get the integer null value.

virtual bool nullDefined() const = 0
Determine if the null value has been set.

virtual void deleteNullValue() = 0
Delete the null value. An error is raised if null value is not defined. The
nullDefined() method can be used to determine if the null value is defined. For
integer-valued columns, the nullValue(int) method can be used to set the null
value. For real-valued columns, the null value is always defined.

CLASS DataComponent

PURPOSE
A DataComponent is a collection of values all of the same type, arranged in a multidimen-
sional array. The collection is referred to as teh object’s data or simply the data.

DERIVED FROM

public virtual Nullable, public virtual Dal
METHODS

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 346

CLASS

PURPOSE

virtual DataComponent() {}

virtual DataType dataType() const = 0
Get the data type of the data.

virtual unsigned int dimensions() const = 0
Get the number of dimensions of the object’s data.

virtual unsigned long elements() const = 0; Get the total number of elements comprising
the object’s data.

virtual const vectorjunsigned long; & size() const = 0; Get the dimensionality of the object’s
data. Each element in the returned vector describes the size along each axis
(dimension) of the object’s data.

virtual const string & units() const = 0
Get the units of the object’s data.

virtual void units(const string&) = 0
Set the units of the object’s data.

virtual unsigned int dataSize() const = 0
The size in bytes of a single value.

virtual void scaling(double zero, double scale) = 0
Set the scaling of the object’s data.

virtual void scale(bool onoff) = 0
virtual bool scaled() const = 0
virtual double scaleZero() const = 0

virtual double scaleFactor() const = 0

Column

A column resides within its parent table. The parent table can be obtained with the parent()
method. Internally, the Column object is responsible for the allocation and deallocation
of its data’s memory and intialization of its data, but it does not allow its data to be
accessed directly. The data is accessed through the data descriptor objects ColumnData
and CellData.

It is possible to have several ColumnData and CellData descriptors at the same time. How-
ever, the [from,range] range specifications (in the data() and cellData() and seek() methods)
give rise to a slice (or subrabge) of the Column’s data. The only restriction on slices is that
they must not overlap with existing slices (although a subslice is an existing slive is allowed).

Moreover, but they all have to be deleted manually to avoid memory leaks. In particular,
the following example is eroneous as it leads to a memory leak, since the pointer to the
ColumnData object (as returned by the data() method) is lost:

int

main()

{
DataSet * set = dataSetServer -> open("test.dat", DataSetServer::Create);
Table * tab = set -> addTable("tabl", 100);
Column * col = tab -> addColumn("coll", Column::Int32);

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 347

int32 * data = col -> data() -> int32Data(); // Memory leak
for(unsigned int i = 0; i < col -> elements() * col -> rows(); ++i) datali] = i;
dataSetServer -> close(set);

3

The correct method is as follows:

int
main()
{
DataSet * set = dataSetServer -> open("test.dat", DataSetServer::Create);
Table * tab = set -> addTable("tabl", 100);
Column * col = tab -> addColumn("coll", Column::Int32);
ColumnData * coldat = col -> data();
int32 * data = int32Data();
for(unsigned int i = 0; i < col -> elements(); ++i) datal[i] = i;
delete coldat; // Need to manually delete columnData objects to avoid memory leak
dataSetServer -> close(set);

3

The same is also true of the CellData object; it must be deleted after its final use, otherwise
a memory leak is incurred.

DERIVED FROM

DATA

METHODS

public virtual Attributable
public virtual DataComponent
public virtual ChildjTable;,

public virtual Seekablejunsigned long;,

enum CellType { Fixed = 1, Variable }
The values have the following meaning:
e Fixed Specifies that the column has fixed length.
e Variable Specifies that the column has variable length.

virtual Column() {}

virtual unsigned int columnNumber() const = 0
Get the ordinal position of the column within the parent table.

virtual CellType cellType() const = 0
virtual unsigned long rows() const = 0

virtual ColumnData * data(unsigned long from=0, unsigned long count=0, AccessMode
accessMode=AsParent) const = 0
Get a data descriptor describing a range of column cells to be accessed. The
range is specified as [from,from+count]. A pointer to the ColumnData object
descriptor is returned, which must be deleted manually when it is no longer
needed.
Note that once the ColumnData object has been deleted, any corresponding
pointers to the Column’s data will be stale and can no longer be safely used.
The arguments are as follows:

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 348

e from The first row number in the range to be accessed.

e count The number of rows to include in the range.

e accessMode The access mode with which the data is accessed.

virtual CellData * cellData(unsigned long rowNumber, unsigned long from=0, unsigned

long count=0, AccessMode accessMode=AsParent) const = 0
Get a data descriptor describing a range of elements within a column cell to
be accessed. The range is specified as [from,from+count]. A pointer to the
ColumnData object descriptor is returned, which must be deleted manually
when it is no longer needed.

Note that once the CellData object has been deleted, any corresponding point-
ers to the Column’s data will be stale and can no longer be safely used.

The arguments are as follows:
e rowNumber The number of the cell to be accessed.
e from The element of the first element to be included in the range.

count The number of elements to include in the range.
e accessMode The access mode with which the data is accessed.

virtual void printOn(ostream& os) const = 0
Outputs an ASCII representation of the column to a stream.

