
XMM-Newton Science Analysis System Page: 1

emsaplib

April 16, 2023

Abstract

Library of routines developped for EPIC MOS tasks.

1 Instruments/Modes

Instrument Mode

EPIC MOS -

2 Description

This library contains 3 modules for F90 :

• emutils mod (Sect 2.1)

• edusoft mod (Sect 2.2)

• badpixutils mod (Sect 2.3)

They are described in the following subsections.

It also contains the test directory emodf for the EPIC MOS routines, and the utilities compare columns

and compare realcols used in test harnesses.

2.1 emutils mod module

This module contains F90 routines and functions developped for the MOS tasks, but which are of general
interest.

2.1.1 addFilename

Aim: Write history line with the name of an input file, removing the directory.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 2

The routine declaration is:

subroutine addFilename(in_tab, filename, comment)

! in_tab : handle to the output table

! filename : name of the file

! comment : comment string to introduce file name

type(BlockT), intent(in) :: in_tab

character(len=*), intent(in) :: filename, comment

2.1.2 changeCase

Aim: Switch from lower to upper case or vice-versa.

The routine declaration is:

function changeCase(instring,dir) result(outstring)

! instring : input string

! dir : direction (1: to lower case; 2: to uppercase; 0: switch case)

character(len=*), intent(in) :: instring

integer, intent(in) :: dir

character(len=len(instring)) :: outstring

2.1.3 getCcd

Aim: Get the CCD value from the keywords (returns 0 if error).

The routine declaration is:

integer function getCcd(in_tab)

! in_tab : handle to the input block for the DAL

type(BlockT), intent(in) :: in_tab

2.1.4 getMode

Aim: Return logicals defining the data mode.

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 3

The routine declaration is:

subroutine getMode(ev_tab, imaging, timing, redImaging, compTiming)

! ev_tab: handle to the events extension

! imaging: set to True if IMAGING (EPIC) or SPECTROSCOPY (RGS) mode

! timing: set to True if TIMING (EPIC) or HTR (RGS) mode

! redImaging: set to True if REDUCED IMAGING (MOS) mode

! compTiming: set to True if COMPRESSED TIMING (MOS) or BURST (PN) mode

type(TableT), intent(in) :: ev_tab

logical, intent(out) :: imaging, timing, redImaging, compTiming

2.1.5 keywordDone

Aim: Write keyword stating that an action governed by a boolean parameter was performed.

The routine declaration is:

subroutine keywordDone(in_tab, taskname, paramname)

! in_tab: handle to the table where the keyword will be written

! taskname: name of the calling task

! paramname: name of the boolean parameter

type(BlockT), intent(in) :: in_tab

character(len=*), intent(in) :: taskname, paramname

2.1.6 keywordRemove

Aim: Remove a keyword written with keywordDone.

The routine declaration is:

subroutine keywordRemove(in_tab, paramname)

! in_tab: handle to the table where the keyword will be set to 0

! paramname: name of the boolean parameter

type(BlockT), intent(in) :: in_tab

character(len=*), intent(in) :: paramname

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 4

2.1.7 wasDone

Aim: Test using keywords whether an action governed by a boolean parameter was already performed.

The routine declaration is:

function wasDone(in_tab,paramname) result(done)

! in_tab: handle to the table where to look for the keyword

! paramname: name of the boolean parameter

type(BlockT), intent(in) :: in_tab

character(len=*), intent(in) :: paramname

logical :: done

2.1.8 equalKeywords

Aim: Check that two files share a number of attributes.

The routine declaration is:

function equalKeywords(handle1,handle2,keywList,strict,onwarn) result(compat)

! handle1 : handle to the first table or set

! handle2 : handle to the second table or data set

! keywList : array of keywords to test for compatibility

! strict : set to true if need to check existence also (default is true)

! onwarn : set to true if warnings are to be sent (default is true)

! : if false then messages are sent instead

type(AttributableT), intent(in) :: handle1, handle2

character(len=*), dimension(:), intent(in) :: keywList

logical, intent(in), optional :: strict, onwarn

logical :: compat

2.1.9 putPrimaryKeywords

Aim: Copy general keywords from extension to primary header.

