

epchain

April 16, 2023

Abstract

The task **epchain** generates the EPIC-PN event list product making use of the tasks **atthkgen**, **epframes**, **badpixfind**, **badpix**, **ereject**, **epnoise**, **epevents**, **attcalc**, **evlistcomb**, **epfast**, **epexposure**, **epatplot**, **tabtigen**, and **evselect**.

1 Instruments/Modes

Instrument	Mode
EPIC PN	all (IMAGING, TIMING, BURST)

2 Use

pipeline processing	no
interactive analysis	yes

3 Description

3.1 General

The **epchain** task chains and loops over all first-level EPIC PN tasks to produce an event list ready to be exported as a PPS product. The **epchain** script is executed with a number of command line input parameters (arguments to the script). All parameters are optional, the parameter order is arbitrary. Parameters are given in the form “parameter=value”. The implemented list of parameters and the corresponding default values are shown below. Note that in the case of the same parameter appearing twice on the command line the first instance is used (this behavior is different from other SAS tasks where the second instance is used).

Input files corresponding to the specified readout mode, CCD and exposure number are searched for in the given ODF directory. If desired **epchain** can also be directed to select all exposures or all exposures using the selected readout mode for processing. Badpixfind files (created by **badpixfind** and to be used by **badpix**) will be placed in **badpixset**. Output files are created in the current working directory.

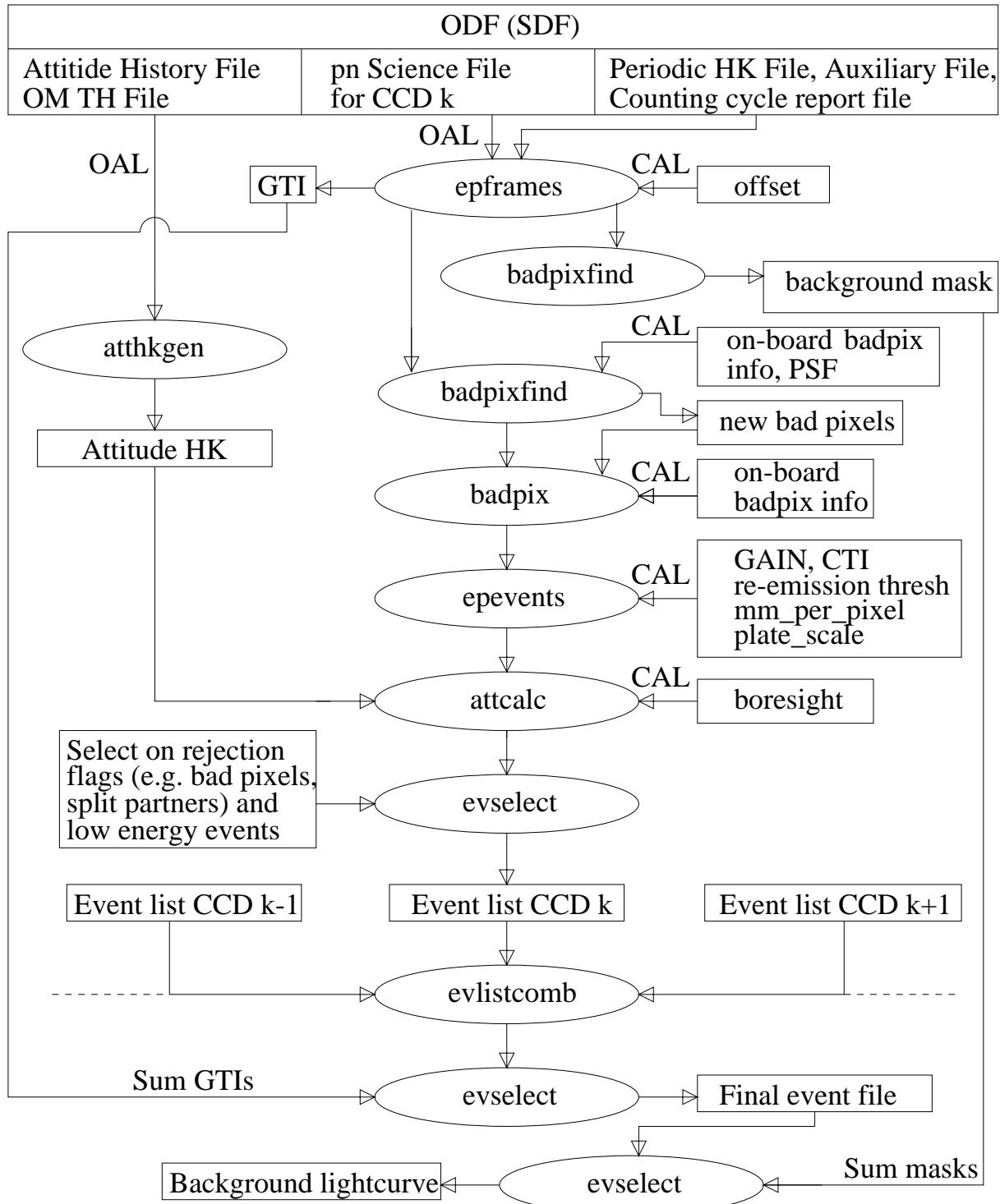
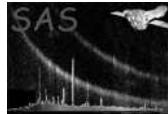
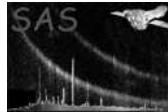




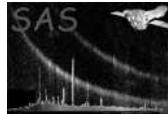
Figure 1: Organization of the EPIC-pn chain (only main tasks shown for clarity)

The PN mini pipeline is sketched out in Fig. 1. At the beginning of the **epchain** script the task **atthkgen** creates an attitude history file, called **atthk.dat**, which will be used by **attcalc**. The main subchain (**epframes**, **badpixfind**, **badpix**, **epevents** and **attcalc**) creates one event list for a single exposure and for a given list of CCDs from all the relevant ODF material and bad pixel lists.