FUNCTION
ostream& operatorjj(ostreamé& os, const Columné ¢)
Outputs an ASCII representation of the given column to a stream.

CLASS
Array

PURPOSE
An array is a Block that consists of an n-dimensional array of values all of the same type.
An array resides within its parent dataset. The parent dataset can be obtained with the
parent() method. Internally, the Array object is responsible for the allocation, deallocation
and initialisation of its data’s memory, but it does not allow its data to be accessed directly.
The data is accessed through the data descriptor object ArrayData.

Tt is possible to have several ArrayData descriptors at the same time. However, the [from,range]
range specifications (in the data() and seek() methods) give rise to a slice (or subrabge) of
the Column’s data. The only restriction on slices is that they must not overlap with existing
slices (although a subslice of an existing slice is allowed).

Moreover, they all have to be deleted manually after their last use to avoid memory leaks.

In particular, the following is considered eroneous as it leads to a memory leak, since the
pointer to the ArrayData object (as returned by the data() method) is lost:

int

main()

{
DataSet * set = dataSetServer -> open("test.dat", DataSetServer::Create);
Array * arr = set -> addArray("arrl", size);
int32 * data = arr -> data() -> int32Data(); // Memory leak
for(unsigned int i = 0; i < arr -> elements(); ++i) datal[i] = i;
dataSetServer -> close(set);

}

The correct method is as follows:

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 349

int
main()

{
DataSet * set = dataSetServer -> open("test.dat", DataSetServer::Create);
Array * arr = set -> addArray("arrl", size);
ArrayData * arrdat = arr -> data(Q);
int32 * data = arrdat() -> int32Data();
for(unsigned int i = 0; i < arr -> elements(); ++i) datal[i] = i;
delete coldat; // Need to manually delete columnData objects to avoid memory leak.
dataSetServer -> close(set);

}

DERIVED FROM

public virtual Block
public virtual DataComponent

public virtual Seekablej vectorjunsigned long;,
METHODS

virtual Array() {}

virtual ArrayData * data(const vectorjunsigned long;& from=zero, const vectorjunsigned

long; & count=zero, AccessMode accessMode=AsParent) const = 0
Get a data descriptor describing a range of elements within the array’s data
to be accessed. The range is specified as [from,from+count]. A pointer to the
ArrayData object descriptor is returned, which must be deleted manually when
it is no longer needed. The arguments are as follows:

e from The element of the first element to be included in the range.

e count The number of elements to include in the range.

e accessMode The access mode with which the data is accessed.

CLASS
Data

PURPOSE
Data access. The data access functions int8Data(), uint16Data(), int16Data(), uint32Data(),
int32Data(), real32Data(), real64Data(), boolData() and stringData() generate an error
when the data cannot be accessed as a contiguous chunck of memory, such as a variable-size
column. The data is typed and no type conversion is possible. The data type is determined
with dataType(). An error will be raised if the incorrect data access function is called.

DERIVED FROM

public virtual Dal
METHODS

virtual Data(){}

virtual bool isNull(unsigned long pos) const = 0
Determine if the element in position pos is a null value.

virtual void setToNull(unsigned long pos) const = 0
Set the element at position pos to null.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 350

virtual bool hasNulls() const = 0
Determine if object has any null values.

virtual int8* int8Data() const = 0

Return a pointer to the start of the data.
virtual uint16* uint16Data() const = 0

Return a pointer to the start of the data.
virtual int16* int16Data() const = 0

Return a pointer to the start of the data.
virtual uint32* uint32Data() const = 0

Return a pointer to the start of the data.
virtual int32* int32Data() const = 0

Return a pointer to the start of the data.
virtual real32* real32Data() const = 0

Return a pointer to the start of the data.
virtual real64* real64Data() const = 0

Return a pointer to the start of the data.
virtual bool8* boolData() const = 0

Return a pointer to the start of the data.
virtual char* stringData() const = 0

Return a pointer to the start of the data.

virtual unsigned int dataSize() const = 0

virtual unsigned long elements() const = 0
Get the number of data elements.

virtual DataType dataType() const = 0
Get the size in types of a single data element.

virtual void printOn(ostreamé os, const string& sep="") const = 0
Outputs an ASCII representation of the data to a stream.

FUNCTION
ostream& operatorjj(ostream& os, const Data& d)
Outputs an ASCII representation of the given data to a stream.

CLASS
ColumnData

PURPOSE
The ColumnData object gives access to (part of) the data in a column. The correct access
function must be called (this is dependent on the data type) otherwise an error will be
raised. This object is constructed by a Column, but has to be explicitly deleted after it’s
last use. The owner of a ColumnData object is a Column object, which is determined with
the parent() method.

DERIVED FROM

public virtual Data
public virtual Seekablejunsigned long;,

public virtual ChildjColumn;,
METHODS

virtual ColumnData() {}

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 351

CLASS

PURPOSE

virtual const vectorjunsigned long;& size() const = 0

virtual unsigned long position(unsigned long row) const = 0
Get the offset index of the first element in the specified row of the (parent)
column.

virtual unsigned long position(unsigned long row, unsigned long pos) const = 0
Get the offset index of the element in position pos in the specified row of the
(parent) column.

virtual unsigned long position(unsigned long row, const vectorjunsigned long; & pos) const
=0
Get the offset index of the element in the position described by pos in the
specified row in the (parent) column.

