XMM-Newton Science Analysis System Page: 1

embadpixfind

April 16, 2023

Abstract

Find EPIC-MOS bad pixels for one node of one EPIC-MOS CCD.

1 Instruments/Modes

Instrument Mode
EPIC MOS IMAGING
2 Use
pipeline processing yes
interactive analysis yes

3 Description

embadpixfind aims at finding bad pixels in an EPIC-MOS image in a completely automatic way, by
taking advantage of the broad PSF in pixel units, which makes it impossible to mistake a source for a
bad pixel.

3.1 Preparatory work

Call emeventsproj with rejectbadevents=Y to project the events file to an image. An image built by
evselect would be accepted as well, but would not include the secondary pixels of multiple events (this
may miss weak bad pixels next to a strong one).

For optimal electronic noise rejection, the events file should be built by successive calls to emevents
(analysepatterns=N flagbadpixels=N splitdiagonals=N randomizeposition=N allow it to run
much faster) and emenergy (correctcti=N correctgain=N randomizeenergy=N allow it to run
much faster).

For calibration purposes, it is possible to improve the statistics (and the sensitivity to weak bright pixels

or dark pixels) by stacking many images output of emeventsproj on top of one another before calling
embadpixfind.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 2

3.2 Basic algorithm

embadpixfind estimates the local statistical average p in a running window around each pixel by taking
the smallest of the average or the median + 1 (1 is added to take care of the case when the median is 0,
the median allows to remove the effect of other bad pixels in the vicinity). Then it builds a significance
map via the Li and Ma criterion (Li & Ma 1983, ApJ 272, 317):

NOI]
S = ﬁ\/Nonzn + Nog In-t! (1)
Htot Htot

where Ny, is the number of counts in the current pixel, Nog = Npix 14 is the number of reference counts,
Npix is the number of pixels used to compute the local average ((2 halfwidth2d + 1)? - 1, if none of the
pixels in the window has been rejected already), Niyot = Non + Nogt is the total number of counts in the
window, and oy = Niot/(Npix + 1) is the average number of counts per pixel in the window.

This significance map is then used to locate the most promising candidate bad pixels. They are examined
in turn, in decreasing order. The exact probability that the current excess is a statistical anomaly of a
flat distribution is computed from the cumulative binomial law:

Ntot

P(kZNon) = Z pB(k;NtotJI) = Iq(NonaN0H+1) (2)
k=Non

where ¢ = 1/(Npix + 1) is the probability that a random count fall in the central pixel, and I (a,b) is
the incomplete beta function. This is significantly different from the probability estimated from Eq.(1)
for small numbers (Eq.3 gives a larger probability). If that probability is smaller than probathreshold,
the pixel is flagged as bright, the average is recomputed around the bad pixel ignoring it, and the loop
goes on. The loop stops when the next largest excess is smaller than the significance corresponding to
probathreshold.

3.3 Columns and rows

If findbadsegments=Y embadpixfind looks for bright rows and columns too. This is done by projecting
the image along rows and columns, and applying the same algorithm as above on the resulting 1-D vectors,
except the width of the 1-D window (2 halfwidthiD + 1) is normally chosen larger than that of the 2-D
window, to improve the background determination.

If a bright row or column is found, it is analysed to look for bright segments within. If it is found that
the rest of the row/column is compatible (to 10% probability) with the neighbouring rows/columns, then
only the bright segments are declared as bad. The minimum length of the bright segments is set such
that one expects about 1 count in that length in the normal (not bright) parts.

3.4 Intrinsic dispersion

Sometimes the distribution of the number of counts in the window around the tested pixel does not follow
the Poisson law at all, but is much broader. This is particularly true for columns at low energy, because
of charge transfer efficiency variations from one column to the next. This effect is of course more obvious
for large count rates, in particular within bright sources.

To avoid wrongly detecting columns as bad (either dark or bright), the observed dispersion in the distri-

bution is used to compute the significance of an excess assuming a Gaussian distribution. What is actually
measured is the average absolute deviation (this is more robust than the root mean square when a few

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 3

other bright pixels are present) divided by 0.8 (to recover the standard deviation when the distribution
is normal). The true significance is taken to be the smallest of the Gaussian estimate and the Poisson
one (from Eq.1). The cost of this security is to detect less easily groups of bad columns/rows, because
the observed dispersion is large even when the tested column/row is discounted.