The main subchain loops over all specified CCDs, calling in sequence:

1. **epframes** to process a CCD, exposure and datemode specific ODF file, creating the output events list **rawevents##.dat** and the GTI data set **gti##.dat** (## is the loop index, i.e. the CCD number currently in use)
2. **badpixfind** to find new bad pixel [optional]
3. **badpix** to process the **rawevents** list, adding the **BADPIX** extension
4. **epreject** to optionally correct the energy scale in specific pixels, and to flag soft flare events (turned off by default; see description of task **epreject** for details)
5. **epnoise** to optionally flag low energy detector noise (turned off by default; see description of task **epnoise** for details)
6. **epevents** to process the event list file, flag trailing events, perform pattern recognition, gain and CTI corrections, and compute linearized detector coordinates to create the calibrated events list **events##.dat**
7. **attcalc** to calculate the X and Y sky coordinates
8. **epfast** for RDCTI correction in FAST modes
9. **epexposure** for TIME randomization and EXPOSURE extension screening

Finally, making use of the common PN and MOS task **evlistcomb**, the CCD specific data sets are merged into a single events list. **evselect** selects all those events arriving in good time intervals and writes an output file according to XMM-SOC-ICD-0006-SSC (v2.1) ([1]).


It is highly recommended to also read the documentation of **epframes** and **epevents**.

3.2 Out-of-time events

Depending on the observation mode a certain fraction of the events recorded are due to out-of-time events, i.e. are registered during readout of a CCD and thus will be assigned an incorrect position in **RAWY** and consequently an incorrect CTI correction. Typical values are 6.3% for full frame mode, and 2.3% for extended full frame mode (with frame time parameter 3).

If **withoutoftime=Y** the task **epevents** does not create the “normal” events file but uses the output of **epframes** instead to create an event file where all events are treated as out-of-time events. After the pattern recognition for the same **TIME**, **PHA**, and **RAWX** a new **RAWY** is simulated by randomly shifting the pattern along the **RAWY** axis and performing the gain and CTI correction afterwards.

This out-of-time events file has the same temporal variations and pattern distribution as the “normal” event file. All events have an energy correction corresponding to the (randomly distributed) **RAWY** column. You can apply a selection on both the “normal” and “out-of-time” event file, scale with a mode-dependent factor and subtract the “out-of-time” contribution from the other. You can create “out-of-time”-corrected spectra and images for an arbitrary time and energy range.

Note: When using **epchain** with parameter `withoutoftime=Y` it is highly recommended to follow the order as illustrated in the examples section (see Sect.3.7): first with parameter setting

`withoutoftime=Y keepintermediate=raw`

and then second with

`withoutoftime=N` (is default and can thus be omitted)

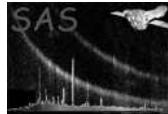
making use of intermediate files.

The current (experimental) implementation does not automatically detect the instrument and bad pixel setting. The `RAWY` range to distribute the out-of-time events is instead derived from the `RAWY` range of the actual events in the data. The mode-dependent conversion factor has thus to be applied manually and is about 95% of the out-of-time event fraction (e.g. 0.060 for full frame mode) due to setting the top 10 rows to “bad”. This will be improved in later versions.

A different approach is done via the setting `withctisrcpos=Y`: all event energy corrections do not use the actual `RAWY` coordinate but the corresponding `RAWY` location of the source (`SRCPoS`) as determined by the task **epframes** (either automatically or via setting `withsrccoords=Y`). So all events are assumed to originate from the source position. Events that really occur at a `RAWY` different from `SRCPoS` get a wrong (usually too high) CTI correction instead. (Note, that this procedure is the correct handling for `TIMING` and `BURST` mode – where it is performed automatically). A spatial selection should be applied in the final event analysis to deal only with detector portions dominated by Out-of-Time events. **epchain** may be used with the setting `ccds=4 withctisrcpos=Y` to process only the CCD 4 where usually the bright source is located that causes the Out-of-Time events.

3.3 Incomplete ODFs

In the early phase of the XMM mission correct ODFs were not available. To be able to analyse EPIC-pn flight data obtained during the commissioning phase a couple of temporary parameters were introduced to mimic the interface to the housekeeping files (PMH, PAH) needed in **epframes** (see the corresponding task description for more details). All these parameters are *not relevant for data from the Guest Observer programme*. To reduce the number of warnings due to missing files and columns use the setting “`odfok=N hkok=N`”.


3.4 Creation of background spectrum and lightcurve; screening of periods of high background

If requested (`runbackground=Y`), the task creates a background lightcurve, as well as a background spectrum for the imaging modes (FF, eFF, LW, SW) using background masks. These are not used for the fast modes as there is no useful background region, in which case the total lightcurve is produced. The usage of background masks can be controlled by parameter `withmask` (default value: yes). The background masks are created by task `badpixfind` using threshold parameters, appropriate for the detection of real X-ray sources. The background lightcurves and corresponding masks are created in the 7.0 - 15.0 keV energy band, while masks created in the 0.2-10.0 keV energy band are used for the creation of the background spectrum.

Depending on the individual observation and on the requested `timebinsize` one can then create a GTI file via **tabgtigen** (e.g.):

```
tabgtigen table=rate_bkg.fits gtiset=bkg_GTI.fits expression='COUNTS<500'
```

or using the count rate column


```
tabgtigen table=rate_bkg.fits gtiset=bkg_GTI.fits expression='RATE<8'
```

where the output rate is in counts $\text{ks}^{-1} \text{arcmin}^{-2}$. Typical low-background rates for PN are of the order 3 - 5 counts $\text{ks}^{-1} \text{arcmin}^{-2}$ in the 7.0 to 15.0 keV energy range.

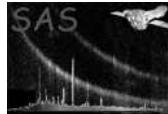
The GTI file can then be used to screen the event list via **evselect** (e.g.):

```
evselect expression='GTI(bkg_GTI.fits,TIME)' ...
```

As the GTIs strongly depend on the intended science this screening is not performed and only background masks, the lightcurve, and a GTI file are created by **epchain**.

3.5 Optical loading

As the final event file does not contain events below 150 eV, the information to assess the presence of optical loading in a straight forward way is not available in the event file anymore. Parameter **optloadingimage** therefore controls the optional creation of an image in the ADU 20–30 range where optical loading is easily visible.


3.6 Missing offset maps in ODF or SDF

Sometimes offset maps are not available within the ODF/SDF – they may be been dumped instead in the observation before or after the one to be processed, with different ObsID. A work-around is implemented for **epreject** via an ASCII list of corresponding offset maps outside the ODF/SDF.

This is controlled via the parameter **withoffsetlist** (default “N”) that takes precedence over parameter **withoffsetmap** if set to “Y”: it opens the file specified in parameter **odilist** and reads the ODI name to be used from there. The input list is an ASCII with 2-digit CCD number followed by a blank and then the path to the offset map for that CCD (there can be more than one offset map in that file so that the input file can be used for the whole observation processing in **epchain**; only the first entry for a particular CCD is used; the order does not matter).