MatrixData

MatrixData provides an interface to a rectangular multi-dimensional array.

DERIVED FROM

METHODS

CLASS

PURPOSE

public virtual Data

public virtual Seekablej vectorjunsigned long; |,

virtual MatrixData() {}

virtual unsigned long position(const vectorjunsigned long;& pos) const = Get the offset
index of the element in the position described by pos in the (parent) array. 0

CellData

The CellData object gives access to (part of) a single cell in a column. The correct access
function must be called (this is dependent on the data type) otherwise an error will be
raised. This object is constructed by a Column, but has to be explicitly deleted after it’s
last use. The CellData object is owned by the parent column object, which is determined
with the parent() method. For Variable length columns, the number of dimensions is 1.

DERIVED FROM

METHODS

public virtual Data
public virtual Seekablejunsigned long;,

public virtual ChildjColumn;,

virtual CellData() {}

virtual unsigned long size() const = 0
Get the number of elements in the cell.

virtual void size(unsigned long size) = 0
Set the number of elements in the cell.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 352

virtual unsigned long row() const = 0
Get the cell (row) number of the cell.

CLASS

ArrayData

PURPOSE
The ArrayData object gives access to (part of) the data in an Array. The correct access
function must be called (this is dependent on the data type) otherwise an error will be
raised. Note that stringData() and boolData() never called since DString and Bool are not
supported by Arrays. This object is constructed by an Array, but has to be explicitly deleted
after it’s last use. The ArrayData object is owned by the parent Array object, which can
be determined with the parent() method.

DERIVED FROM

public virtual MatrixData
public virtual ChildjArray;,

METHODS

virtual const vectorjunsigned long;& size() const = 0
Get the dimensionality of the array.

21 C API

C interface definition for DAL
Pointers rather than handles. No default values.

typedef enum Read = 1, Create, Modify, Temp, AsParent AccessMode; typedef enum High = 1,
HighLow, Low, UseEnvironment MemoryModel; /*typedef enum Bool = 1, Int8, Uint16, Int16, Uint32,
Int32, Real32, Real64, DString DataType; */ typedef enum TableType = 1, ArrayType BlockType;
typedef enum EraseAllFirst = 1, Merge CopyMode; typedef enum Fixed = 1, Variable CellType;
typedef void Array; typedef void Block; typedef void Column; typedef void DataSet; typedef void
Table; typedef void SubTable; typedef void Row; typedef void Attribute; typedef void Attributable;
typedef void Labelled; typedef void DataComponent; typedef void * TablelteratorFunction; /* typedef
void(*TablelteratorFunction)(Table *); */

NAME
addArray(dataSet, name, dataType, numberofDimensions, dimensions, units, label, posi-
tion);

PURPOSE
Create and add an array to a dataset.

ARGUMENTS

e DataSet * dataSet
A pointer to the dataset which the new array is to be added.

e const char * name
The name of the new array.

e DataType dataType
The type of the data. It must be one of the values: Int8, Int16, Int32, Real32, Real64.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 353

e int numberOfDimensions
The number of dimensions of the array. This must be in the range 1 j= numberOfDi-
mensions j= 3.

e unsigned long * dimensions
A vector with numberOfDimensions elements. FEach element describes the size along
each dimension, of the array, respectively.

e const char * units
The units of the array.

e const char * label

A short description (i.e. a user defined comment) to be attached to the array.
e int position

The ordinal position, within the dataset, which the new array will occupy.

RETURNS
e Array *
A pointer to the newly created array.
DESCRIPTION
ERRORS
EXAMPLES
SEE ALSO

BUGS AND LIMITATIONS
String and Boolean types are not supported.

NAME
addColumn(table, name, dataType, units, label, numberofDimensions, dimensions, position
)

PURPOSE
Create and add a column to a table.

ARGUMENTS

e Table * table
A pointer to the table to which the new column will be added.

e const char * name
The name of the new column.

e DataType dataType
The data type of the new column. It can be any of the values in the enumeration type
DataType.

e const char * units
The units of the column.

e const char * label
A short description (i.e. a user-defined comment) of the column.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 354

e int numberofDimensions
The number of dimensions of the column.

e const unsigned long * dimensions
The size along each dimension of the column.
e int position
The ordinal position wihtin the table which the new column will occupy.

RETURNS
e Column *
A pointer to the new column.
DESCRIPTION
ERRORS
EXAMPLES
SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
addCommentTojtypes (object, comment)

PURPOSE
Add a comment record to an object.

ARGUMENTS

e type * object
A pointer to the object to which the comment is to be added. The supported types
are: Array, Attributable, Block, DataSet, Table

e const char * comment
The comment which is to be to be added to the object.

RETURNS

void
DESCRIPTION
ERRORS

EXAMPLES

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 355

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
addHistoryTojtypes (object, history)

PURPOSE
Add a history record to an object.

ARGUMENTS

e type * object
A pointer to the object to which the history record is to be added. The supported
types are: Array, Attributable, Block, DataSet, Table

e char * history
The history record which is to be to be added to the object.

