XMM-Newton Science Analysis System Page: 1

ssclib

April 16, 2023

Abstract

Library of Fortran 90 (and Perl) utilities needed for SAS task development.

1 Description

1.1 Introduction

This library consists of a series of Fortran 90 modules useful for the development of SAS tasks. Each
module is described in a separate section below. Each module is contained in a separate file and will be
compiled separately. The resulting object files will be combined into a single library file.

The modules divide broadly into (i) those which depend on XMM-specific libraries such as dal, cal and
errorHandling, and (ii) those which do not. The only foreign module that members of the second group
depend on is called types and is at present resident in the sas package utils. This small module just
defines data types such as int8, bool etc. If it is desired to port the non XMM-specific modules to a
non-sas environment it is recommended to also copy this types module.

At some stage in the future it may be desirable to move these two groups into separate libraries.

1.2 Angle conventions

All angular variables are assumed to be in radians, unless otherwise indicated. Variable names end in
the unit (eg arcsec, deg) if it is not radians.

1.3 Dependency relations:

*** Not yet done this figure.

1.4 Module index

e Section 2: array_ utils:

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

e Section 3: cal_aux:

e Section 4: confusion:

e Section 5: constants:

e Section 6: coordinate:

e Section 7: dal_aux:

e Section 8: detection_stats:
e Section 9: dss_aux:

e Section 10: dump:

e Section 11: ellipse:

e Section 12: epic_aux:

e Section 13: exposure:

e Section 14: fftw_aux:

e Section 15: geometric_types:
e Section 16: histogram_utils:
e Section 17: intervals_aux:
e Section 18: linear:

e Section 19: math utils:

e Section 20: minimizations:
e Section 21: oal_aux:

e Section 22: parse_list mod:
e Section 23: polygon:

e Section 24: psf_ims:

e Section 25: random_aux:

e Section 26: reallocate:

e Section 27: rebinners:

e Section 28: regridders:

e Section 29: save_image:

e Section 30: sort_mod:

e Section 31: source_cutouts:
e Section 32: splines:

e Section 33: ssc_misc:

e Section 34: test_utils:

e Section 35: warp_utils:

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 3

Section 36: wcs_aux:

Section 37: SSCLib (Perl):

Section 38: Coords (Perl):

Section 39: CelCoords (Perl):

2 General-purpose array-processing utilities

Module name: array_utils

Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)
Masaaki Sakano (University of Leicester, mas@star.le.ac.uk)

2.1 aryStatInfoFlagT structure definition

A set of structure definitions is provided. This consists of one of the elements in type(aryStatInfo???T)
(see Sec 2.2), and also is used as an argument in some subroutines/functions in this package. See Sec 2.2
and Table 1 for the (supposed) meaning of each element.

type, public :: aryStatInfoFlagT

integer :: status = 0 ! Normal
logical :: isValLowerUsed = .false., isValUpperUsed = .false. &
, isArealowerUsed = .false., isAreaUpperUsed = .false. &

, isMaskUsed = .false.
end type aryStatInfoFlagT

2.2 aryStatInfo???T structure definition

A set of structure definitions is provided. The above ‘???” can be Double, Single, Int32, Int16 or
Int8. This gives a structure for the statistics for a given (2-d?) array. The following is the example of
aryStatInfoDoubleT.

type, public :: aryStatInfoDoubleT

real (double) :: totalsum, mean, sigma

real(double) :: realsum

integer(int32) :: totalentry, validentry

real (double) :: minval, maxval

integer(int32), dimension(:), allocatable :: minindices, maxindices

real (double) :: vallower, valupper

integer(int32), dimension(:), allocatable :: minareaindices, maxareaindices

type(aryStatInfoFlagT) :: flag
end type aryStatInfoDoubleT

This structure is meant to offer the statistical information of an array or its subset. That is, the statistical
information for the array, where the valid entry can be filtered based on given

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 4

Table 1: Elements in aryStatInfoT

Element Type! Description

Yototalsum D/S/132 Sum (for the valid entry)

Yorealsum D Sum (for the valid entry)

Yomean D (S for SingleT) Mean

Yosigma D (S for SingleT) Standard deviation?

Ytotalentry 132 Total entry (size) of the array.

Y%ovalidentry 132 The entry used in calculation.