An example input file (you may call it 2462_9246200004_PNS00300ODI.ASC) useful for slew 9246200004 is listed below:

```
01 /xmm/public/data/2462/0723780401/2462_0723780401_PNU401010DI.FIT
02 /xmm/public/data/2462/0723780401/2462_0723780401_PNU401020DI.FIT
03 /xmm/public/data/2462/0723780401/2462_0723780401_PNU401030DI.FIT
04 /xmm/public/data/2462/0723780401/2462_0723780401_PNU401040DI.FIT
05 /xmm/public/data/2462/0723780401/2462_0723780401_PNU401050DI.FIT
06 /xmm/public/data/2462/0723780401/2462_0723780401_PNU401060DI.FIT
07 /xmm/public/data/2462/0723780401/2462_0723780401_PNU401070DI.FIT
08 /xmm/public/data/2462/0723780401/2462_0723780401_PNU401080DI.FIT
09 /xmm/public/data/2462/0723780401/2462_0723780401_PNU401090DI.FIT
10 /xmm/public/data/2462/0723780401/2462_0723780401_PNU401100DI.FIT
11 /xmm/public/data/2462/0723780401/2462_0723780401_PNU401110DI.FIT
12 /xmm/public/data/2462/0723780401/2462_0723780401_PNU401120DI.FIT
```


3.7 Examples

Let us assume we have an observation 0084_0099280101 with three exposures, one TIMING mode exposure PNS008, and two imaging exposures PNS010 (in Small Window Mode) and PNS018 (in Full Frame Mode). Here follow some typical calls to **epchain**:

```
epchain
```

This processes the first IMAGING mode exposure (i.e. PNS010) and is equivalent to one of the calls

```
epchain datemode=IMAGING odfaccess=odf exposure=010 schedule=S
epchain datemode=IMAGING odfaccess=oal exposure=1
epchain datemode=IMAGING exposure=1
epchain odfaccess=name odf=0084\0099280101\_PNS01000AUX.FIT
```

If you are interested in the second IMAGING exposure then you may enter

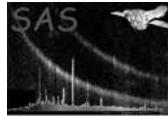
```
epchain exposure=2
```

or (if you like it more verbose) any one of these:

```
epchain datemode=IMAGING odfaccess=odf exposure=018 schedule=S
epchain datemode=IMAGING odfaccess=oal exposure=2
epchain odfaccess=name odf=0084_0099280101_PNS01800AUX.FIT
```

Finally, the TIMING mode exposure (if existent) is processed via any of the calls

```
epchain datemode=TIMING
epchain datemode=TIMING exposure=1
epchain datemode=TIMING odfaccess=oal exposure=1
epchain datemode=TIMING odfaccess=odf exposure=008
epchain datemode=TIMING odfaccess=odf exposure=008 schedule=Y
epchain odfaccess=name odf=0084_0099280101_PNS00800AUX.FIT
```


The commands

```
epchain odfaccess=all
epchain datemode=IMAGING odfaccess=all
```

will process all IMAGING mode exposures in the selected ODF in one call to **epchain**. All TIMING mode or BURST mode exposures (if available) may be selected accordingly. The call

```
epchain datemode=ALL odfaccess=all
```

will process all exposures of an ODF, independent of observing mode. Sometimes one is interested just in particular (e.g. central) CCDs:


```
epchain ccds=1,4,7,10 exposure=2 ...
```

or one does not want to search for bad pixels (e.g. for short exposures) and no background lightcurve:

```
epchain runbadpix=N getnewbadpix=N runbackground=N ...
```

To create the output filenames according to the ODF (i.e. P0099280101PNS010*.FIT) use the parameter switch (this is the default in the meanwhile)

```
epchain usecanonicalnames=Y ...
```

Finally, the next example shows how to create a “normal” events file together with an “out-of-time” events file by re-using intermediate files (the order of the two calls to **epchain** is relevant):

```
epchain runbackground=N keepintermediate=raw withoutoftime=Y
epchain runatthkgen=N runepframes=N runbadpixfind=N runbadpix=N
```

Some special settings that may be useful for particular observations:

If you have a very soft source and you want to have also the very softest photons to be included in the final event list (e.g. lower threshold 100 eV instead of 150 eV) then (be prepared for a very large event file):

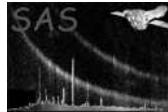
```
epchain screenlowthresh=0 ... # default: 150
```

If you have an offset pointing in TIMING or BURST mode (either intentionally or because the sky position of the source was not accurately known at the time of the scheduling e.g. for an “Target of Opportunity”) then the correct source position can be entered via parameters (see also Sect. 4) to ensure correct timing and CTI corrections:

```
epchain ... withsrccords=Y srcra=83.633208 srcdec=22.0124194
```

If you are interested in diagnostic images and plots and the EPEA rejection setup

```
epchain ... witheventmap=Y withphotonmap=Y withpatplot=Y showpah=Y
```


4 Parameters

This section documents the parameters recognized by this task (if any).

Parameter	Mand	Type	Default	Constraints
-----------	------	------	---------	-------------

General

odf	no	string	\$SAS_ODF	
input ODF directory name				

odfaccess	no	string	oal	oal/odf/name/all
------------------	----	--------	-----	------------------

how **oal** should access the ODF

schedule	no	string	S	S/U
-----------------	----	--------	---	-----

exposure schedule flag, only used if **odfaccess**=odf

datemode	no	string	IMAGING	IMAGING, TIMING, BURST or ALL
-----------------	----	--------	---------	-------------------------------

data modes to be processed

exposure	no	integer	1	
-----------------	----	---------	---	--

exposure number to be processed, see **oal** documentation

ccds	no	string	1-12	1-12
-------------	----	--------	------	------

list of CCDs to be processed, in a form like: 1,6-9,12 or 7,3,11

keepintermediate	no	string	none	all/raw/cal/clean/notmerged/none
-------------------------	----	--------	------	----------------------------------

indicator which type of intermediate files should not be deleted, default is to delete all intermediate files during or at the end of the processing

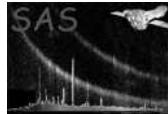
withdefaultcal	no	boolean	Y	Y/N
-----------------------	----	---------	---	-----

whether mode-dependent calibration-related settings should be used automatically, this will use for:

BURST: **withrdpha**=“N”, **withxrlcorrection**=“Y”, **runereject**=“Y”, **runeppfast**=“Y”

TIMING: **withrdpha**=“Y”, **withxrlcorrection**=“Y”, **runereject**=“Y”, **runeppfast**=“N”

IMAGING: **withrdpha**=“N”, **withxrlcorrection**=“N”, **runereject** as user-supplied, **runeppfast**=“N”


usecanonicalnames	no	boolean	Y	Y/N
--------------------------	----	---------	---	-----

auto-create output filenames ?

outset	no	string	events.fits	
---------------	----	--------	-------------	--

name of output events file if **usecanonicalnames**=N

ingtiset	no	string		
-----------------	----	--------	--	--

name of input HK GTI file [not active yet]

optloadingimage	no	boolean	N	Y/N
creation of diagnostic ADU 20-30 sky image to assess optical loading				

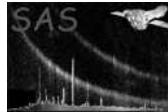
optloadingimageset	no	string	optloading.img	
name of optical loading image				

RadMon

withradmon	no	boolean	N	Y/N
access EPIC Radiation Monitor files (ECX, ESX) ?				

runradmonfix	no	boolean	Y	Y/N
radmonfix: run radmonfix (if withradmon=Y)?				

atthkgen


runatthkgen	no	boolean	Y	Y/N
atthkgen: run atthkgen?				

timestep	no	real	1.0	>0.0 s
atthkgen: Duration (in sec) of 'step' through attitude quality information				

epframes

runepframes	no	boolean	Y	Y/N
epframes: run epframes?				

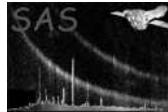
withsrccoords	no	boolean	N	Y/N
whether to use user-supplied values for RA and DEC for TIMING and BURST modes, default is N. See the warning in epframes (Sect. ??)				

srcra	no	angle	0.0	0 .. 360
source right ascension (J2000)				

srcdec	no	angle	0.0	-90 .. +90
source right ascension (J2000)				

withsrcawy	no	boolean	N	Y/N
whether to use user-supplied value for source RAWY position for TIMING and BURST modes, default is N, if both withsrccoords =N and withsrcawy =N then the RA_OBJ and DEC_OBJ from the ProposalInfo are used. See the warning at withsrccoords !				

srcposition	no	integer	190	1-200
epframes : source position for TIMING and BURST mode (in RAWY pixel coordinates)				


withfinetime	no	boolean	Y	Y/N
whether to apply fine time correction for TIMING and BURST modes by using source RAWY position, default is Y				

lowerthreshold	no	integer	20	0-4095
disregard low-energy events (with amplitudes < lowerthreshold [adu]) already at this stage, default lowerthreshold =0 preserves recommended (old) behavior. This may be useful when comparing early mission data with recent observations as the setup was different (lowerthreshold =23 instead of 20 now)				

wrongpixlimit	no	integer	10	0-100
epframes : allowed percentage of 'wrong' events before sending a warning				

mipmethod	no	string	onboard	none,sas,com,onboard
epframes : method to handle MIPs in raw events data (mainly for commissioning phase)				

qualmax	no	integer	0	
epframes : maximum allowed value of the quality flag to keep event in list (mainly for commissioning phase)				

ecntempqb1	no	real	-9999.9	
-------------------	----	------	---------	--

epframes: quadrant box temperature [deg C] E_Cn_TEMPQB1 [F1576 F1676 F1776 F1876], (temporary parameter mainly for calibration, overwritten by existing PAH file values)

f1294	no	integer	0	0-31
--------------	----	---------	---	------

epframes: quadrant wait states [F1294], defines the length of the Extended Full Frame Mode frame time, typical values are 0, 3, or 5 (temporary parameter, overwritten by existing summary file values)

f1118	no	string	Unknown	UNKNOWN Open Closed Thin1 Thin2 Medium Thick CalOpen CalClosed CalThin1 CalThin2 CalMedium CalThick
--------------	----	--------	---------	--

epframes: filter name (temporary parameter, overwritten by existing summary file values)

anchop	no	integer	0	0-255
---------------	----	---------	---	-------

epframes: An_CHOP [F1534 F1634 F1734 F1834] (temporary parameter, overwritten by existing summary file values)

automode	no	boolean	N	Y/N
-----------------	----	---------	---	-----

try to determine mode from the data itself [not implemented yet]

autofilter	no	boolean	N	Y/N
-------------------	----	---------	---	-----

try to determine filter from the data itself [not implemented yet]

odfok	no	boolean	Y	Y/N
--------------	----	---------	---	-----

epframes: assume a correct/complete ODF

hkok	no	boolean	Y	Y/N
-------------	----	---------	---	-----

epframes: assume correct/complete HK files

guessdeltap	no	boolean	N	Y,N
--------------------	----	---------	---	-----

whether to estimate the shift of the PN oscillator frequency due to temperature and ageing effects from HK data, could be used to estimate **SAS_JUMP_TOLERANCE** (divide by 6).

showaux	no	boolean	N	Y/N
----------------	----	---------	---	-----

epframes: increase internally verbosity for AUX-related output

showccx	no	boolean	N	Y/N
----------------	----	---------	---	-----

epframes: increase internally verbosity for CCX-related output

showpmh	no	boolean	N	Y/N
----------------	----	---------	---	-----

epframes: increase internally verbosity for PMH-related output

showpah	no	boolean	N	Y/N
----------------	----	---------	---	-----

epframes: increase internally verbosity for PAH-related output

ancmcorr	no	integer	512	0-4095
-----------------	----	---------	-----	--------

epframes: An_CMCORR F1525 F1625 F1725 F1825

aneamipsel	no	integer	1	0-63
-------------------	----	---------	---	------

epframes: An_EAMIPSEL F1536 F1636 F1736 F1836

anmaxmip	no	integer	63	0-4095
-----------------	----	---------	----	--------

epframes: An_MAXMIP F1527 F1627 F1727 F1827

anmip	no	integer	3512	0-4095
--------------	----	---------	------	--------

epframes: An_MIP F1526 F1626 F1726 F1826

ccfok	no	boolean	Y	Y/N
--------------	----	---------	---	-----

epframes: Is this correct/nominal ODF/SDF ?