The routine declaration is:

subroutine putPrimaryKeywords(fr_tab)

! fr_tab : Handle to the input block

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 5

type(BlockT), intent(in) :: fr_tab

! Names of the keywords to be copied into the primary header from the extension

integer, parameter :: num_keyw_prim = 6

character(len=8), dimension(num_keyw_prim), parameter :: &

name_keyw_prim = (/"TELESCOP","INSTRUME", "OBS_ID ", "EXP_ID ", &

"DATE-OBS","DATE-END"/)

2.1.10 sizeListParam

Aim: Read the size of a parameter list.

The routine declaration is:

function sizeListParam(paramlist) result(numlist)

! paramlist : name of the string list parameter

! numlist : number of strings in list

character(len=*), intent(in) :: paramlist

integer :: numlist

2.1.11 readListParam

Aim: Read a parameter list (strings only).

The routine declaration is:

subroutine readListParam(paramlist,list,numlist)

! paramlist : name of the string list parameter

! list : list of strings

! numlist : number of strings in list

character(len=*), intent(in) :: paramlist

character(len=*), dimension(:), intent(inout) :: list

integer, intent(in) :: numlist

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 6

2.2 edusoft mod module

This module contains F90 declarations and routines used to interface the simulation of the Event Detection
Unit (EDU) of the EPIC MOS camera. This simulation (EDUSOFT) is written in C and is here interfaced
with F90.

2.2.1 declarations

Here are declarations of parameters and data structures used together with the EDUSOFT routines

• es nmax: Maximum number of events that can be found in a frame by EDUSOFT.

Type and value :

integer, parameter :: es_nmax = 50000

• edu npat: Number of EDU patterns.

Type and value :

integer, parameter :: edu_npat = 32

• edu nsid: Side dimension of the square EDU patterns.

Type and value :

integer, parameter :: edu_nsid = 5

• edu pattern: Data structure describing each EDU pattern.

Type :

type edu_pattern

integer id_patt

integer id_mask

integer(kind=int8) mat(edu_nsid,edu_nsid)

integer(kind=int8) number

integer(kind=int8) id_kind

end type edu_pattern

• edu evt: Data structure describing an EDU event in output of EDUSOFT.

Type :

type edu_evt

integer(kind=int16) x

integer(kind=int16) y

integer(kind=int16) pattern

integer(kind=int16) e1

integer(kind=int16) e2

integer(kind=int16) e3

integer(kind=int16) e4

integer(kind=int16) peripix

end type edu_evt

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 7

• edu out: Data structure containing the EDUSOFT output event list.

Type :

type edu_out

integer nevent

type(edu_evt) evt(es_nmax)

integer npix

integer fifoovf

end type edu_out

• sas evt: Data structure describing an EDU event as used by the SAS. Type :

type sas_evt

integer(kind=int8) pattern

integer(kind=int8) peripix

integer(kind=int16) rawx

integer(kind=int16) rawy

integer(kind=int32) frame

integer(kind=int32) flag

integer(kind=int16) e1

integer(kind=int16) e2

integer(kind=int16) e3

integer(kind=int16) e4

end type sas_evt

2.2.2 getpixelInE2

Aim: Get the number of pixels making E2 for all patterns, return mask itself if required. CAL must be
initialised beforehand.

The routine declaration is:

subroutine getpixelInE2(pixelInE2, patabove, npatterns)

! pixelInE2: number of pixels in E2 for each pattern

! patabove : mask of E2 for each pattern

! npatterns: number of patterns

integer(kind=int16), dimension(0:edu_npat-1), intent(out) :: pixelInE2

integer(kind=int16), dimension(-1:1,-1:1,0:edu_npat-1), &

intent(out), optional :: patabove

integer, intent(out), optional :: npatterns

2.2.3 inMask

Aim: Returns sum of offsets through mask.

The routine declaration is:

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 8

integer function inMask(offX, offY, patabove)

! offX, offY: local column and row offsets

! patabove : 1 means count, 0 means ignore (like output of getpixelInE2)

integer, dimension(-1:1), intent(in) :: offX, offY

integer(kind=int16), dimension(-1:1,-1:1), intent(in) :: patabove

2.2.4 projectEventsCounts

Aim: Project the pixels above threshold of an array of events onto an image.