RETURNS
void

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
addTable(dataSet, name, numberOfRows, label, position)

PURPOSE
Create and add a table to a dataset.

ARGUMENTS

e DataSet * dataSet
A handle of the dataset to which the new table is to be added.

e char * name
The name of the new table.

e int numberOfRows
The nmber of rows of the new table.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 356

e const char * label

A short textual description (i.e. user-defined comment) to be attached to the table.
e int position

The ordinal position of the new table within the dataset.

RETURNS
e Table *
A pointer to the newly created table.
DESCRIPTION
ERRORS
EXAMPLES
SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
jtypes AttributeComment(object, name)
PURPOSE
Get the comment associated with an attribute, from an attributable object.
ARGUMENTS
e const type * object
The object containing the attribute. Supported types are: Array, Attributable, Block,
Column, DataSet, Table.
e const char * name
The name of the attribute.
RETURNS
e const char *
A pointer to the comment.
DESCRIPTION
ERRORS
EXAMPLES

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 357

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
jtypes Attribute Units(object, name)
PURPOSE
Get the comment associated with an attribute, from an attributable object.
ARGUMENTS
e const type * object
The object containing the attribute. Supported types are: Array, Attributable, Block,
Column, DataSet, Table.
e const char * name
The name of the attribute.
RETURNS
e const char *
A pointer to the units.
DESCRIPTION
ERRORS
EXAMPLES
SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
jtypes Attribute WithName(object, name)

PURPOSE
Get an attribute from an attributable object.

ARGUMENTS

e const type * object
A pointer to the object which contains the required attribute. Supported types are:
Array, Attributable, Block, Column, DataSet, Table

e const char * name
The name of the required attribute.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 358

RETURNS
e Attribute *
A pointer to the required attribute.
DESCRIPTION
ERRORS
EXAMPLES
SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
arrayDataType(array)

PURPOSE
Get the type of an array.

ARGUMENTS

e const Array * array
A pointer to the array.

RETURNS
e DataType
The type of the array. It will be one of the values: Int8, Int16, Int32, Real32, Real64.
DESCRIPTION
ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
bool8 jtypesHasAttribute(attributable, name)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 359

PURPOSE
Determine if an attributable object contains an attribute with a given name.

ARGUMENTS

e const jtype; * attributable
A pointer to the attributable object. Supported types are: Array, Attributable, Block,
Column, DataSet, Table.

e const char * name
The name of an attribute.

RETURNS
e bool8
Returns true if an attribute with the given name was found, otherwise falise is returned.
DESCRIPTION
ERRORS
EXAMPLES
SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
jtypes Label(object)

PURPOSE
Get the label associated with an object.

ARGUMENTS

e const jtype; * object
A pointer to an object. Supported types are: Array, Block, Column.

RETURNS
e const char *
A pointer to the array’s label.
DESCRIPTION
ERRORS

EXAMPLES

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

360

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
itypes ToAttributable(attributable)

PURPOSE

Convert an attributable object to the Attributable type.

ARGUMENTS

e jtype; * attributable

A pointer to the attributable object to be converted. Supported types are: Array,

Block, Column, DataSet, Table.
RETURNS

e Attributable * A pointer to Attributable.

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
arrayUnits(array)

PURPOSE

Get the units associated with an array.

ARGUMENTS

e const Array * array
A pointer to the array.

RETURNS

e const char *
A pointer to the array’s units.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

361

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
array WithName(dataSet, name)

PURPOSE
Get the array with a given name from a dataset.

ARGUMENTS

e const DataSet * dataSet
A pointer to the data set which contains the required array.

e const char * name
The name of the required array.

RETURNS

e Array *
A pointer to the array.
DESCRIPTION
ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
Array * array WithNumber(dataSet, position)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

362

PURPOSE
Get the array with a given ordinal position from a dataset.

ARGUMENTS

e const DataSet * dataSet,

A pointer to the data set which contains the required array.

e unsigned int position
The ordinal position of the required array.

RETURNS
e Array *
A pointer to the array.
DESCRIPTION
ERRORS
EXAMPLES
SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
attributeData Type(attribute)
PURPOSE
Get the type of an attribute.
ARGUMENTS
e Attribute * attribute
A pointer to the attribute.
RETURNS
e DataType
The data type of the attribute.
DESCRIPTION
ERRORS
EXAMPLES

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

363

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
attributeLabel(attribute)

PURPOSE
Get the label associated with an attribute.

ARGUMENTS

e const Attribute * attribute
A pointer to the attribute.

RETURNS

e const char *
A pointer to the attribute’s label.

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
attributeUnits(attribute)

PURPOSE
Get the units associated with an attribute.

ARGUMENTS

e const Attribute * attribute
A pointer to the attribute.

RETURNS

e const char *
Get the units associated with an attribute.

DESCRIPTION

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

364

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
blockNumber(dataSet, name)

PURPOSE
Get the number of a block (ordinal position within it’s dataset) with a given name.

ARGUMENTS

e const DataSet * dataSet
A pointer to the dataset containing the block with the given name.

e const char * name
The name of the block.

