XMM-Newton Science Analysis System Page: 1

The XMM Selector library

April 16, 2023

Abstract

selectlib provides functionality to perform table and array processing with boolean and arithmetic
expressions

1 Introduction

The selector library selectlib provides functionality to perform table and array processing driven by
boolean and arithmetic expressions. The notion of table and array is that of the Data Model defined
in the SAS Data Access Layer package dal. Other dal terms such as table column, data set, block, and
attribute are likewise used throughout the following sections. Readers not familiar with these notions are
therefore advised to consult the dal documentation prior to reading any further.

2 Description

Table and array processing in selectlib is controlled via user-specified boolean and arithmetic expres-
sions. These take the form of single character strings which are composed of a variety of elements
including numerical and logical constants, operators, functions, and attributes. The following operations
are supported by selectlib:

operation required comment
expression
table filtering logic can contain names of other columns (see Sect. 2.15.1)
construction of new table column | arithmetic | can contain names of other columns (see Sect. 2.15.2)
construction of new array arithmetic | can contain symbolic references to other arrays (see
Sect. 2.15.3)

The following sections detail the syntax and semantics of the expressions driving the above operations
and give sample expressions to demonstrate typical usage scenarios.

2.1 Boolean operators and functions

Table filtering requires the specification of a single boolean expression which must evaluate to either true
or false for all rows of the table. Rows are selected if the expression evaluates to true, otherwise they are

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 2

not selected. The notion of a valid boolean expression is identical to the one in the programming languages
C/C++ and Fortran: An expression is comprised of a sequence of sub-expressions combined with the
logical operators && (and) and || (or). Sub-expressions are constructed from table column names (the
equivalent of variable names in C/C++ /Fortran), boolean operators, and symbolic or numeric constants
or other arithmetic expressions. The following table lists the available operators which can be used in
their C/C++ or Fortran form:

description C/C++ form | Fortran form
equal == .eq.
not equal I= .ne.
less than < J1t.
less than or equal <= .le.
greater than > .gt.
greater than or equal | >= .ge.

or [.or.
and && .and.
logical negation ! .not.
inclusion test in (see Sect. 2.13)

Operator precedences are as in C/C++ and parentheses may be used as necessary to group sub-expressions.
Case is insignificant, i.e., .and., .AND., and .aNd. are all valid specifications for the logical and-operator.
The C/C++ forms and Fortran forms can be mixed within a single expression.

In addition to the above operators, a limited set of boolean functions is available as well. These take
a number of arguments and return either true or false. The following table lists the available boolean
functions:

function name meaning comment
ifthenelse(exprl, expr2, expr3) if exprl is true value of con- | all three arguments must
struct is value of expr2, other- | be boolean expressions
wise value of expr3

near(vall,val2,tol) true if % <=tol

point(...), line(...), ... point-in-figure test see Sect. 2.10

gti(...), mask(...), region(...) | value-in-GTI/point in region | see Sect. 2.12
tests

selected() or selected selection status test see Sect. 2.14

2.2 Arithmetic constants and identifiers

Boolean and arithmetic expressions may contain integer and floating point constants which can be
specified as in C/C++ or Fortran, e.g. 1.234E-12, -23, .111222, 1e2. The value of an integer con-
stant can be given in binary, octal, or hexadecimal by prepending b, o, and h or 0x respectively, i.e.,
32482 = b111111011100010 = 077342 = 0xT7ee2 = h7ee2. Some frequently used constants are available
as symbolic names:

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 3
name type value comment
#PI real T = 3.1415926535 . . .
#E real e =2.718281828... Euler number
#RAD real w/180 = 0.017453. .. for deg — rad conversion
#DEG real 180/m = 57.29577 . .. for rad — deg conversion
#ARCSEC | real 7/180/3600 = 4.8481...76 | 1 arcsec expressed in rad
#ARCMIN | real 7/180/60 = 2.9088 ...~ * 1 arcmin expressed in rad
TRUE boolean | true
FALSE boolean | false

2.2.1 Angles

Angles can be regarded as ordinary real numbers in units of radians. In addition angles may be expressed
in terms of hours, minutes, and second of arc or time (e.g. for Right Ascension, Declination):

example
-45d23m59.9s
23h59m24.1s

evaluates to
angle in radians
angle in radians

comment
degrees + minutes and seconds of arc
hours + minutes and seconds of time

format
(+|-)xxdxxmxx [.xxx]s
xxhxxmxx [.xxx]s

x stands for a single decimal digit, d, h, m, s are literal characters and square brackets denote optional
items. The number of shown digits after the decimal point is not significant.