The routine declaration is:

subroutine projectEventsCounts(evt, patabove, image)

! evt : Array of event structure

! patabove : Geometry of event outside central pixel (from getpixelInE2)

! image : Image upon which to project

type(sas_evt), dimension(:), intent(in) :: evt

integer(kind=int16), dimension(-1:1,-1:1,0:edu_npat-1), &

intent(in) :: patabove

integer(kind=int32), dimension(-2:,-2:), intent(inout) :: image

2.2.5 projectEventsEnergy

Aim: Project the energy of an array of events onto an image.

The routine declaration is:

subroutine projectEventsEnergy(evt, patabove, image)

! evt : Array of event structure

! patabove : Geometry of event outside central pixel (from getpixelInE2)

! image : Image upon which to project

type(sas_evt), dimension(:), intent(in) :: evt

integer(kind=int16), dimension(-1:1,-1:1,0:edu_npat-1), &

intent(in) :: patabove

integer(kind=int32), dimension(-2:,-2:), intent(inout) :: image

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 9

2.2.6 pat init

Aim: Initialization of the pattern library for EDUSOFT.

The F90 calling sequence is:

! patterns : input argument. Pattern library read from the CAL by a call like

! call CAL_getEventPatterns(patterns, eduThreshold)

integer(kind=int8), dimension(:,:,:), pointer :: patterns

! edupat: output argument. Pattern library as used by edusoft routine.

type(edu_pattern) :: edupat(edu_npat)

call pat_init(patterns,edupat)

2.2.7 edusoft

This is the EDUSOFT call.

The F90 calling sequence is:

! Input arguments :

integer :: edumode ! 0 diagnostic mode

! 1 timing mode

! 2 reduced imaging (threshold) mode

! 3 imaging mode

type(edu_pattern) :: edupat(edu_npat) ! initialized by pat_init().

integer(kind=int32) :: dx ! x size of the input image.

integer(kind=int32) :: dy ! y size of the input image.

integer(kind=int16), dimension(dx,dy) :: im ! input image.

integer(kind=int16) :: threshold ! EDU threshold.

! x EDU offset (must contain at least x0+dx data).

integer(kind=int16), dimension(0:x0+dx-1) :: offX

! y EDU offset (must contain at least y0+dy data).

integer(kind=int16), dimension(0:y0+dy-1) :: offY

! x coordinate of the closest pixel to the output CCD node.

integer(kind=int32) :: x0

! y coordinate of the closest pixel to the output CCD node.

integer(kind=int32) :: y0

! es_nmax : Maximum number of events that can be found in a frame by EDUSOFT.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 10

! (See declaration subsection).

! Output argument :

! Data structure containing the EDUSOFT output event list.

type(edu_out) :: eduout

call edusoft(edumode,edupat,dx,dy,im,threshold, &

offX(0:x0+dx-1),offY(0:y0+dy-1),x0,y0,es_nmax,eduout)

2.3 badpixutils mod module

This module contains F90 routines and functions developped for dealing with bad pixels, including gen-
eralist Poisson and correlation routines.

2.3.1 readBadpix

Aim: Read bad pixels table into an array.

The routine declaration is:

subroutine readBadpix(bad_tab, incremental, &

xbad, ybad, yext, tbad, fbad, nbad)

! bad_tab : Handle to the bad pixels table

! incremental : Should normally be set to True. If False, no bad pixel

! is read (nbad is set to 0) and the bad pixels columns

! (RAWX,RAWY,TYPE,YEXTENT,BADFLAG) are added to the bad_tab table

! xbad : array of RAWX coordinates

! ybad : array of RAWY coordinates

! yext : array of RAWY extensions (YEXTENT)

! tbad : array of bad pixel types (TYPE)

! fbad : array of bad pixel status (BADFLAG: uplinked, CCF or new)

! nbad : number of bad pixels

! Those arrays must be dimensioned (large enough) in the calling program.

type(TableT), intent(in) :: bad_tab

logical, intent(in) :: incremental

integer(kind=int16), dimension(:), intent(out) :: xbad, ybad, yext, &

tbad, fbad

integer, intent(out) :: nbad

2.3.2 writeBadpix

Aim: Write bad pixels array into a table.

