

emdiag

April 16, 2023

Abstract

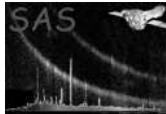
Analyse EPIC-MOS diagnostic images. Compute line and column offsets and event lists.

1 Instruments/Modes

Instrument	Mode
EPIC MOS	DIAGNOSTIC

2 Use

pipeline processing	no
interactive analysis	yes


3 Description

emdiag emulates the on-board computation of the line and column offsets. It also emulates event analysis, and provides a masked CCD map, suitable to build a reference dark frame. Window keywords are accepted allowing to restrict the whole line of analysis to a part of the CCD map.

Two different coordinate systems are used in **emdiag**:

- The on-board coordinate system, used also in the ODF, runs from 0 to 609 (along **RAWX**) and 0 to 601 (along **RAWY**). It includes under and overscans. All ODF files (diagnostic map, offset/variance table, event list) refer to this system. In addition event coordinates (in the event list) are offset by (+2,+2).
- The CCD coordinate system used in the SAS (**PIXCOORD** in **cal**), runs from 1 to 600 along both **RAWX** and **RAWY** and does not include the under/overscans. All output maps (masked CCD map, bright pixels map), the bad pixels and the input window parameters refer to that system.

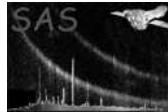
emdiag calls (in order) the following subroutines, all of which can be individually switched off:

- **OFFSET** emulates the on-board algorithm calculating the line and column offsets. It analyses the CCD locally to mask out high pixels (bad pixels, X-rays, cosmic-rays) standing out by more than **nsigmas** times the local dispersion above the local median, and works only on that part of the CCD in view of the sky. The reference distribution to check each pixel is taken from the 16 pixels at distance 2 (in **RAWX** or **RAWY**) from the current pixel.
If **selectfov** is set, a second pass will be performed, removing all pixels outside the field of view. This provides a better estimate of the offsets for the lines/columns within the field of view.
The variance of the resulting map (with respect to that constructed from the line and column offsets, and limited to the field of view if **selectfov=yes**) is written in the **CCDVAR** keyword.
The emulation also accepts as input a masked CCD map (with high pixels set to 0, output of a first run of **emdiag**). Pixels bad or set to 0 are then not used to compute the offsets. Because the on-board offset computation does not efficiently remove cosmic-ray patches, this is the way to get good offsets and variance.
- **EDUSOFT** performs on the ground the same pattern recognition performed in flight in IMAGING (or TIMING) mode, and outputs the same information (**RAWX**, **RAWY**, **ENERGYE1**, **ENERGYE2**, **ENERGYE3**, **ENERGYE4**, **PATTERN** and **PERIPIX**). If the diagnostic map was obtained in window mode (no overscan), no event may be found in the last two lines and columns (as in flight). The line and column offsets are taken either from an offset/variance file (if **offsets** is “read”) or from the result of the **OFFSET** subroutine. Beyond that, **EDUSOFT** rejects events with **ENERGYE1 + ENERGYE2** above the upper EMDH threshold or below the lower EMDH threshold. In output, all pixels of the map belonging to events recognized by **EDUSOFT** are masked out (*i.e.* set to 0, not a valid value because of the electronic offset), except patterns 30 and 31 (usually associated with cosmic-rays).
- **THRESH** subtracts from the map the line and column offsets taken either from an offset/variance file or from the **OFFSET** result (like **EDUSOFT**). Then it looks for all events above the EMDH lower threshold. It creates optionally a map of all selected pixels (offset subtracted). If **EDUSOFT** was run before, this map will not contain any valid X-ray event. In output, all selected pixels are set to 0 in the masked CCD map (not offset subtracted).

4 Parameters

This section documents the parameters recognized by this task (if any).

Parameter	Mand	Type	Default	Constraints
-----------	------	------	---------	-------------


diagnosticset	yes	dataset	‘‘	none
name of input file holding the CCD map(s)				

eduthreshold	no	integer	1	> 0
EDU threshold for event detection				

emdhlowerthreshold	no	integer	0	≥ 0
EMDH lower threshold for event detection				

emdhuupperthreshold	no	integer	4095	> 0
EMDH upper threshold for event detection				

windowx0	no	integer	1	1-600
first column in the window				

windowy0	no	integer	1	1-600
first line in the window				

windowdx	no	integer	600	1-600
horizontal width of the window				

windowdy	no	integer	600	1-600
vertical width of the window				

findevents	no	boolean	yes	yes/no
activate EDUSOFT ?				

cutabovethreshold	no	boolean	yes	yes/no
activate THRESH ?				

offsets	no	string	compute	compute/read
compute the offsets or read them from a file				

nsigmas	no	real	10.	$\geq 1.$
threshold for pixel rejection in OFFSET				

selectfov	no	boolean	yes	yes/no
select area within the field of view in OFFSET ?				

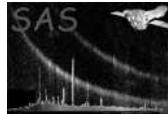
maskbadpix	no	boolean	no	yes/no
mask out the bad pixels from the CCF in OFFSET (not implemented) ?				

inoffvarset	no	dataset	' '	none
name of input offset/variance file. If this parameter is set, then offsets =read is automatically set				

writeoffvarset	no	boolean	no	yes/no
write offset/variance file ?				

outoffvarset	no	dataset	'offvar.out'	none
name of output offset/variance file				

writemaskedccdset	no	boolean	no	yes/no
write masked CCD map ?				


maskedccdset	no	dataset	'masked.out'	none
name of output image file for masked CCD map				

writeeventset	no	boolean	no	yes/no
write event file ?				

eventset	no	dataset	'event.out'	none
name of output event file				

writebrightpixset	no	boolean	no	yes/no
write map of other pixels above threshold ?				