In addition, the minratio parameter avoids detecting bright pixels, rows or columns with too small
contrast on observations with high statistics.

3.5 Dark features

If finddead=Y, embadpixfind looks for too dark pixels, rows and columns too. The Li and Ma formula
(Eq.1) is not used for dark pixels. The Gaussian significance is computed in the same way (but on the
negative side) and the cumulative binomial probability is computed from:

Non

P(k S Non) = ZpB(katotaq) = Ilfq<Nofnyon+1) (3)
k=0

The statistics in a single observation is usually not enough to find any dark pixel, but dark rows or
columns may be found. The maxratio parameter avoids detecting ’grey’ pixels, rows or columns on
observations with high statistics.

Whatever findbright and finddead, dark and bright columns and rows are always searched for together
in order of decreasing significance (either positive or negative). This avoids finding spurious bright
columns/rows next to very dark ones, and vice-versa.

If one of findbright or finddead is set to False, the corresponding bad pixels/columns/rows are not
written to the output file.

3.6 Iteration

Each step in the detection process may affect the other steps. For example, detecting a bright row or
column may facilitate detecting a moderately bright pixel next to it. For that reason, the whole process
is iterated until nothing new is detected, or until the maximum number of iterations (set by the niter
parameter) is reached.

3.7 Calibration access

If usecal= Y, the uplinked bright pixels and known dead pixels (within the current window) are read
from the CAL and those pixels are ignored in computing the local median and the threshold.

Optionally (includedeadpixels parameter) one may include the dead pixels from the CAL in the out-
put list. It is also possible (ignoreccfbright parameter) to ignore the bright pixels declared in the
CCF and redetect them from the data. This does not apply to uplinked and dead pixels which ap-
pear dark in the data and cannot be detected in a single observation. If embadpixfind was called with

ignoreccfbright=Y includedeadpixels=Y, badpix may be called with getnewbadpix=Y getotherbadpix=N

to keep only the bright pixels active in the current exposure while preserving the information about dead
pixels.

With usecal=N, the embadpixfind algorithm is not XMM specific at all and works on any image where
the normal structure size is larger than 5 pixels.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 4

3.8 Incremental search

The default mode is to ignore the bad pixels file on input. If incremental=Y, embadpixfind reads the
bad pixels file on input, and ignores the pixels mentioned there in the search. On output the bad pixels
file contains both the original bad pixels and the newly found ones.

4 Parameters

This section documents the parameters recognized by this task (if any).
] Parameter \ Mand \ Type \ Default \ Constraints ‘

| evimageset | yes | dataset [7 | none \
Input image file (from emeventsproj)

] badpixset \ no \ dataset \ badpix.out \ none ‘
Output bad pixels file

] incremental \ no \ boolean \ no \ yes/no \
Add newly found bad pixels to the bad pixels file contents

’ probathreshold \ no \ real \ 1.10-6 \ >0,<1.1073 ‘
False detection probability per pixel

[halfwidth2d [no [integer [2 | >0 |
Half width for 2D searches (images)

’ findbadsegments \ no \ boolean \ yes \ yes/no ‘
Look for bad segments of rows or columns as well

’ halfwidth1ld \ no \ integer \ 3 \ >0 ‘
Half width for 1D searches (columns/rows)

’ findbright \ no \ boolean \ yes \ yes/no ‘
Look for too bright pixels, rows and columns

] minratio \ no \ real \ 1.5 \ > 1 ‘
Minimum ratio to neighbours for bright features (when findbright=Y)

] finddead \ no \ boolean \ yes \ yes/no \
Look for too dark pixels, rows and columns

’ maxratio \ no \ real \ 0.5 \ >0,<1 ‘
Maximum ratio to neighbours for dark features (when finddead=Y)

] niter \ no \ integer \ 10 \ >0 \
Maximum number of iterations of the full detection process