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 11

The routine declaration is:

subroutine writeBadpix(bad_tab, xbad, ybad, yext, tbad, fbad, nbad)

! bad_tab : Handle to the output bad pixels table

! The columns should exist already

! xbad : array of RAWX coordinates

! ybad : array of RAWY coordinates

! yext : array of RAWY extensions (YEXTENT)

! tbad : array of bad pixel types (TYPE)

! fbad : array of bad pixel status (BADFLAG: uplinked, CCF or new)

! nbad : number of bad pixels

type(TableT), intent(in) :: bad_tab

integer(kind=int16), dimension(:), intent(in) :: xbad, ybad, yext, &

tbad, fbad

integer, intent(in) :: nbad

2.3.3 mergeBad

Aim: Compute Y extent of bad pixels, remove redundancies. Column segments are built only for identical
type and status. In case of redundancy, the lower status is kept (uplinked ¿ CCF ¿ new) and for
the types the precedence is set as follows: HOT(1) ¿ FLICKERING(2) ¿ PIN HOLE(4) ¿ DEAD(3) ¿
UNSPECIFIED(5) ¿ INTACT(0)

The routine declaration is:

subroutine mergeBad(xbad, ybad, yext, tbad, fbad, nbad)

! xbad : array of RAWX coordinates

! ybad : array of RAWY coordinates

! yext : array of RAWY extensions

! tbad : array of bad pixel types

! fbad : array of bad pixel status (uplinked, CCF or new)

! nbad : number of bad pixels

integer(kind=int16), dimension(:), intent(inout) :: xbad, ybad, yext, &

tbad, fbad

integer, intent(inout) :: nbad

2.3.4 readBadOffsets

Aim: Read bad offset values in SAS coordinates 1-600. Beware: contains under/overscans ¡ 1 and ¿ 600.

The routine declaration is:

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 12

subroutine readBadOffsets(ev_set, offX, offY, ccdnr)

! ev_set : Handle to the data set where the OFFSETS extension is

! offX, offY: additional offset values

! ccdnr : CCD number as CCDNR column (if merged table)

type(DataSetT), intent(in) :: ev_set

integer, dimension(-10:EMOS_MAX_X+20), intent(out) :: offX

integer, dimension(-10:EMOS_MAX_Y+20), intent(out) :: offY

integer, optional, intent(in) :: ccdnr

2.3.5 cumulativeBinomial

Aim: Compute cumulative binomial distribution. cumulativeBinomial(Non,Noff,p) = Sum(Non to Non+Noff)
PB(Non,Noff,p) PB(Non,Noff,p) is the probability to get Non source counts and Noff background counts,
if p is the a priori probability that a count is attributed to the source (on assumption of no source)

The routine declaration is:

real(double) function cumulativeBinomial(Non, Noff, p)

! Input:

! Non : number of observed source counts

! Noff : number of observed background counts

! p : a priori probability that a count is attributed to the source

real(double), intent(in) :: p

integer, intent(in) :: Non, Noff

2.3.6 cumulativePoisson

Aim: Compute cumulative Poisson distribution over some range. cumulativePoisson(k) = Sum(0 to k)
P(k)

The routine declaration is:

subroutine cumulativePoisson(mu, kmin, kmax, cvf)

! mu : average value

! kmin : minimum number of counts

! kmax : maximum number of counts

! cvf(1:kmax-kmin+1) : cumulative Poisson distribution from kmin to kmax

real(double), intent(in) :: mu

integer, intent(in) :: kmin, kmax

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 13

real(double), dimension(:), intent(out) :: cvf

2.3.7 compCumulPoisson

Aim: Compute complementary cumulative Poisson distribution over some range. compCumulPoisson(k)
= Sum(k to infinity) P(k)

The routine declaration is:

subroutine compCumulPoisson(mu, kmin, kmax, cvf)

! Input:

! mu : average value

! kmin : minimum number of counts

! kmax : maximum number of counts

! Output:

! cvf(1:kmax-kmin+1) : complementary cumulative Poisson distribution

! from kmin to kmax

real(double), intent(in) :: mu

integer, intent(in) :: kmin, kmax

real(double), dimension(:), intent(out) :: cvf

2.3.8 quantilePoisson

Aim: Return quantiles for the Poisson distribution. Probability to get quantile or less is always ¿= 1 -
epsilon. Probability to get 1+quantile or more is always ¡ epsilon. Return lower quantile if epsilon ¡ 0
such that probability to get quantile or more is always ¿= 1 - epsilon. Probability to get quantile-1 or
less is always ¡ epsilon.