witheventmap	no	boolean	N	Y/N
---------------------	----	---------	---	-----

epframes: Create several event CCD maps ?

eventmapset	no	file	./eventmap##.dat	
--------------------	----	------	------------------	--

epframes: Name of output event CCD map file

f1052	no	integer	32400	0-32767
epframes: DTIMAUTRSTPREVAL coarse time reset [s]				

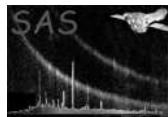
mipdist	no	boolean	N	Y/N
epframes: Create MIPDIST columns and MIPHIST extension in output ?				

mipthreshold	no	integer	3000	0-4095
epframes: maximum PHA for non-MIP events [adu]				

photonmapset	no	file	./photonmap##.dat	
epframes: Name of output photon CCD map file				

setupbpx	no	string	nom6	cal4/nom0/nom1/ nom2/nom3/nom4/ nom5/nom6/none
setup for badpix/offset correction vector (used only if ccfok=N)				

showve	no	boolean	N	Y/N
epframes: Display valid event intervals ? (not in use yet)				


badpixfind

runbadpixfind	no	boolean	Y	Y/N
badpixfind: run badpixfind?				

badpixset	no	string	./bpXF_.##.fits	
badpixfind, badpix: path of bad pixel set, the substring ## will internally be replaced with the CCD number currently in use (two digits)				

badpix

runbadpix	no	boolean	Y	Y/N
badpix: run badpix?				

getuplnkbadpix	no	boolean	Y	Y/N
badpix : get uplinked bad pixels (from CCF)?				

getotherbadpix	no	boolean	Y	Y/N
badpix : get non-uplinked bad pixels (from CCF)?				

getnewbadpix	no	boolean	Y	Y/N
badpix : get new pixels from task badpixfind ? Not applicable (active) for TIMING and BURST mode				

emptyextension	no	boolean	N	Y/N
badpix : create an empty BADPIX extension?				

windowfilter	no	boolean	N	Y/N
badpix : just get pixels within input file X/Y window?				

epreject

runepreject	no	boolean	N	Y/N
epreject : run epreject?				

badcolumnset	no	string	badcolumn.tab	
optional bad column list (ascii)				

sigma	no	real	4.0	
sigma threshold for offset correction				

noiseparameters	no	13 × real	0.98 12 × 1.0	
noise fraction parameters (cutoff parameter and 12 chip specific correction factors; only for expert use)				

withoffsetlist	no	boolean	no	
enables use of list of offset maps to calculate energy shifts				

odilist	no	dataset	odilist.asc	
----------------	----	---------	-------------	--

Name of optional ASCII file containing pairs of <ccd nr.> <offset map file> (one per line). See Sect.3.6.

withxrlcorrection	no	boolean	N	Y/N
--------------------------	----	---------	---	-----

execute X-ray loading correction code (for TI+BU modes) ?

withsoftflarescreening	no	boolean	N	Y/N
-------------------------------	----	---------	---	-----

execute soft flare screening code (for TI mode) ?

softflarethreshold1	no	real	10.0	
----------------------------	----	------	------	--

threshold 1 for flare screening (unit: counts/0.1 s)

softflarethreshold2	no	real	1.0	
----------------------------	----	------	-----	--

threshold 2 for flare screening

softflaresmooth	no	string	BOX	BOX GAUSS FLARE
------------------------	----	--------	-----	-----------------

smoothing method for flare screening

softflareenergyrange	no	2 × integer	40 50	
-----------------------------	----	-------------	-------	--

energy range for flare screening (ADU)

softflaresmoothparams	no	real	2.0 1.0 1.0	
------------------------------	----	------	-------------	--

smoothing parameters

epnoise

runepnoise	no	boolean	N	Y/N
-------------------	----	---------	---	-----

epnoise: run epnoise?

identifynoisyframes	no	boolean	Y	Y/N
----------------------------	----	---------	---	-----

Identify Noisy Frames

sigmacut	no	real	3.0	
sigma cut for bright sources				

applyfilter	no	boolean	Y	Y/N
Keep output of filtering process?				

savemasks	no	boolean	N	Y/N
Save CCDs mask to a file				

epxrlcorr

runepxrlcorr	no	boolean	N	Y/N
epxrlcorr: run epxrlcorr?				

This task (for IMAGING modes) requires an offsetmap to be present in the ODF, which was generally not the case in the first years (it would stop then).

withxrlimage	no	boolean	N	Y/N
epxrlcorr: create a diagnostic X-ray loading image?				

epevents

runepevents	no	boolean	Y	Y/N
epevents: run epevents?				

withphotonmap	no	boolean	N	Y/N
epevents: whether to create diagnostic photon map file with 4 image extensions				

reemissionthresh	no	integer	0	
epevents: selection parameter: trigger threshold (in adu) for preceding events				

randomizeposition	no	boolean	Y	Y/N
--------------------------	----	---------	---	-----

epevents: yes, if the computation of physical camera detector coordinates is done with randomization

randomizeenergy	no	boolean	Y	Y/N
------------------------	----	---------	---	-----

epevents: yes, if the raw amplitudes should be randomized within a pulseheight bin

gainctiaccuracy	no	integer	2	0-2
------------------------	----	---------	---	-----

epevents: Accuracy of gain/cti correction

patternanalysis	no	boolean	Y	Y/N
------------------------	----	---------	---	-----

epevents: no, if pattern recognition has been done already (future development)

withoutoftime	no	boolean	N	Y/N
----------------------	----	---------	---	-----

epevents: yes, if “out-of-time events” file should be created instead of “normal events” file (only meaningful for IMAGING modes) (considered as *experimental*)

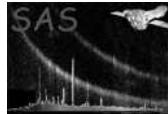
withctisrcpos	no	boolean	N	Y/N
----------------------	----	---------	---	-----

epevents: yes, if not the RAWY coordinates but the source position SRCPOS should be used in the energy correction routines (only meaningful for IMAGING modes) (considered as *experimental*). See Sect.3.2.