brightpixset	no	dataset	'bright.out'	none
name of output image file for map of other pixels above threshold				

5 Errors

This section documents warnings and errors generated by this task (if any). Note that warnings and errors can also be generated in the SAS infrastructure libraries, in which case they would not be documented here. Refer to the index of all errors and warnings available in the HTML version of the SAS documentation.

readmap02 (*error*)

input CCD map is not a 2-D array

readmap03 (*error*)

input CCD map has too large dimensions

readmap04 (*error*)

WINDOWDX keyword incompatible with array size

readmap05 (*error*)

WINDOWDY keyword incompatible with array size

readmap06 (*error*)

no WINDOWX0 keyword in CCD file

readmap07 (*error*)

no WINDOWY0 keyword in CCD file

readmap08 (*error*)

input CCD map has non-standard dimensions

readmap09 (*error*)

window chosen by parameters outside the actual window in the data

getoffvar02 (*error*)

offsets have wrong dimensions

getoffvar03 (*error*)

offsets file incompatible with CCD file

readmap10 (*warning*)

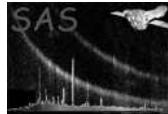
general ODF keywords not present

corrective action: continue

getOffsets10 (*warning*)

no good pixels in some rows/columns. The corresponding offsets are set to 0

corrective action: set offsets manually in output offsets file


getOffsets12 (*warning*)

less good pixels than there are offsets. Unreliable result

corrective action: try using another diagnostic image file

thresh10 (*warning*)

Events larger than bipixels but below the EMDH lower threshold exist. They will be masked in the masked CCD map anyway

corrective action: Setting the EMDH lower threshold to more than twice the EDU threshold is non-standard. Unless this is voluntary, try lowering `emdhlowerthreshold` or increasing `eduthreshold`

readmap11 (*warning*)

`NPIXEL` is not equal to the number of pixels in the image. Proceeding anyway

corrective action: This should not happen with a proper diagnostic image file. Check input image is not corrupted

readmap12 (*warning*)

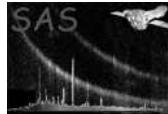
the EMDH upper threshold is lower than the EMDH lower threshold. EDUSOFT cannot find any event

corrective action: check this was intended

6 Input Files

1. EPIC MOS diagnostic mode image file (from ODF/SDF). Uses keywords `WINDOWX0`, `WINDOWY0`, `WINDOWDX`, `WINDOWDY`, `EDUTHR`, `FRMTIME`.
2. EPIC MOS offset/variance file for that CCD/node (from ODF/SDF)

The structure of files in the ODF is described in [1].


7 Output Files

1. offset/variance file for that CCD/node in ODF format (for calibration purposes, [1])
2. masked CCD map(s) as a 600x600 image FITS file with additional `EMDHLOW`, `EMDHUPP`, `MASKED` and `CCDMAP` keywords (for calibration purposes)
3. event file simulating on-board processing in ODF format (for calibration purposes), with the additional `CCDMAP` keyword and an extension holding the auxiliary (frame) information (replaced by keywords if there is only one input map). In this format the event coordinates are as in the ODF, *i.e.* offset by (+6,+1) from the coordinates in the output maps (and the input window parameters).
4. map(s) of pixels above threshold outside events as a 600x600 image FITS file with additional `EMDHLOW`, `EMDHUPP`, `BRIGHT` and `CCDMAP` keywords (for calibration purposes)

Applicable keywords are propagated from the input diagnostic image file. The window keywords in the input file are converted to [1-600]x[1-600] and clipped following the window parameters set by the user. The `EDUTHR` keyword may be modified by the user (`eduthreshold` parameter). The offsets used to analyse the data are incorporated as an offset/variance `OFFSETSO` extension in ODF format in the output map and event files.

8 Algorithm

`subroutine emdiag`


```
Read the file names of input and output files

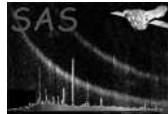
Open files
Get keyword values

parameters read : choice of sub_tasks to execute
Loop over input task parameters
    Read the task parameter / yes to perform the procedure,
        no not to perform it /
End loop

Read CCD map

SUBROUTINE OFFSET
    if offset requested then
        mask out pixels with significant signal
        compute mean over rows and columns
        if selectfov then
            mask out pixels outside the field of view
            for all rows/columns with more than 4 pixels left
                recompute offset
        endif
        compute variance
    else
        read offsets from offset/variance file
    endif

SUBROUTINE EDUSOFT
    if edusoft requested then
        simulate EDU action
        simulate EMDH thresholding
        mask out pixels belonging to valid events
    endif


SUBROUTINE THRESH
    if thresh requested then
        subtract offsets
        identify pixels above EMDH lower threshold
        mask them out in map
    endif

Write output files
Close files

end subroutine emdiag
```

9 Comments

- To avoid contamination of the masked CCD map by leakage in pixels next to charge deposits, a more conservative approach would also mask out all neighbouring pixels.

- The reanalysis of events in EDUSOFT (and THRESH) calls a C routine (edusoft) which interfaces to the C routine (edu_simu, written by M. Lortholary of the EPIC/Saclay team) which simulates the EDU recognition. This is described in **emsaplib**.

10 Future developments

- It could be a good idea to allow analysing several CCD maps together.
- It could be useful to allow masking out the bad pixels in the CCF.

References

[1] ESA. XMM Interface Control Document: Observation and Slew Data Files (XSCS to SSC) (SciSIM to SOCSIM). Technical Report XMM-SOC-ICD-0004-SSD Issue 2.5, ESA/SSD, June 2000. Found at the URL: ftp://astro.estec.esa.nl/pub/XMM/documents/odf_icd.ps.gz.