Yominval D/S/132/116/18 Minimum value among the valid entry.
Y%maxval D/S/132/116/18 Minimum value among the valid entry.
Y%minindices 132 [Array)] Location (indices: x,y,...) of minval
Y%maxindices 132 [Array] Location (indices: x,y,...) of maxval
Yovallower D (S for SingleT) Lower threshold to be a valid entry (if specified).
Y%valupper D (S for SingleT) Upper threshold to be a valid entry (if specified).
Y%minareaindices 132 [Array] Minimum indices for the area of valid entry.
Y%maxareaindices 132 [Array)] Maximum indices for the area of valid entry.
Y%fag%status Integer 0 if normal.

%oflag%isValLower Used Logical True if vallower is used.
Y%oflag%isValUpperUsed Logical True if valupper is used.
Y%flag%isAreaLowerUsed Logical True if minareaindices is used.
Y%flag%isAreaUpperUsed Logical True if maxareaindices is used.
%flag%isMaskUsed Logical True if an external mask is used.

1. D(Double), S(Single), 132/116/18 (Int32/Int16,/Int8)

1. external mask file, where True entry is valid,
2. lower and/or upper thresholds for value at each cell,

3. lower and/or upper boundaries (area, if 2-dim) of the indices of the array cell.

If more than one filter condition are given, then the logical product of those conditions are considered,
namely, only the entries that satisfy all the given filter conditions are used. Note that the boundary is
inclusive for the second and third conditions. For example, if the lower thresholds for value at each cell
is given to be 2.5, then the cells of which the value is smaller than 2.5 are regarded as invalid and are not
counted as the valid entry.

Table 1 shows the (supposed) meaning of each element as well as gives the difference in types of elements
between the structures (such as, aryStatInfoDoubleT and aryStatInfoInt32T). Technically each user
could give a different meaning for them, but it is discouraged for an obvious reason.

Notes: Some of the elements of the structure can be undefined. For example, if flag/isArealowerUsed
is false, the array minareaindices is likely to be undefined, even its size (NOT allocated). Similarly
flaglisValLowerUsed is false, vallower is likely to be undefined, and so on. If one tries to access those
undefined values that may cause a trouble or even Fortran error, leading to abortion.

The difference between the elements of totalsum and realsum is the type; the latter is always double,
whereas the former is double/single/int32, depending on the type of the input array; n.b., it is int32
for any of the integer array. The totalsum for an integer array may overflow; in that case totalsum has
a value INTEGER NULL. Another note is that although the they type of realsum for a single-precission
float array is double, obviously it has a practical accuracy of only single-precission.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 5

2.3 AryEdgesInfoT structure definition

Fortran arrays are by default have integer indices, starting from 1. The starting index can be specified
by users, however once it is passed to a subroutine, the information is in principle lost. And anyway they
still have to be integer each spaced by 1, which is a strong constraint.

In practice a pair of indices in an array (i, 7,...) are given a practice meaning. That information should
ideally be held as an entity of the array — objected-oriented languages may provide some convenient way,
but Fortran does not.

This Type variable is designed to hold those information, e.g., lower and upper (integer) bounds of the

array, and the physical values corresponding to those ‘edges’ of the array as follows.

type, public :: AryEdgesInfoT
integer :: aryDimension = -1
integer, allocatable :: arySize(:), lboundIndex(:)
real(double), allocatable :: 1lEdge(:), uEdge(:)

end type AryEdgesInfoT

Note the aryDimension gives the rank of the array. It is —1 when uninitialised.
If you want to get the upper bound of the array, use the function getUbound() (see Section 2.5.7).

To set an AryEdgesInfoT variable, the function getAryEdgesInfo() (see Section 2.8.2) offers a convenient
way. You can of course set it by yourself, but if you do it, make sure all the component values in the
variable are consistent with one another.

2.4 Integer (index) — scalar integers
2.4.1 Return the axes (array) for the input (i,j) for an array

interface getAxesFromIndices

function getAxesFromIndicesDouble(indices, iLbound, iUbound, 1Edge, uEdge) result(axes)

real (double), intent(in) :: indices(:)
integer, intent(in) :: iLbound(size(indices)), iUbound(size(indices))
real(double), intent(in) :: 1Edge(size(indices))
real(double), intent(in), optional :: uEdge(size(indices))
real(double) :: axes(size(indices)) ! result
end function getAxesFromIndicesDouble

function getAxesFromIndicesSingle(indices, ilLbound, iUbound, 1Edge, uEdge) result(axes)