withbackgroundgain	no	boolean	Y	Y/N
---------------------------	----	---------	---	-----

epevents: yes, if background gain corrections should be applied

backgroundtres	no	boolean	Y	Y/N
-----------------------	----	---------	---	-----


yes, if time resolved (rather than averaged discarded line value) shall be used for background gain corrections

backgroundtbin	no	real	100.0	0-150000
-----------------------	----	------	-------	----------

time bin for averaging time-resolved background level data

withpatternoffset	no	boolean	Y	Y/N
--------------------------	----	---------	---	-----

epevents: yes, if pattern energy offset corrections should be applied

withctilongterm	no	boolean	Y	Y/N
------------------------	----	---------	---	-----

epevents: yes, if long-term CTI increase corrections should be applied

ctilongtermsoft	no	boolean	Y	Y/N
------------------------	----	---------	---	-----

epevents: yes, if special soft energy function should be included in the long-term CTI increase corrections (considered as *experimental*)

ctilongtermy	no	boolean	Y	Y/N
---------------------	----	---------	---	-----

epevents: yes, if special Y dependence should be included in the long-term CTI increase corrections

withccdoftsets	no	boolean	N	Y/N
-----------------------	----	---------	---	-----

epevents: yes, if CCD offset corrections should be applied (considered as *experimental*)

withtempcorrection	no	boolean	Y	Y/N
---------------------------	----	---------	---	-----

epevents: yes, if temperature-gain corrections should be applied

withgainburst	no	boolean	Y	Y/N
----------------------	----	---------	---	-----

epevents: apply special gain if BURST mode ?

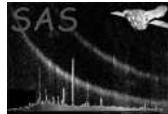
withgaintiming	no	boolean	Y	Y/N
-----------------------	----	---------	---	-----

epevents: apply special gain if TIMING mode ?

withgainff	no	boolean	N	Y/N
-------------------	----	---------	---	-----

epevents: apply special gain if FULL FRAME mode ?

withgaineff	no	boolean	Y	Y/N
--------------------	----	---------	---	-----


epevents: apply special gain if EXTENDED FULL FRAME mode ?

withphagaincolumn	no	boolean	N	Y/N
--------------------------	----	---------	---	-----

epevents: Whether to create intermediate column PHA_GAIN. If set to "Y" then `propagatemodels` is reset to "all".

lowgainenergyscale	no	boolean	N	Y/N
---------------------------	----	---------	---	-----

epevents: When switching on the energy correction for low-gain mode data then most of the events

will fall outside the 2-byte-limit for the PI column (i.e. > 32757 eV) as the energy range is then about $2 - 280$ keV; if one is interested in this full range the setting “N” should be used and energy values be multiplied later with 18.4 to obtain “real” event energies. Only effective for the few low-gain mode exposures, of course.

checksasmip	no	boolean	N	Y/N
--------------------	----	---------	---	-----

yes, if the MIP rejection information obtained by task **epframes** shall be printed (only meaningful if on-board rejection is switched off, i.e. for SW, TI, BU modes).

withrdpha	no	boolean	Y	Y/N
------------------	----	---------	---	-----

yes, if a correction for rate-dependent PHA effects for TI and BU modes should be applied. The logical keyword **PHA_RDCO** indicates whether this correction has been applied or not. If applied, then the keyword **PHA_RDCB** gives the scaling factor **B** used in the correction, derived from block **RDPHA_DERIV** in the **CTI.CCF**.

rdphatimebinsize	no	boolean	100	
-------------------------	----	---------	-----	--

time-bin size for rate-dependent PHA correction for TI and BU modes [s]

withframecti	no	boolean	N	Y/N
---------------------	----	---------	---	-----

yes, if TIME-derived frame numbers should be used in CTI correction for non-imaging modes (TI, BU) instead of the ODF frame numbers. For FF, eFF, LW, SW modes internally always the TIME-derived frame numbers instead of the dummy ODF numbers are used (should not be changed).

testenergywidth	no	boolean	Y	Y/N
------------------------	----	---------	---	-----

yes, if use non-standard energy bin width (i.e., 1 eV instead of previously used 5 eV binning in output PI column

attcalc

runattcalc	no	boolean	Y	Y/N
-------------------	----	---------	---	-----

attcalc: run attcalc?

attitudelabel	no	string	ahf	ahf/fixed/om
----------------------	----	--------	-----	--------------

attcalc: source of attitude data

refpointlabel	no	string	nom	nom/obj/pnt/user
----------------------	----	--------	-----	------------------

attcalc: source of celestial coordinates of central reference point

fixeddra	no	real		
attcalc: S/C's attitude (RA) in the equatorial, earth-centred reference frame (if attitudelabel =fixed)				

fixeddec	no	real		
attcalc: S/C's attitude (DEC) in the equatorial, earth-centred reference frame (if attitudelabel =fixed)				

fixedposangle	no	real		
attcalc: S/C's attitude (PA) in the equatorial, earth-centred reference frame (if attitudelabel =fixed)				

nominalra	no	real		
attcalc: celestial coordinate RA of central reference point (if refpointlabel =user)				

nominaldec	no	real		
attcalc: celestial coordinate DEC of central reference point (if refpointlabel =user)				

imagesize	no	real	0.36	
attcalc: half-size of final image (in degrees)				

time and exposure

runepeposure	no	boolean	Y	Y/N
epexposure: Run epexposure ?				

screenexposure	no	boolean	Y	Y/N
epexposure: remove all columns in EXPOSUnn extensions that are beyond the ICD				

spatialexposure	no	boolean	Y	Y/N
epexposure: yes, if spatial exposure inhomogeneities (CCD columns) should be determined and to be taken into account by subsequent SAS tasks (not yet implemented)				

randomizetime	no	boolean	Y	Y/N
----------------------	----	---------	---	-----

epexposure: yes, if the event arrival times should be randomized within a readout frame

event screening

screen	no	boolean	Y	Y/N
---------------	----	---------	---	-----

reject all events with rejection flags and below low-energy threshold

runscreen	no	boolean	Y	Y/N
------------------	----	---------	---	-----

perform the screening (otherwise use existing files)

screenlowthresh	no	real	150	
------------------------	----	------	-----	--

reject all events with lower (recombined) energies [eV]

screenrejected	no	boolean	N	Y/N
-----------------------	----	---------	---	-----

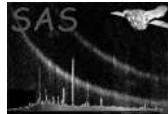
reject all events with rejection flags (apply #XMMEA_EP in screening)

evlistcomb

runevlistcomb	no	boolean	Y	Y/N
----------------------	----	---------	---	-----

evlistcomb: run evlistcomb?