2.2.2 Times
Times can be expressed in either of the following ways:
comment

form example

XXXX-XX-XXTxx:xx:xx [. xxx]
JAXXXXXX . XXX
mjdxXXXXX.XXX

YXXXX . XXX

combined date-time string
Julian date

Modified Julian Day
decimal year number

2002-06-03T18:59:01.1
3d2450850.5
mjd50850.5

v2002.5

XXX XXX X XX:XX:XX XXXX calendar date Mon Jun 3 18:21:19 2002

x stands for a single decimal digit, jd, mjd, y, T are literal character strings and square brackets denote
optional items. The number of shown digits after the decimal point is not significant. In an arithmetic
context all given times evaluate to the number of elapsed seconds since the fixed time 1998-01-01T00:00:00
TT.

2.2.3 Identifiers

Identifiers are alphanumeric strings which can contain letters, digits and the underscore character (_).
They must start with a letter — case is significant. An identifier must match a name of an existing
column in the input table unless it is prefixed by a hash mark (#). In this case it must match any of
the above names for symbolic constants or is otherwise interpreted as a reference to a to numerical or
textual attribute in the currently processed table. The identifier #ROW has a special meaning: It stands
for the current row number (starting from one) in the processed table.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 4

Examples: #PI (the numerical value of 7), #ROW (the current row number), ROWPI (a table column with
name ROWPI), #ROWPI (value of the numerical attribute ROWPI).

2.3 Arithmetic operators and functions

Boolean and arithmetic expression can contain arithmetic sub-expressions consisting of operators, func-
tions and constants. The following operators and functions are available:

description symbol/name

arithmetic negation -

addition/subtraction +/-

multiplication/division x//

modulus %

exponentiation **x pow(x, y)

absolute value abs(x)

sine/cosine /tangent sin(x) /cos(x) /tan(x)
arc sine/arc cosine arcsin(x)/arccos(x)

arc tan arctan(x) /arctan2(x, y) = arctan(x/y)
hyperbolic sine/cosine/tangent sinh(x)/cosh(x) /tanh(x)
exponential exp (x)

natural log log(x)

common log log10(x)

square root sqrt (x)

integral part int (x)

fractional part modf (x)

smallest integral value not less than x ceil(x)

largest integral value not greater than x | floor (x)

floating point remainder of z/y fmod(x, y)

The argument of the trigonometric functions and the result of their respective inverses are angles in
units of radians. For required conversions between radians and decimal degrees please avail the symbolic
constants #RAD and #DEG (see Sect. 2.2). Example: sin(ANGLE*#RAD), #DEG*arcsin(VAL).

2.4 Vector operators and functions

A limited set of operators and functions to perform vector algebra in three-dimensional Eucledian space
is available. The following table provides an overview over the available constructs:

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page: 5

description symbol /name type comment

vector construction vector(x, y, z) vector | x/y/z can be arithmetic expressions

unit vector construction unitvector(x, y, z) | vector | norm(unitvector(x, y, z))==

construction sky vector in | skyvector(ra, dec) vector | ra/dec Right Ascension/Declination in

J2000 reference frame rad

unary minus -V vector | v vector

vector addition vi4v2 vector | v1/v2 vectors

vector subtraction vl—v2 vector | v1/v2 vectors

multiplication with scalar | sxv vector | v vector, s arithmetic expression

division by scalar v/s vector | v vector, s arithmetic expression # 0

cross product cross(vl, v2) vector | v1/v2 vectors

vector component v[i] scalar | 0 <=1 <=2

vector norm norm(v) scalar | equivalent to
sqrt (v [0]*x*2+v [1] **2+v [2] x*2)

scalar product vixv2 scalar | equivalent to

v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2]

Example expressions involving vector algebra:

e norm(vector(3,4,5)*unitvector(-2,3,4))-1

5xvector(1,2,3) [0]

norm(vector(1,2,3)-4*xvector(8,9,10))

cross (skyvector(0,0), skyvector(#PI/2, 0))

2.5 Character string constants, operators and functions

Boolean subexpressions may also be formed from character string constants, identifiers that refer to text
columns, and a limited set of associated operators and functions. As in C/C++ a string constant is a
list of characters enclosed in double quotes ("). A double quote as part of the string must be preceded
by a backslash. In addition, string constants may also be given as single-quoted text in which case they
may contain un-escaped double quotes but no other single quote. Examples of valid string constants are:
"XMM", """ "The double quote:\"", ’A single-quoted string with a double quote (")’.