RETURNS
e unsigned int
The ordinal position of the blockj within the dataset.
DESCRIPTION
ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
blockType(block)

PURPOSE
Get the type of a block.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

365

ARGUMENTS

e const Block * block
A pointer to the block.

RETURNS
e BlockType
The block type.
DESCRIPTION
ERRORS
EXAMPLES
SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME

blockWithName(dataSet, name)

PURPOSE

Get a block with a given name from a dataset.

ARGUMENTS

e const DataSet * dataSet
A pointer to the dataset containing the required block.

e const char * name

The name of the required block.

RETURNS
e Block *

A pointer to the block.
DESCRIPTION
ERRORS

EXAMPLES

SEE ALSO

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

366

BUGS AND LIMITATIONS

None known.

NAME
blockWithNumber(dataSet, position)

PURPOSE

Get a block with a given number (ordinal position) from a dataset.

ARGUMENTS

e const DataSet * dataSet
A pointer to the dataset containing the required block.

e int position
The ordinal position of the block within the dataset.

RETURNS
e Block *
A pointer to the block.
DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
jtypes jattributable; Attribute(object, name);
PURPOSE
Get the value of an attribute contained in an attributable object.
ARGUMENTS
e const jattributable; * object
A pointer to the attributable object containing the required attribute. Supported types
are: Array, Attributable, Block, Column, DataSet, and Table.
e const char * name
The name of the required attribute.
RETURNS

e jtype;

Supported types are: bool, int8, int16, int32, real32, real64, string

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

367

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
jtypeg ArrayData(array)
PURPOSE
Get the data from an array.
ARGUMENTS
e const Array * array
A pointer to the array.
RETURNS
e jtype; *
A pointer to the data of the appropriate type.
DESCRIPTION
ERRORS
EXAMPLES
SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
jtypes Attribute(attribute)

PURPOSE
Get an attribute’s data.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 368

ARGUMENTS

e const Attribute * attribute
A pointer to the attribute.

RETURNS
® jtype;
A value of the appropriate type. Supported types are Bool, Inter, Real, String.
DESCRIPTION
ERRORS
EXAMPLES
SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
jtypes CellData(column, rowNumber)

PURPOSE
Get the data from a cell in a variable length column.

ARGUMENTS

e const Column * column
A pointer to the variable length column.

e unsigned long rowNumber
The number of the column cell to be accessed.

RETURNS
e jtype * A pointer, of the appropriate type, to the data. Supported types are: Bool,
Int8, Int16, Int32, Real32, Real64, String.
DESCRIPTION
ERRORS

EXAMPLES

SEE ALSO

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

369

BUGS AND LIMITATIONS

None known.

e itypei * A pointer, of the appropriate type, to the column’s data. Supported types are:

NAME
jitypes ColumnData(column)
PURPOSE
Get the data from a fixed length column.
ARGUMENTS
e const Column * column
A pointer to the fixed length column.
RETURNS
Bool, Int8, Int16, Int32, Real32, Real64, String.
DESCRIPTION
ERRORS
EXAMPLES
SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
int cellSize(column, rowNumber)
PURPOSE
Get the size of a cell in a variable-length column.
ARGUMENTS
e Column * column
A pointer to the variable-length column.
e int rowNumber
The cell number.
RETURNS
e int
The size of the cell in bytes.
DESCRIPTION

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

370

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
cellType(column)

PURPOSE

Get the cell-type of a column.

ARGUMENTS

e Column * column
A pointer to the cell.

RETURNS
e CellType

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
clobber()

PURPOSE
Get the clobber setting.

ARGUMENTS
RETURNS

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 371

e bool8
DESCRIPTION
The clobber setting is determined by the environment variable SAS_CLOBBER.

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
unsigned long columnDatalndex(column, rowNumber, numberOfDimensions, dimensions)
PURPOSE
Get the memory offset of a column’s row.
ARGUMENTS
e const Column * column
e unsigned long rowNumber
e unsigned int numberOfDimensions
e const unsigned long * dimensions
RETURNS
e unsigned long
The omemory offset.
DESCRIPTION
ERRORS
EXAMPLES
SEE ALSO

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

372

BUGS AND LIMITATIONS

None known.

NAME
columnDataType(column)

PURPOSE

Get the data type of a column.

ARGUMENTS

e const Column * column
A pointer to the column.

RETURNS

e DataType

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME

columnNumber(table, name)

PURPOSE

Get the number of a column with a given name (i.e. the ordinal position of the column with

it’s table).
ARGUMENTS

e const Table * table

A pointer to the table containing the required column.

e const char * name

The name of the required column.

RETURNS

e int The ordinal position of the column within the given table.

DESCRIPTION

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

373

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME

columnUnits(column)

PURPOSE
Get the units associated with a column.

ARGUMENTS

e const Column * column
A pointer to the column.

RETURNS

e const char *
A pointer to the column’s units.

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
columnWithName(table, name)

PURPOSE
Get a column with the given name from a table.

ARGUMENTS

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

374

e const Table * table
A pointer to the table containing the required column.

e const char * name
The name of the required column.