memorymodel	no	string	high	low/high/low/high
--------------------	----	--------	------	-------------------


memory model for task **evlistcomb**, all other tasks are controlled via SAS_MEMORY_MODEL [current SAS default: high]

withmedianpnt	no	boolean	Y	Y/N
----------------------	----	---------	---	-----

evlistcomb: Get median values from **atthkgen** file (otherwise mean)?

othertables	no	list of upper- case strings	BADPIX EXPO- SURE	none
--------------------	----	--------------------------------------	-------------------------	------

evlistcomb: names of secondary tables or arrays to propagate

epnimimgcolnames	no	list of upper-case strings	TIME RAWX RAWY DETX DETY X Y PHA PI FLAG PATTERN PAT_ID PAT_SEQ	none
-------------------------	----	----------------------------	---	------

evlistcomb: columns to propagate in main table (IMAGING mode)

epnimimgcoltypes	no	list of strings	double int16 int16 int16 int16 int32 int32 int16 int16 int32 int8 int16 int8	int8/int16/int32/single/double/boolean/string
-------------------------	----	-----------------	--	---

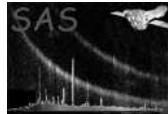
evlistcomb: output type of IMAGING mode columns

epntimcolnames	no	list of upper-case strings	TIME RAWX RAWY DETX DETY X Y PHA PI FLAG PATTERN PAT_ID PAT_SEQ	none
-----------------------	----	----------------------------	---	------

evlistcomb: columns to propagate in main table (TIMING mode)

epntimcoltypes	no	list of strings	double int16 int16 int16 int16 int32 int32 int16 int16 int32 int8 int16 int8	int8/int16/int32/single/double/boolean/string
-----------------------	----	-----------------	--	---

evlistcomb: output type of TIMING mode columns


propagatecolumns	no	string	auto	auto/imaging/subset/icd/all
-------------------------	----	--------	------	-----------------------------

how many columns should be propagated to the final event file for TIMING and BURST modes: “auto” means values via **epntimcoltypes** and **epntimcolnames**, “imaging” uses the values as for **epnimimgcolnames** and **epnimimgcoltypes**, “subset” similar to “imaging” but without X, Y, and PAT_SEQ, whereas “icd” uses only the columns that are explicitly mentioned in the Data Products ICD, and “all” uses all output columns of **epevents** for IMAGING and TIMING modes

final GTI screening

runevselect	no	boolean	Y	Y/N
--------------------	----	---------	---	-----

evselect: run evselect?

RDCTI correction

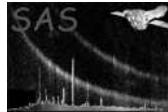
runepfast	no	boolean	N	Y/N
run epfast for rate-dependent CTI (RDCTI) corrections in TI+BU modes? Ignored if withrdpha =“Y” or if IMAGING mode.				

pattern distribution

withpatplot	no	boolean	N	Y/N
run epatplot to create pattern plot and FLAG=0 masks				

modifyinset	no	boolean	Y	Y/N
if N: skip writing of header keywords to increase speed				

background lightcurve


runbackground	no	boolean	Y	Y/N
create background lightcurve?				

withmask	no	boolean	Y	Y/N
use masks for lightcurve?				

maskset	no	string	./mask_##.fits	
path of point source mask set, the substring ## will internally be replaced with the CCD number currently in use (two digits). Energy range: 0.2-10.0 keV. Not applicable (active) for SMALL_WINDOW, TIMING, and BURST mode				

withhardmask	no	boolean	Y	Y/N
use hard energy band for maskset instead of soft ?				

hrdmskset	no	string	./hrdmask_##.fits	
same as above but for energy range 7.0-15.0 keV				

rateset	no	string	rate_bkg.fits
name of background lightcurve file			

specset	no	string	spec_bkg.fits
name of background spectrum file			

timebinsize	no	real	0.0
time bin for background lightcurve [s], if set to 0 then the task chooses default values according to the instrument mode and energy range: withhardmask=Y 100 [s] for FF eFF modes, 200 for LW, 350 for SW, and 100 for TI BU modes, withhardmask=N 10 [s] for FF eFF modes, 20 for LW, 350 for SW, and 10 [s] for TI BU modes			

5 Errors

This section documents warnings and errors generated by this task (if any). Note that warnings and errors can also be generated in the SAS infrastructure libraries, in which case they would not be documented here. Refer to the index of all errors and warnings available in the HTML version of the SAS documentation.

odf (*error*)

SAS_ODF environment variable does not exist and no data directory given

indir (*error*)

given data directory could not be found

odffiles (*error*)

no valid file found for given specifications (data mode, exposure, etc.)

badpixset (*error*)

parameter does not contain CCD number place-marker ##

refpoint (*error*)

no values given for RA, DEC in the case of **refpointlabel=user**

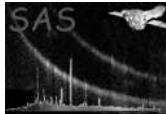
attitude (*error*)

no values given for RA, DEC, PA in the case of **attitudelabel=fixed**

ccdlist (*error*)

list of CCDs cannot be expanded, e.g. “2-4-6” or “3,-5”

ccd (*error*)


CCD number out of range [1-12]

exposure (*error*)

exposure not found in ODF directory

constituent (*error*)

one (or more) of the constituent calls ended in error

SAS_CCF (*warning*)

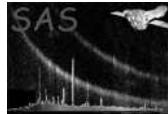
ccf.cif or environment variable SAS_CCF not found

corrective action: continue, check SAS_CCF environment variable**notInODF** (*warning*)

requested CCD file seems to be non-existent in ODF, skip processing for this CCD

corrective action: continue, check ODF or give other CCD list parameter when reprocessing

6 Input Files


1. **badpixset** with ## replaced by CCD number: bad pixel files (one per CCD, extension **BADPIX**) (if **getnewbadpix** set to “true” and **runbadpixfind** to “false”)
2. event list files (one per CCD and exposure), straight from the ODF (**PNIME1** or **PNTIE1** or **PNBUE1**, depending on **datemode**)
3. corresponding auxiliary (**PNAUX1**, **PNAUX2**), counting cycle report (**PNCCX1**), housekeeping (**PNPMH1**, **PNPAH1**), and attitude history (**SCATS1**) files, straight from the ODF. Time correlation (**SCTCS1**) file and summary file are accessed by OAL.

7 Output Files

In the case of **usenanonicalnames**=N the output files have fixed names or can be given via parameter settings. If **usenanonicalnames**=Y then the task creates the file names automatically according to the ODF, where **oooooooooooo** denotes the 10-digit observation identifier and **PNxnnn** is the exposure identifier with **x** being the schedule flag (S or U) and **nnn** the 3-digit exposure number.