The following string operators and functions are available:

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page: 6

description symbol/name true example expression comment
equality ==, I= "Y"=="X", "XMM"!="XTE"
relational operators | <, <=, >, >= "a"<"p", "a"<="b", lexicographical order
"bU>"at, "b">="a"
change case upper/lower upper ("Xmm")=="XMM"
lower ("XMM")=="xmm"
length strlen strlen("XMM")==3,
strlen("")==0
ASCII value ascii ascii(" ")==32,
ascii("Z")-ascii("A")+1==26
concatenation + "Coca-"+"Cola"=="Coca-Cola"
range operator [:1, [:hil, "XMM" [0:1]=="XM" first character has index 0;
[lo:], [1o:hi] | "FREDDY" [2:]=="EDDY" omitted lower/upper bound
expands to 0/actual length-1

Please note: The name of a string column can be used everywhere where a string constant is syntactically
correct. An error condition will be raised if a numeric column is used in a textual context. All of the
above string operators and functions can be arbitrarily nested to form more complex expressions, e.g.
(upper (STRCOL1) [:3]+STRCOL2) [5:]==upper (STRCOL3)

2.6 Null value function

Numerical columns in tables can optionally have associated null values. The usual convention is that
data entries that are set to a column’s special null value are to be interpreted as 'not applicable/available’
by the application. The operator function

isnull (COLNAME)

selects all rows in which the value of COLNAME is equal to the column’s null value. If the column has no
associated null value defined the function evaluates to false. Please note:

1. The isnull () function can only be used in the above manner, i.e., with the name of a numerical
table column as argument. Attempts to use it in any other way will lead to an error condition.

2. Unlike integer-valued columns there is always an implicit null value for floating point data, viz. the
special IEEE value NaN (Not-A-Number). It is not possible to define any other real value to serve
as null’ for real-valued columns.

2.7 Table column names

Column identifiers can refer to table columns of scalar integral, floating point, boolean, or string type.
Mixed-type arithmetic is supported with the exception that names of boolean and string columns must not
be used in arithmetic sub-expressions. Names of boolean columns are valid logical sub-expressions, i.e.,
they do not need to be used in conjunction with the equality operators ==/!= and constants true/false
to form valid logical sub-expressions, e.g. BOOLCOL==true is equivalent to BOOLCOL.

Vector columns are not yet supported.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 7

2.8 Subexpressions in table attributes

Table attributes being referred to in the selection expression via their names preceded by a hash mark
('#’) are actually not restricted to contain numeric constants only. In fact the values interpreted as
strings can contain anything (including references to other attributes), for instance, to define convenient
abbreviations for frequently used constructs. All table attributes will get replaced by their respective
values which must yield a valid boolean selection expression. Otherwise a fatal error condition will be
raised. Example: If a table contains the attributes:

RAWXSQ = ’ (RAWX-1)*x2’ / RAWX squared

RAWYSQ = ’ (RAWY-1)*x*2’ / RAWY squared

DIST = ’sqrt (#RAWXSQ + #RAWYSQ)’ / distance from center

DISTSEL = °’#DIST <= 128’ / select events in circle r=128

the selection expression
#DISTSEL
can be used as an alternative to the full form

sqrt ((RAWX-1)**2 + (RAWY-1)*x*2) <= 128

2.9 Bitwise operators

For bit manipulations the following six operators are provided:

description operand | example

bitwise AND & b001110110 & bO111 = b110
bitwise OR | b001110110 | b0101 = b1110111
bitwise exclusive OR A\ b001110110 A b0111 = 1110001
left shift << b111l << 2 = b11100

right shift >> b111l >> 2 = bl

one’s complement (32 bit) | ~ ~b111000 = b111...000111

2.10 Special region filter functions

The following functions evaluate to true if a given point lies inside or on the border of the specified
geometric figure:

point (x0,y0,Xcolumn,Ycolumn)

line(x0,y0,x1,yl,Xcolumn,Ycolumn)

circle(xCenter,yCenter,radius,Xcolumn,Ycolumn)

e sector(xCenter,yCenter,fromAngle,toAngle,Xcolumn,Ycolumn) or
pie(xCenter,yCenter,fromAngle,toAngle,Xcolumn,Ycolumn)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 8