RETURNS
e Column *
A pointer to the column.
DESCRIPTION
ERRORS
EXAMPLES
SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
column WithNumber(table, position)
PURPOSE
Get the column with the given ordinal position from a table.
ARGUMENTS
e const Table * table
A pointer to the table containing the required column.
e unsigned int position
The ordinal position of the required column.
RETURNS
e Column *
A pointer to the column.
DESCRIPTION
ERRORS
EXAMPLES
SEE ALSO

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 375

BUGS AND LIMITATIONS

None known.

NAME
const char * commentOfjobjects(attributable, number)
PURPOSE
Get a comment record from an attributable object.
ARGUMENTS
e jobject; attributable
A pointer to the attributable object. Supported types are: Array, Attributable, Block,
Column, DataSet and Table.
e unsigned int number
The ordinal number of the comment record to be retrieved.
RETURNS
e const char *
A pointer to the comment record.
DESCRIPTION
ERRORS
EXAMPLES
SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME

copyAttributesOfjobjects (to, from, copyMode)
PURPOSE
ARGUMENTS

e jobjecti * to
A pointer to the destination object.

e const jobject; * from
A pointer to the source object.

e CopyMode copyMode
The mode to be used for the copy.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

376

RETURNS
void

DESCRIPTION
Supported types are: Array, Block, Column, DataSet, Table

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS
The source and destination must be of the same attributable type.

NAME
copyAttributeTojobject; (atltributable, attribute)

PURPOSE
Copy an attribute to an attributable object.

ARGUMENTS

e jobject; * attributable

A pointer to the attributable object. Supported types are: Array, Attributable, Block,

Column, DataSet, Table.
e const Attribute * attribute

RETURNS
void
DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
copyRows(table, from, to, count)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

377

PURPOSE
Copy rows in a table.

ARGUMENTS

e Table * table
A pointer to the table within which the rows are to be copied.

e unsigned int from

The row number (starting at 0) from which to begin the copying.

e unsigned int to
The row number (starting at 0) to which to begin the copying.

e unsigned int count
The number of rows to copy.

RETURNS
void

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
dataServerClient(clientName)

PURPOSE
Set the name of the dataset server client.

ARGUMENTS

e const char * clientName
RETURNS
void
DESCRIPTION

ERRORS

EXAMPLES

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

378

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
DataSet * dataSet(dataSetName, openMode, memoryModel)
PURPOSE
Open a dataset.
ARGUMENTS
e const char * dataSetName
e AccessMode openMode
e MemoryModel memoryModel
RETURNS
e DataSet *
A pointer to the dataset.
DESCRIPTION
ERRORS
EXAMPLES
SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
dataSetHasBlock(dataSet, name)

PURPOSE
Determine if a dataset has a block with the given name.

ARGUMENTS

e const DataSet * dataSet
A pointer to the dataset.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 379

e const char * name
The name of the desired block.

RETURNS
e bool8
Returns true if a block with the given name was found in the specified dataset, otherwise
false is returned.
DESCRIPTION
ERRORS
EXAMPLES
SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
deletejtype; Attribute WithName(attributable, name)

PURPOSE
Delete the named attribute from an attributable object.

ARGUMENTS

e jtype; * attributable
A pointer to the attributable object. Supported types are: Array, Attributable, Block,
Column, DataSet, Table.

e const char * name
The name of the attribute to delete.

RETURNS

void
DESCRIPTION
ERRORS

EXAMPLES

SEE ALSO

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 380

BUGS AND LIMITATIONS

None known.

NAME
deletejtypes Attribute WithNumber(attributable, number)

PURPOSE
Delete the attribute with the given ordimal position from an attributable object.

ARGUMENTS

e jtype; * attributable
A pointer to the attributable object. Supported types are: Array, Attributable, Block,
Column, DataSet, Table.

e unsigned int number
The ordinal position of the attribute to delete.

RETURNS
void

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
delete Attribute(attribute)

PURPOSE
Delete the given attribute.

ARGUMENTS

e const Attribute * attribute
A pointer to the attribute to be deleted.

RETURNS
void

DESCRIPTION
The attribute is deleted from it’s parent attributable.

ERRORS

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

381

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
deleteBlockWithName(dataSet, name)
PURPOSE
Delete the block with the given name from the specified dataset.
ARGUMENTS
e DataSet * dataSet
A pointer to the dataset containing the block to be deleted.
e const char * name
The name of the block to be deleted.
RETURNS
void
DESCRIPTION
ERRORS
EXAMPLES
SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
deleteBlock WithNumber(dataSet, position)

PURPOSE

Delete the block with the specified ordinal position from the given dataset.

ARGUMENTS

e DataSet * dataSet

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 382

e unsigned int position

RETURNS
void

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
deleteColumnWithName(table, name)

PURPOSE
Delete the column with the specified name from the given table.

ARGUMENTS

e Table * table
A pointer to the table containing the column to be deleted.

e const char * name
The name of the column to delete.

RETURNS
void
DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

383

NAME

delete Column WithNumber(table, position)

PURPOSE
Delete the column with the specified ordinal position from the given table.

ARGUMENTS

e Table * table
A pointer to the table containing the column to be deleted.

e unsigned int position
The ordinal position of the column to be deleted.

RETURNS
void

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
deleteRows(table, from, count)

PURPOSE
Delete a range of rows from a table.