1. merged and calibrated event list file (one per exposure, **EVENTS**), as defined in the Data Products ICD ([1])¹ with CCD specific bad pixel (**BADPIXnn**), exposure (**EXPOSUnn**), GTI extensions (**STDGTInn**), as well as **OFFSETS** with all columns with a non-zero offset and **CALINDEX** with all relevant CCF entries (**EPN**, **XRT3**, **XMM**).
If **usenanonicalnames**=Y: depending on the setting of **withoutoftime** and **withctisrcpos**:
NN: **PooooooooooooPNxnnnPIEVL10000.FIT** (imaging modes, i.e. FF, eFF, LW, SW) or **PooooooooooooP-NxnnnTIEVL10000.FIT** (fast modes, i.e. TI, BU)
YN: **PooooooooooooPNxnnnOOEVL10000.FIT**
NY: **PooooooooooooPNxnnnPSEVL10000.FIT**
YY: **PooooooooooooPNxnnnOSEVL10000.FIT** (note that this setting is possible but not very meaningful ;-)
2. **atthk.dat**: output file from **atthkgen** containing the entire attitude information (**ATTHK**).
If **usenanonicalnames**=Y: **PooooooooooooOBX000ATTTSR0000.FIT**
3. **gti##.dat** (with ## replaced by CCD number): CCD specific GTI files (**STDGTInn**)
4. **mask##.fits**: CCD specific (source-free) background masks with ## replaced by CCD number (created by **badpixfind** if **runbackground** set to “true”).
If **usenanonicalnames**=Y: **PooooooooooooPNxnnnBPFMSK00##.FIT**

¹For TIMING and BURST modes the columns **RAWY** and **PAT_ID** are produced beyond the current version of the ICD.

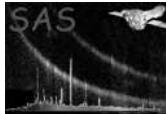
5. bpxf_#.fits: CCD specific bad pixel list with ## replaced by CCD number (created by **badpixfind** if **runbadpixfind** set to “true”).
If **usenanonicalnames**=Y: PoooooooooPNxnnnBPXFLI00##.FIT
6. eventmap##.dat (with ## replaced by CCD number): CCD event intensity maps (if **witheventmap**=Y), for details see **epframes**
7. photonmap##.dat (with ## replaced by CCD number): CCD photon intensity maps (if **withphotonmap**=Y), for details see **epevents**
8. flag0_map##.dat (with ## replaced by CCD number): CCD maps with regions FLAG=0 set to 1 (if **withpatplot**=Y), for details see **epatplot**.
If **usenanonicalnames**=Y: PoooooooooPNxnnnFLGMSK00##.FIT
9. value of parameter **rateset**: background lightcurve using source masks with columns **COUNTS** and **RATE** where the latter is scaled by **timebinsize** and the sum of all non-masked pixels, in units of cts/ks/arcmin². There is also a GTI file created with name **bkg_GTI.fits**.
If **usenanonicalnames**=Y: PoooooooooPNxnnnBKTSR0000.FIT for the lightcurve and PoooooooooPNxnnnBKGTI0000.FIT for the GTI file.

8 Intermediate Files

1. rawevents##.dat: re-formatted EPIC pn ODF event lists, created by **epframes**, with ## replaced by CCD number
2. events##.dat.dat: calibrated event lists produced by **epevents**, with ## replaced by CCD number
3. cleanevents##.dat.dat: calibrated event lists produced by **evselect**, with ## replaced by CCD number if **runscreen**=Y

9 Algorithm

```
#!/usr/bin/env perl
use strict;
use warnings;


$parameters = default_values
$parameters = command_line_values

atthkgen atthkset=$atthkset timestep=$timestep

for $ccd (@ccdlist) {

    epframes set='$set' eventset=$outfile0 \
              gtiset=$outgti wrongpixlimit=$wrongpixlimit \
              srcposition=$srcposition mipthreshold=$mipthreshold \
              mipmethod=$mipmethod qualmax=$qualmax \
              witheventmap=$witheventmap

    if ($runbadpixfind == "y") {
        badpixfind eventset=$outfile0 badpixset=$bad
```



```
}

badpix eventset=$outfile0 badpixset=$bad      \
getuplnkbadpix=$getuplnkbadpix \
getotherbadpix=$getotherbadpix \
getnewbadpix=$getnewbadpix \
emptyextension=$emptyextension \
windowfilter=$windowfilter

epevents eventset=$outfile1 outset=$outfile2      \
reemissionthresh=$reemissionthresh \
randomizeenergy=$randomizeenergy \
randomizeposition=$randomizeposition \
gainctiaccuracy=$gainctiaccuracy \
withphotonmap=$withphotonmap

attcalc eventset=$outfile2 attitudelabel=$attsou \
refpointlabel=$refpoint atthkset=$atthkset \
withmedianpnt=$withmedianpnt imagesize=$imagesize \
[ fixedra=$attra fixeddec=$attdec fixedposangle=$attPA ] \
[ nominalra=$nominalra nominaldec=$nominaldec ]
}

SAS_MEMORY_MODEL = $memorymodel

evlistcomb eventsets=\"$evlist\" instrument=epn imagingset=$imagingset \
timingset=$timingset othertables=$othertables

evselect table=[${imagingset} ${timingset}] expression=\"$evseleexpr\" \
withfilteredset=Y keepfilteroutput=Y filteredset=$outfil \
writedss=Y updateexposure=N destruct=Y

SAS_MEMORY_MODEL = original_value
```

10 Comments

- Parameter `odf` takes precedence over `SAS_ODF`.
- `SAS_VERBOSITY` should be set to 4 or 5 for normal processing.
- `SAS_MEMORY_MODEL` should be set to ‘high’ for normal processing.
- The current implementation is a Perl script. It is not yet fully embedded in SAS and thus does not support all SAS task options.
`epchain --v` (or `-v`) lists the version number of all chain tasks.
`epchain --p` (or `-p`) gives a list of all available parameters with its default values.

11 Future developments

The chain will adapt to the evolution of its constituents and to the organisation of the pipeline.

References

[1] SSC. XMM Survey Science Centre to Science Operations ICD for SSC Products. Technical Report XMM-SOC-ICD-0006-SSC Issue 2.1, SSC, Mar 2000.