real(single), intent(in) :: indices(:)
integer, intent(in) :: iLbound(size(indices)), iUbound(size(indices))
real(single), intent(in) :: 1Edge(size(indices))
real(single), intent(in), optional :: uEdge(size(indices))
real(single) :: axes(size(indices)) ! result
end function getAxesFromIndicesSingle

function getAxesFromIndicesEdgesDouble(indices, aryEdgesInfo) result(axes)
real (double), intent(in) :: indices(:)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 6

type (AryEdgesInfoT), intent(in) :: aryEdgesInfo
real(double) :: axes(size(indices)) ! result
end function getAxesFromIndicesEdgesDouble

function getAxesFromIndicesEdgesSingle(indices, aryEdgesInfo) result(axes)
real(single), intent(in) :: indices(:)
type (AryEdgesInfoT), intent(in) :: aryEdgesInfo
real(single) :: axes(size(indices)) ! result
end function getAxesFromIndicesEdgesSingle
end interface

In the arguments, indices(:) are the coordinates in unit of the index of the array of interest. i (L|U)bound(:)
are the array of (I—u)bound of the array of interest. (1|u)Edge(:) are the array of the lower/upper
bounds in unit of physically meaningful values of the array of interest; e.g.,

1Edge=(0.5,0.5) uEdge=(256.5,256.5)

etc.

If uEdge is not given, it is assumed that the width of axes is the same as the size of the array (=
abs (1Ubound-iLbound) for each axis).

The following is a few examples.

Case 1 The axes for the indices (i, j)=(3, 3) in the array (1:5, 1:5) with the edge (0.5:5.5, 0.5:5.5) is
(3.0, 3.0).

Case 2 The axes for the indices (i, j)=(3, 3) in the array (1:5, 1:5) with the edge (2.5:7.5, 2.5:7.5) is
(5.0, 5.0).

Case 3 The axes for the indices (i, j)=(3, 3) in the array (1:5, 1:5) with the edge (0.0:10, 0.0:10) is (5,
5).

Case 4 The axes for the indices (i, j)=(3, 3) in the array (1:5, 1:5) with the edge (-10:0.0, -10:0.0) is (-5,
-5).

Case 5 The axes for the indices (i, j)=(5, 5) in the array (3:7, 3:7) with the edge (0.0:10, 0.0:10) is (5,
5).

2.4.2 Return the indices (i,j) for the input axes (x,y) of an array

The inverse function of getAxesFromIndices (See Section 2.4.1).

interface getIndicesFromAxes
function getIndicesFromAxesDouble(axes, ilbound, iUbound, 1Edge, uEdge) result(indices)

real(double), intent(in) :: axes(:)

integer, intent(in) :: iLbound(size(axes)), iUbound(size(axes))
real(double), intent(in) :: 1lEdge(size(axes))
real(double), intent(in), optional :: uEdge(size(axes))

real(double) :: indices(size(axes)) ! result

end function getIndicesFromAxesDouble

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 7

function getIndicesFromAxesSingle(axes, ilbound, iUbound, 1Edge, uEdge) result(indices)

real(single), intent(in) :: axes(:)

integer, intent(in) :: iLbound(size(axes)), iUbound(size(axes))
real(single), intent(in) :: 1lEdge(size(axes))
real(single), intent(in), optional :: uEdge(size(axes))

real(single) :: indices(size(axes)) ! result

function getIndicesFromAxesSingle

function getIndicesFromAxesEdgesDouble(axes, aryEdgesInfo) result(indices)

real(double), intent(in) :: axes(:)
type (AryEdgesInfoT), intent(in) :: aryEdgesInfo
real (double) :: indices(size(axes)) ! result

end function getIndicesFromAxesEdgesDouble

function getIndicesFromAxesEdgesSingle(axes, aryEdgesInfo) result(indices)

real(single), intent(in) :: axes(:)
type (AryEdgesInfoT), intent(in) :: aryEdgesInfo
real(single) :: indices(size(axes)) ! result

end function getIndicesFromAxesEdgesSingle
end interface

Indices, though the returned values here may be Real, mean the index for the given array, therefore for
an array

ary(int (returned_i), int(returned_j))

will give something significant in the Fortran code. Axes are arbitrary and give the frame, which may
mean something physical.

If uEdge is not given, it is assumed that the width of axes is the same as the size of the array (=
abs (iUbound-iLbound) for each axis).

The following is a few examples.

Case 1 The indices for the axes (x,y)=(3.0, 3.0) in the array (1:5, 1:5) with the edge (0.5:5.5, 0.5:5.5) is
(3, 3).