e ring(xCenter,yCenter,radiusl,radius2,Xcolumn,Ycolumn) or
annulus (xCenter,yCenter,radiusl,radius2,Xcolumn,Ycolumn)

e ellipse(xCenter,yCenter,xHalfWidth,yHalfWidth,rotation,Xcolumn,Ycolumn)

e elliptannulus(xCenter,yCenter,xHalfWidthInner,yHalfWidthInner
xHalfWidthOuter,yHalfWidthOuter,rotationInner,rotationQuter,Xcolumn,Ycolumn) or
elliptring(xCenter,yCenter,xHalfWidthInner,yHalfWidthInner
xHalfWidthOuter,yHalfWidthOuter,rotationInner,rotationQuter,Xcolumn,Ycolumn)

e box(xCenter,yCenter,xHalfWidth,yHalfWidth,rotation,Xcolumn,Ycolumn)
e rectangle(xLoLeft,yLoLeft,xUpRight,yUpRight,rotation,Xcolumn,Ycolumn)

. rhombus(xCenter,yCenter,XHalfWidth,yHalfWidth,rotation,Xcolumn,Ycolumn) or
diamond (xCenter,yCenter,xHalfWidth,yHalfWidth,rotation,Xcolumn,Ycolumn)

e polygon(xl,yl,x2,y2,x3,y3,x4,y4,...,Xcolumn,Ycolumn)

e polygon2(x1,yl,x2,y2,x3,y3,x4,y4,...,Xcolumn,Ycolumn)
where
(x0,y0) : a coordinate pair defining a point - the two points given by (x0,y0) and

(Xcolumn,yColumn) (see below) must coincide for the point function to
return true

(x0,y0,x1,y1) : two points defining a line - the test point (Xcolumn,Ycolumn) (see below)
must lie on the line to within 0.5 units for the line function to return
true

(x1,y1,x2,y2,...) : the corner points of a polygon

(xCenter,yCenter) : the (x,y) position of the center of the region

(xHalfWidth,yHalfWidth) : the (x,y) half widths of the region - for elliptannulus: values for the
inner and outer ellipse respectively

(xLoLeft,yLoLeft, : the coordinates of the lower left and upper right corner of the rectangle

xUpRight,yUpRight)

(radius) : the half the diameter of the circle

(radiusil,radius?2) : the inner and outer half diameters of the annulus

(fromAngle,toAngle) : two angles in decimal degrees defining a sector; fromAngle must be lower
than or equal to toAngle

(rotation) : the angle in decimal degrees that the region is rotated with respect to

(xCenter,yCenter) except for rectangles which are rotated with re-
spect to the lower left corner (xLoLeft,yLoLeft) - elliptical annuli have
two angles for the inner and outer ellipse respectively (rotationInner,
rotationOuter)

(Xcolumn,Ycolumn) : the coordinates of the point to test - usually given as column names

Please note:

e Although this is usually the case, the above filter functions do not have to be necessarily applied
in the spatial domain. (Xcolumn,Ycolumn) can indeed be the names of any columns in the table,
i.e., selections in any two-dimensional data space are possible.

o In the case of the polygon filter the result of the inclusion test for points that lie exactly on a
boundary or coincide with a vertex is uncertain. If this behavior is unacceptable please avail the
polygon2 filter whose inclusion test results for those points is always positive. This comes at the
price of a worse run time efficiency.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 9

2.11 Three-dimensional filter functions

The following functions evaluate to true if a vector lies inside or on the border of the specified three
dimensional figure:

e cone(vcen, alpha, vtest)

where

vcen : vector defining symmetry axis of figure
alpha : half opening angle of cone in rad
vtest : vector for inclusion test

Please note: For the sake of readability and clarity it is recommended to avail these filters in conjunction
with the In operator (see Sect. 2.13).

2.12 File-based filters

There are three special file-based filters which perform filtering with Good Time Intervals, spatial image
masks, and region tables. The syntax is:

gti(blockspec,Tcolumn)
mask(blockspec,Xoffset,Yoffset,Xcolumn,Ycolumn)

region(blockspec,Xcolumn,Ycolumn) or region(blockspec)

with

Tcolumn : the time value to be checked; usually a column name
Xoffset,Yoffset : a vector by which the image mask is to be shifted
Xcolumn,Ycolumn : coordinates of point to test - usually given as column names

blockspec is a block specifier which must point to a GTI table, a mask image, or a region table re-
spectively. It must be in either of the four forms setname, setname+blockid, setname[blockid], or
setname:blockid where setname must be the name of an existing data set and blockid an identifier of
a block in that data set. If the first form, setname, is used, the filter data are sought in the first block
of the named data set. For the latter three forms, the data set name is optional. If omitted, it refers
to the data set of the currently processed table. blockid can either be an identifier starting with a letter
which must then be the name of a block in the specified data set or a simple number which is directly
interpreted as a block sequence number (starting from 1).!