The routine declaration is:

integer function quantilePoisson(mu, epsilon)

! mu : average value

! epsilon : probability level

real, intent(in) :: mu, epsilon

2.3.9 corrCoeff

Aim: Compute correlation coefficient and main axes from a list of (X,Y) coordinates assuming identical
and independent errors on X and Y.

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 14

The routine declaration is:

real function corrCoeff(x, y, theta, sigma1, sigma2)

! x, y : list of X and Y values

! Returns if present:

! theta : rotation angle (radians, between -pi/4 and pi/4) to main axes

! sigma1 : dispersion along theta (not necessarily major axis)

! sigma2 : dispersion perpendicular to theta

real, intent(in) , dimension(:) :: x, y

real, intent(out), optional :: theta, sigma1, sigma2

2.3.10 localMedian

Aim: Compute median of an array (either integer or real).

The routine declaration is:

function localMedian(toto,nval)

! toto: 1-D input array of integer or real values

! nval: number of values in toto to consider (optional)

integer or real, dimension(:), intent(in) :: toto

integer, optional, intent(in) :: nval

2.4 energy combination

CAL mosPhaBuild call:

Computes a single energy PHA (in ADU) for each event from a weighted sum of the Ei, and the residual
background Bkg(x, y) computed in CCDBKG, assumed not to vary with time (i.e. the time series output
from CCDBKG is not used).
The coefficients α1,α2,α3,α4 are defined by the CAL from a CCF file. They have 1 value for each of the
32 patterns.
E1 is entered as real in order to allow randomisation before calling CAL mosPhaBuild.

Two different formulaes are used depending on whether α4 is positive or negative.

If α4 ≤ 0 (and normally ≥ −1), then the idea is to use a weighted average of E4 and Bkg to estimate
the local background. This is adapted to compact events.

Wght = α1 + α2Nabove + α3(8−Nabove)

Pha = α1E1 + α2E2 + α3E3 −Wght

(

(1 + α4)Bkg −
α4E4

16− Peripix

)

(1)

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 15

If α4 ≥ 0, then the idea is to use E4 as part of the signal, and estimate the local background entirely
from Bkg. This is adapted to events spread out over many pixels.

Wght = α1 + α2Nabove + α3(8−Nabove) + α4(16− Peripix)

Pha = α1E1 + α2E2 + α3E3 + α4E4 −WghtBkg (2)

In both cases Nabove is the number of secondary pixels above threshold (for example 1 for bipixels). E4

is used only where PERIPIX < 7. E3 and E4 are not used if next to a bad line or column.

Depending on the calibration results (not yet known) the αi may depend on the pattern and possibly
also on energy. The idea is then to loop on emenergy for different selections on the events.

The C++ possible call are :

CalReal32Vector &EnergyCombinator::combine(const CalReal32Vector &energye1,

const CalInt16Vector &energye2,

const CalInt8Vector &pattern,

CalReal32Vector &pha, // out

const CalReal32Vector &locbkg,

const CalInt16Vector &energye3,

const CalInt16Vector &energye4,

const CalInt8Vector &peripix,

const CalInt32Vector &flag

)

Input: energye1 : array of real32 with event energy E1 energye2 : array of int16 with event energy E2
energye3 : array of int16 with event energy E3 (optional) energye4 : array of int16 with event energy E4
(optional) pattern : array of int8 with event pattern number peripix : array of int8 with event peripix
number (optional) flag : array of int32 with event flag (optional) locbkg : array of real32 with event local
background (optional) Out: pha : array of computed event PHA

energye3, energye4, peripix and flag : are present or not in the same time, while locbkg is optional
independently. Which leads to 4 possible calls.

CalReal32Vector &EnergyCombinator::combine(const CalReal32Vector &energye1,

const CalInt16Vector &energye2,

const CalInt8Vector &pattern,

CalReal32Vector &pha // out

)

CalReal32Vector &EnergyCombinator::combine(const CalReal32Vector &energye1,

const CalInt16Vector &energye2,

const CalInt8Vector &pattern,

CalReal32Vector &pha, // out

const CalReal32Vector &locbkg

)

CalReal32Vector &EnergyCombinator::combine(const CalReal32Vector &energye1,

const CalInt16Vector &energye2,

const CalInt8Vector &pattern,

CalReal32Vector &pha, // out

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 16

const CalInt16Vector &energye3,

const CalInt16Vector &energye4,

const CalInt8Vector &peripix,

const CalInt32Vector &flag

)