’ usecal \ no \ boolean \ yes \ yes/no ‘
Get uplinked and dead pixels from the CAL

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 5

] includedeadpixels \ no \ boolean \ no \ yes/no \
Include dead pixels from CAL in output list

’ ignoreccfbright \ no \ boolean \ no \ yes/no ‘
Ignore the bright pixels declared in the CAL (except uplinked)

5 Errors

This section documents warnings and errors generated by this task (if any). Note that warnings and
errors can also be generated in the SAS infrastructure libraries, in which case they would not be docu-
mented here. Refer to the index of all errors and warnings available in the HTML version of the SAS
documentation.

getParamValues03 (error)
keyword incompatibility between image and bad pixels files (incremental=Y)

getCalBadpix10 (warning)
bright pixel wrongly declared as uplinked in the CCF. That pixel is treated as not uplinked.
corrective action: inform SOC (this is a CCF error)

6 Input Files

1. Projected image file (from emeventsproj) as Integer*4 array in PRIMARY. If they exist, the window
keywords WINDOWXO, WINDOWDX, WINDOWYO and WINDOWDY are read to avoid underestimating the
median and average at the borders in window mode.

2. File with BADPIX extension (if incremental=Y) output of badpixfind, embadpixfind or badpix.

7 Output Files

1. Bad pixels file (for badpix) as BADPIX extension with RAWX, RAWY, TYPE, YEXTENT and BADFLAG
Integer*2 columns.

8 Algorithm

Read the parameters
Define goodPixel array, set to True

if incremental then

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

Read the bad pixels already in file
goodPixel(bad pixels) = False
endif

if usecal then
Read the bad pixels in CAL
goodPixel (uplinked and dead pixels) = False
if not ignoreccfbright then goodPixel(bright pixels) = False
if includedeadpixels then Write dead pixels to output list
endif

Read map = projected image

Iterate
call findAl11Bad(map, goodPixel, bad)
until nothing new is found or niter is reached

Write bad pixels file

subroutine findAllBad(map, goodPixel, bad)

! Get local average around each pixel and estimated significance
call avMedFilter (map, goodPixel, medsmooth, badtest)
! Look for bright pixels
call findBadPix(map, goodPixel, medsmooth, badtest, False, bad)
if findbadsegments then
! Look for bright/dark columns
profil = sum(map,2)
call findBadiD(profil, bad)
! Look for bright/dark rows
profil = sum(map,1)
call findBad1D(profil, bad)
Update goodPixel and medsmooth/badtest around bad columns/rows
endif
! Look for dark pixels
call findBadPix(map, goodPixel, medsmooth, badtest, True, bad)

end subroutine findAllBad
subroutine avMedFilter (map, goodPixel, medsmooth, badtest)

Loop over current pixel
Consider all good pixels in window around current pixel
Extract average (or median+l if smaller) into medsmooth
Estimate dispersion from average absolute deviation divided by 0.8
Estimate significance S1 of excess using Gaussian law
If larger than 3, estimate significance S2 of excess using Li and Ma
badtest = min(S1,S2)

endloop

end subroutine avMedFilter

subroutine findBadPix(map, goodPixel, medsmooth, badtest, negative, bad)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 7

Loop over current bad pixel
Find maximum in badtest (minimum if negative) down to probathreshold
Get probability of excess using binomial law
if probability < probathreshold then
add bad pixel to list
Update goodPixel and medsmooth/badtest around maximum
endif
endloop

end subroutine findBadPix
subroutine findBadlD(profil, psfiD, bad)

Find bad columns in profil (same as findBadPix)
Loop over bad columns
Get expected distribution along column from its neighbours
width = 1/(expected count rate per pixel)
Get running integral over bins of width pixels
While total(rest of column) larger (lower if negative) than expected
Find maximum integral (minimum if negative)
Remove segment of width pixels around it
endwhile
endloop

end subroutine findBadiD

9 Comments

e The algorithm to get the local average could be improved over using the local median. An algorithm
similar to that used in computing the offsets in emdiag should be considered.

References

xmmsas_20230412_1735-21.0.0