2.12.1 gti-filter

The expression gti(x.gti,t) evaluates to true if the time t lies within at least one GTI contained in
the table x.gti. GTI tables must adhere to the OGIP standard [2].

1Examples for valid block specifiers: gti.fits, gti.fits+3, gti.fits[GTI23], [98], +GTI10, gti.fits:GTI129

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 10

2.12.2 mask-filter

mask (x.msk, z0,y0,z,y) is true if the value of the mask image shifted by (20,y0) in the data set x.msk
at the location (z,y) is not equal to zero.

If the specified mask image contains the World-Coordinate-System (WCS)[1] attributes CRPIXz, CRVALz,
CDELTz with z being either 1 or 2, image coordinate values are computed from the respective integer pixel
numbers n as

ri(n) = (n — CRPIX;) x CDELT; + CRVAL;, i=1,2 (1)

This effectively defines the pixel size in the mask image as CDELT1 x CDELT2. If symbolic names have been
specified in the mask filter command as z and y and the corresponding columns in the processed table
have associated WCS-attributes TCRPXz, TCRVLz, and TCDLTz respectively the actual coordinate values
are calculated as above. This effectively defines the table pixel size as TCDLTx x TCDLTy. The mask filter
expression then evaluates to true for each “table pixel” if it has no overlap with any image mask pixel.

Mask images are ordinary rectangular arrays of any integral type supported by the dal.

2.12.3 region-filter

region(reg.fits,z,y) is true if the point (z,y) is contained in any of the regions specified in the region
file reg.fits.

If the second form of the region filter region(reg.fits) is used the coordinates of the test points come
from columns with names taken from the MFORM1 attribute in the specified block.

For more informations on this and a formal definition of the region file format see Ref. [3].

2.13 In-operator

The in-operator is available in three distinct forms

1. arith IN intervals
This tests whether the value to which the arithmetic expression arith evaluates lies within at least
one among a list of intervals with numeric boundaries. The interval list is either a single interval or
a comma separated list of interval specifications. The following table provides an overview of the
available intervals types (x stands for the value of arith above):

interval specification alternative expression | meaning

:or (:] or [:) or (:) true —o0 < x < 400
val or [val] val == r = val

val: or [val:] or [wval:) | val <= z val <=x < 400
(val:] or (wal:) val < ¢ val < x < 400
:wal or [:wval] or (iwall | wal >= z —o0 < x <= wval
[:wal) or (:wval) val > = —o0 < x < wal

lo:hior [lo:hil]
(lo:hil
[lo:h%)
(lo:h7)

xmmsas_20230412_1735-21.0.0

lo <= z && ht >= x
lo < z&& ht >= z
lo <= z && ht > z
lo < z&& hi >z

lo<=z<=Mh
lo<xz<=hi
lo<=x < hi
lo<z<hi

An example of a valid value-in-interval expression which yields true is:

XMM-Newton Science Analysis System Page: 11

3.1415 in :-10,[1:3),3.1,[3.14:3.19),[4:]

2. arith in gti(gtitable)
This is equivalent to the expression

gti(gtitable, arith)
3. (arithl, arith2) in filter(...)
where filter is either region or mask (see Sect. 2.12) or any of the region selection functions (see
Sect. 2.10). The form is equivalent to
filter(..., arithl, arith2)
for instance

(RAWX, RAWY) in circle(100, 120, 10) == circle(100, 120, 10, RAWX, RAWY)

always evaluates to true.

4. vector in filter(...)
where filter is a three dimensional region selection function (see Sect. 2.11) and vector is a vector
for the inclusion test.

2.14 Selected-function

The selected function facilitates step-wise filtering of tables. Used as a sub-expression it evaluates to
true for a particular row if that rows has been selected in the selection process preceding the current one.
If the table undergoes selection for the very first time, selected returns true for all table rows, i.e., has
no effect. As an example, the expression:

SELECTED && PHA >= 10

selects all rows which where selected in the previous selection cycle and with PHA values greater than or
equal to 10.