CalReal32Vector &EnergyCombinator::combine(const CalReal32Vector &energye1,

const CalInt16Vector &energye2,

const CalInt8Vector &pattern,

CalReal32Vector &pha, // out

const CalReal32Vector &locbkg,

const CalInt16Vector &energye3,

const CalInt16Vector &energye4,

const CalInt8Vector &peripix,

const CalInt32Vector &flag

)

The F90 possible call will be :

subroutine CAL_mosPhaBuild(energye1, energye2, pattern, pha)

subroutine CAL_mosPhaBuild(energye1, energye2, pattern, pha, &

locbkg)

subroutine CAL_mosPhaBuild(energye1, energye2, pattern, pha, &

energye3, energye4, peripix, flag)

subroutine CAL_mosPhaBuild(energye1, energye2, pattern, pha, &

locbkg, energye3, energye4, peripix, flag)

2.5 emodf directory

This directory contains a very simple ODF with a single scientific exposure with CCDs 2 and 7 in Imaging
mode, CCD 6 in Reduced Imaging mode, and CCD 1 in Timing mode.

2.6 compare columns utility

This sh script allows to compare columns from two files. It ends in error whenever two values don’t
match.

The calling sequence is:

compare_columns reffile[ext] newfile[ext] "column list" "comment"

reffile[ext]: name of the first file with extension number

newfile[ext]: name of the second file with extension number

"column list": names of the columns to be compared (separated by a blank)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 17

"comment": comment used to make the output message specific

2.7 compare realcols utility

This SAS routine allows to compare real columns from two files, with absolute and relative tolerance. It
ends in error whenever two values don’t match.

The calling sequence is:

compare_realcols table=newfile(:table) reftable=reffile(:table)

colnames="column list" (abstol=tol1 reltol=tol2 operation=op)

newfile(:table): name of the first file with table (first by default)

reffile(:table): name of the second file with table (first by default)

"column list" : names of the columns to be compared (separated by a blank)

tol1 : absolute tolerance on difference (1E-4 is default)

tol2 : relative tolerance on difference (1E-4 is default)

op : OR (default) to apply the less stringent of both tests

AND to apply the most stringent of both tests

3 Errors

This section documents warnings and errors generated by this task (if any). Note that warnings and
errors can also be generated in the SAS infrastructure libraries, in which case they would not be docu-
mented here. Refer to the index of all errors and warnings available in the HTML version of the SAS
documentation.

getMode01 (error)
unexpected DATATYPE in input table

getMode02 (error)
No DATATYPE in input table

readBadpix01 (error)
Array size smaller than the number of bad pixels

getCcd10 (warning)
No CCDID in input table
corrective action: return 0

getCcd11 (warning)
No INSTRUME in input table
corrective action: return 0

getCcd12 (warning)
INSTRUME=EMOS and no CCDNODE in input table
corrective action: return 0

getCcd13 (warning)
INSTRUME=EPN and CCDID not 0,1,2 in input table
corrective action: return 0

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 18

getCcd14 (warning)
INSTRUME=EMOS and CCDID not in 1-7 in input table
corrective action: return 0

getCcd15 (warning)
INSTRUME=EPN and no QUADRANT in input table
corrective action: return 0

getCcd16 (warning)
Unrecognized INSTRUME in input table
corrective action: return 0

getCcd17 (warning)
INSTRUME=EPN and QUADRANT not in 0-3 in input table
corrective action: return 0

getCcd18 (warning)
INSTRUME=EMOS and CCDNODE not 0,1 in input table
corrective action: return 0

equalKeywords11 (warning)
One of the keywords is not present in the first input table
corrective action: return False

equalKeywords12 (warning)
One of the keywords is not present in the second input table
corrective action: return False

equalKeywords13 (warning)
One of the keywords is not identical in both tables
corrective action: return False

equalKeywords14 (warning)
One of the keywords has unknown type in the first input table
corrective action: ignore keyword

equalKeywords15 (warning)
One of the keywords does not have the same type in both tables
corrective action: return False

putPrimaryKeywords10 (warning)
One of the keywords is not present in the input table
corrective action: continue

sizeListParam10 (warning)
parameterCount returned a negative value
corrective action: return 0

readListParam10 (warning)
string parameter too long
corrective action: truncate

4 Future developments

References

xmmsas 20230412 1735-21.0.0