ARGUMENTS

e Table * table
A pointer to the table from which the rows are to be deleted.

e unsigned int from
The row number (starting at 0) from which to begin the deleting.

e unsigned int count
The number of rows to delete.

RETURNS
void

DESCRIPTION

ERRORS

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 384

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
dimensionsOfArray(array)

PURPOSE
Get the dimensions of an array.

ARGUMENTS

e const Array * array
A pointer to the array.

RETURNS

e unsigned long *
The dimensions are returned in a vector, each element of which describes the size along
each axis.

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME

dimensionsOfArray(column)
PURPOSE
ARGUMENTS

e const Column * column
A pointer to the column.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

RETURNS
e unsigned long *
The dimensions are returned in a vector, each element of which describes the size along
each axis.
DESCRIPTION
ERRORS
EXAMPLES
SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
discardDataSet(dataSetName)

PURPOSE
Tell the dataset server object to discard the named dataset.

ARGUMENTS

e const char * dataSetName
The name of the dataset.

RETURNS
void

DESCRIPTION
This function must only be called by Meta Tasks.

ERRORS

EXAMPLES

SEE ALSO
keepDataSet

BUGS AND LIMITATIONS

None known.

NAME
forEachSubTable(table, callThisFunction)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

386

PURPOSE
Subtable iteration.

ARGUMENTS

e const Table * table
A pointer to the table for which subtable iteration is required.

o TablelteratorFunction callThisFunction
The function to be called for each subtable iteration.

RETURNS
void

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
hasScalingOfArray(array)

PURPOSE
Determine if an array has been scaled.

ARGUMENTS

e const Array * array
A pointer to the array.

RETURNS
e bool8

Returns true if the array has been scaled, otherwise false is returned.
DESCRIPTION

ERRORS

EXAMPLES

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

387

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
bool8 hasScalingOfColumn(column)

PURPOSE
Determine if a column has been scaled.

ARGUMENTS

e const Column * column
A pointer to the column.

RETURNS
e bool8

Returns true if the column has been scaled, otherwise false is returned.

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
historyOfitypes (attributable, number)
PURPOSE
Get a history record from an attributable object.
ARGUMENTS
e jtype; * attributable
A pointer to the attributable object. Supported types are: Array, Attributable, Block,
Column, DataSet, Table.
e unsigned int number
The ordinal number of the history record to be retrieved.
RETURNS

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 388

e const char *
A pointer to the history record.

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
insertRows(table, pos, count)

PURPOSE
Insert rows in a table.

ARGUMENTS

e Table * table
A pointer to the table within which the rows are to be inserted.

e unsigned int from
The row number (starting at 0) from which to begin the insertion.

e unsigned int count
The number of rows to insert.

RETURNS

void
DESCRIPTION
ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 389

NAME

keepDataSet(dataSetName)

PURPOSE
Tell the dataset server object not to discard the named dataset.

ARGUMENTS

e const char * dataSetName
The name of the dataset.

RETURNS
void

DESCRIPTION
This function must only be called by Meta Tasks.

ERRORS

EXAMPLES

SEE ALSO
discardDataSet

BUGS AND LIMITATIONS

None known.

NAME
mode(dataSet)

PURPOSE
Get the access mode of a dataset.

ARGUMENTS

e const DataSet * dataSet
A pointer to the dataset.

RETURNS
o AccessMode

The access mode with which the dataset was opened.
DESCRIPTION
ERRORS

EXAMPLES

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 390

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
nameOfjobjects (labelled)

PURPOSE
Get the named of a labelled object.

ARGUMENTS

e const jobject; * attributable
A pointer to the labelled object. Supported types are: Array, Attributable, Column,
Attribute, DataSet, Table, Block.

RETURNS

e const char *
A pointer to the name of the object.

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
numberOfBlocks(dataSet)

PURPOSE
Get the number of blocks in a dataset.

ARGUMENTS

e const DataSet * dataSet
A pointer to the dataset.

RETURNS

e unsigned int
The number of blocks in the dataset.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

391

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
numberOfColumns(table)

PURPOSE
Get the number of columns in a table.

ARGUMENTS

e const Table * table
A pointer to the table.

RETURNS
e unsigned int
The number of columns in the table.
DESCRIPTION
ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
numberOfCommentsOfjobjects (attributable)

PURPOSE
Get the number of comments in an attributable object.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 392

ARGUMENTS

e jobject; * attributable
A pointer to the attributable object. Supported types are: Attributable, Array, Block,
Column, DataSet, Table

RETURNS
e unsigned int
The number of comments in the attributable object.
DESCRIPTION
ERRORS
EXAMPLES
SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
numberOfDimensionsOfArray(array)

PURPOSE
Get the number of dimensions of an array.

ARGUMENTS

e const Array * array
A pointer to the array.

RETURNS

e unsigned int
The number of dimensions of the array.

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

393

BUGS AND LIMITATIONS

None known.

NAME
numberOfDimensionsOfColumn(column)

PURPOSE
Get the number of dimensions of a column.

ARGUMENTS

e const Column * column
A pointer to the column.

RETURNS

e unsigned int
The number of dimensions of the column.

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
numberOfElementsOfArray(array)

PURPOSE
Get the total number of elements in an array.

ARGUMENTS

e const Array * array
A pointer to the array.