2.15 Example expressions

The following paragraphs contain lists of sample expressions which should demonstrate how the various
elements described in the above sections can be combined to achieve a desired result:

2.15.1 Table filtering

These sample boolean expressions demonstrate the filtering of an event list table with columns RAWX,
RAWY, PHA, PATTERNID, CCDID, PHASE, TIME, and FLAG:

e RAWX >= 100 && #ROW != 10
select all events with X coordinates greater than or equal to 100; exclude the 10th event anyway

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 12

e RAWX > RAWY
select all events to the right of the line RAWX==RAWY

e CIRCLE(354,383,84,RAWX,RAWY) | |ELLIPSE(243,215,27,108,0,RAWX,RAWY)
select events which lie in the circle or the ellipse with the specified parameters

e PATTERNID==4
select all events with PATTERNID equal to 4

e (CCDID==1 && TIME in gti(ccdl.gti))||(CCDID==2 && TIME in gti(ccd2.gti))
select all events from CCD #1 which pass the GTT filters in ccdl.gti plus all events from CCD
#2 which pass the GTI filters in ccd2.gti.

e PHASE>=.3 && PHASE<=.9
select events from the specified phase window

e (PHA>=100 && PHA<=200) || (PHA>=500 && PHA <=600)
select events with PHA values greater than 99 and less than 201 or greater than 499 and less than
601

e FLAG & b110 !'= 0
select events which have the second and third bit in an (integral) FLAG column set

e SELECTED && PHA >= 10
select events which have been selected in the previous selection run and have PHA values greater
than or equal to 10

e PHA in [0:10],(23:40),99,200: && TIME in gti(gti.fits[GTIO])
select events with PHA values in the range 0-10, or 23-40 (excl.), or equal to 99, or greater than
or equal to 200 and arrival times lying within Good-Time-Intervals contained in the table named
GTIO in the data set gti.fits

e skyvector(RA, DEC) in cone(#RA_MED, #DEC_MED, 20*#ARCMIN)
select rows for which it is true that the J2000 sky vector constructed from the columns RA and DEC
lies within a cone with an opening angle of 20’ and a symmetry axis given through the sky vector
defined by the two attributes #RA_MED and #DEC_MED

2.15.2 Table column construction

In the following the symbols RAWX, RAWY stand for names of existing columns in the table to be processed:

o sqrt (RAWX**2 + RAWY**2)
Constructs a new table column with radius values (provided RAWX /RAWY contain Cartesian detection
coordinates)

e 100. * sin((TIME-#TIMEZERQO)/#PERIOD * 360)
Construct a “predicted intensity” column for a very simple time-variable source

e RAWX + 100
Construct a new column which contains the RAWX coordinates shifted by 100 pixels

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 13

2.15.3 Array arithmetic

In the following the symbols A1, A2, and A3 stand for arrays with the same dimensionality and equal
extents in each dimension:

o 1
Construct a new array and initialize all values to 1.

o A1+A2
Add the two arrays Al and A2.

o sin(A1+A2)**2 - exp(A3)
Construct an array according to the specified expression involving the existing arrays A1, A2, and
A3.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 14

2.16 Implementation Status

feature status comment
all functionality described in user section v2.0 | implemented in selectlib
v>=3.0
2.17 TODO
feature ‘ comment

vector columns support | desirable — low priority
matrix algebra support | needed for pyramid filter in attfilter task

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 15

References

[1] E. W. Greisen and M. Calabretta. Representation of Celestial Coordinates in FITS. Astron. Astro-
phys., 1996. Found at the URL: ftp://fits.cv.nrao.edu/fits/documents/wcs/wes.all.ps.

[2] W. Pence L. Angelini and A.F. Tennant. The Proposed Timing FITS File Format for High Energy
Astrophysics Data. Technical Report OGIP/93-003, NASA/GSFC, Nov 1993. Found at the URL:
http://legacy.gsfc.nasa.gov/docs/heasarc/ofwg/docs/summary/ogip-93_003_summary.html.

[3] J. McDowell and A. Rots. FITS REGION Binary Table Design. Technical Re-
port ASC-FITS-REGION-1.0, Chandra Science Center, March 1998. Found at the URL:
http://hea-www.harvard.edu/~jcm/asc/docs/asc/region.ps.

xmmsas_20230412_1735-21.0.0