RETURNS

e unsigned long
The total number of elements in the array.

DESCRIPTION

ERRORS

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 394

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
numberOfElements Of Column(column)

PURPOSE
Get the total number of elements in a column’s (fixed length column only) cell.

ARGUMENTS

e const Column * column
A pointer to the column.

RETURNS

e unsigned long
The total number of elements in the column’s cells.

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
numberOfHistorysOfjobject; (attributable)

PURPOSE
Get the number of history records in an attributable object.

ARGUMENTS

e jobjecti * attributable
A pointer to the attributable object. Supported types are: Attributable, Array, Block,
Column, Array, DataSet, Table.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

The number of history records in the attributable object.

RETURNS
e unsigned int
DESCRIPTION
ERRORS
EXAMPLES
SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
numberOfRowsOfTable(table)

PURPOSE
Get the number of rows in a table.

ARGUMENTS

e const Table * table
A pointer to the table.

RETURNS
e unsigned long
The number of rows in the table.
DESCRIPTION
ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
numberOfRowsOfColumn(column)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 396

PURPOSE
Get the number of rows in a column.

ARGUMENTS

e const Column * column

RETURNS

e unsigned long
The number of rows in the column.

DESCRIPTION
Same as the number of rows in the column’s (parent) table.

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
relabeljobject; (labelled, newLabel)

PURPOSE
Relabel an labelled object.

ARGUMENTS

e jobject; * labelled
A pointer to the labelled object. Supported types are: Attributable, Attribute, Array,
Block, Column, DataSet, Table.

e const char * newLabel
The new label.

RETURNS

void
DESCRIPTION
ERRORS

EXAMPLES

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 397

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME

void releasejobjects (releasable)

PURPOSE
Release an object.

ARGUMENTS

e jobject; * releasable
A pointer to the object to be released. Supported types are: Array, Block, Column,
DataSet, Table

RETURNS
void
DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
renamejobject; (labelled, newName)
PURPOSE
Rename a labelled object.
ARGUMENTS
e jobject; * labelled
A pointer to the labelled object. Supported types are: Attribute, Array, Attributable,
Block, Column, DataSet, Table.
e const char * newName
The new name for the object.
RETURNS

void

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

398

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

setjtypesjobjects Attribute(attributable, name, value, comment);

A pointer to the attributable object. Supported types are: Array, Attributable, Block,

The comment to associate with the attribute.

NAME
PURPOSE
Set the value of an attribute.
ARGUMENTS
e jobject; * attributable
Column, DataSet, Table.
e const char * name
The name of the attribute.
e jtype; value
The value of the attribute.
Real64, String.
e const char * comment
RETURNS
void
DESCRIPTION
ERRORS
EXAMPLES
SEE ALSO

BUGS AND LIMITATIONS

None known.

xmmsas_20230412_1735-21.0.0

Supported types are bool8, Int8, Int16, Int32, Real32,

XMM-Newton Science Analysis System Page: 399

NAME

setjtypes Attribute(attribute, value, comment)

PURPOSE

ARGUMENTS

e Attribute * attribute
A pointer to the attribute.

e jtype; value
The value to assign to the attribute. Supported types are: Bool8, Int8, Int16, Int32,
Real32, Real64, String.

e const char * comment
The comment to associate with the attribute.

RETURNS
void

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
setCellSize(column, rowNumber, size)

PURPOSE
Set the size of a cell in a variable-length column.

ARGUMENTS

e Column * column
A pointer to the column.

e int rowNumber
The number of the cell to be sized.

e int size
The size to set the cell-size to.

RETURNS
void

DESCRIPTION

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

400

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
setEzists(setName)

PURPOSE
Determine if a set exists.

ARGUMENTS

e const char * setName
The name of the set.

RETURNS

e bool

Returns true if the set exists, otherwise false is returned.

DESCRIPTION

ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
tableHasColumn(table, name)

PURPOSE

Determine if a table contains a column with the given name.

ARGUMENTS

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

e const Table * table
A pointer to the table.

e const char * name
The name of the desired column.

RETURNS
e bool8
Returns true if the column with the given name was found in the table, otherwise false
is returned.
DESCRIPTION
ERRORS
EXAMPLES
SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
tableWithName(dataSet, name)
PURPOSE
Get the table with the specified name from a given dataSet.
ARGUMENTS
e const DataSet * dataSet
A pointer to a dataset.
e const char * name
The name of the desired table.
RETURNS
e Table *
A pointer to the table.
DESCRIPTION
ERRORS
EXAMPLES

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

402

SEE ALSO

BUGS AND LIMITATIONS

None known.

NAME
table WithNumber(dataSet, position)

PURPOSE

Get the table with the specified ordinal position in a given dataset.

ARGUMENTS

e const DataSet * dataSet
A pointer to a dataset.

e unsigned int position
The ordinal position of the table within the dataset.

RETURNS
e Table *

A pointer to the table.
DESCRIPTION
ERRORS

EXAMPLES

SEE ALSO

BUGS AND LIMITATIONS

None known.

/* forEachBlock forEachColumn forEachSubTable setStringCell subTable table */

22 PERL API

See PEDAL documentation

References

xmmsas_20230412_1735-21.0.0