Case 2 The indices for the axes (x,y)=(5.0, 5.0) in the array (1:5, 1:5) with the edge (2.5:7.5, 2.5:7.5) is
(3, 3).

Case 3 The indices for the axes (x,y)=(5.0, 5.0) in the array (1:5, 1:5) with the edge (0.0:10, 0.0:10) is
(3.,3).

Case 4 The indices for the axes (x,y)=(-5, -5) in the array (1:5, 1:5) with the edge (-10:0.0, -10:0.0) is
(3, 3).

Case 5 The indices for the axes (x,y)=(5.0, 5.0) in the array (3:7, 3:7) with the edge (0.0:10, 0.0:10) is
(5, 5).

2.4.3 Calculate the indices(i,j) on the new frame converted from the old frame.

Particularly useful in subroutines.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 8

interface calcIndicesFromIndices
subroutine calcIndicesFromIndicesDblDbl(oldIndices, newIndices, oldLbound, newLbound)

real (double), intent(in) :: oldIndices(:)

real (double), intent(out) :: newlndices(size(oldIndices))
integer, intent(in) :: oldLbound(size(oldIndices))
integer, intent(in), optional :: newLbound(size(oldIndices))

end subroutine calcIndicesFromIndicesDblDbl

subroutine calcIndicesFromIndicesDblI32(oldIndices, newIndices, oldLbound, newLbound)

real (double), intent(in) :: oldIndices(:)

integer(int32), intent(out) :: newIndices(size(oldIndices))
integer, intent(in) :: oldLbound(size(oldIndices))
integer, intent(in), optional :: newLbound(size(oldIndices))

end subroutine calcIndicesFromIndicesDblI32

subroutine calcIndicesFromIndicesDblI16(oldIndices, newIndices, oldLbound, newLbound)

real (double), intent(in) :: oldIndices(:)

integer(int16), intent(out) :: newIndices(size(oldIndices))
integer, intent(in) :: oldLbound(size(oldIndices))
integer, intent(in), optional :: newLbound(size(oldIndices))

end subroutine calcIndicesFromIndicesDblI16

subroutine calcIndicesFromIndicesSglSgl(oldIndices, newIndices, oldLbound, newLbound)

real(single), intent(in) :: oldIndices(:)

real(single), intent(out) :: newIndices(size(oldIndices))
integer, intent(in) :: oldLbound(size(oldIndices))
integer, intent(in), optional :: newLbound(size(oldIndices))

end subroutine calcIndicesFromIndicesSglSgl

subroutine cachndicesFromIndicesSglIBQ(oldIndices, newIndices, oldLbound, newLbound)

real(single), intent(in) :: oldIndices(:)

integer(int32), intent(out) :: newIndices(size(oldIndices))
integer, intent(in) :: oldLbound(size(oldIndices))
integer, intent(in), optional :: newLbound(size(oldIndices))

end subroutine calcIndicesFromIndicesSglI32

subroutine calcIndicesFromIndicesSglI16(oldIndices, newIndices, oldLbound, newLbound)

real(single), intent(in) :: oldIndices(:)

integer(int16), intent(out) :: newIndices(size(oldIndices))
integer, intent(in) :: oldLbound(size(oldIndices))
integer, intent(in), optional :: newLbound(size(oldIndices))

end subroutine calcIndicesFromIndicesSglI16

subroutine calcIndicesFromIndicesI32I32(oldIndices, newIndices, oldLbound, newLbound)

integer(int32), intent(in) :: oldIndices(:)

integer(int32), intent(out) :: newIndices(size(oldIndices))
integer, intent(in) :: oldLbound(size(oldIndices))
integer, intent(in), optional :: newLbound(size(oldIndices))

end subroutine calcIndicesFromIndicesI32I32

subroutine calcIndicesFromIndicesI16I16(oldIndices, newIndices, oldLbound, newLbound)

integer(int16), intent(in) :: oldIndices(:)
integer(int16), intent(out) :: newIndices(size(oldIndices))
integer, intent(in) :: oldLbound(size(oldIndices))

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 9

integer, intent(in), optional :: newLbound(size(oldIndices))
end subroutine calcIndicesFromIndicesI16I16
end interface

This calculates the indices (i,j) on the new frame converted from those on the old frame. The most
likely case is to get a pair of indices of an array in a subroutine/function, all the Ibound-s of which must
be 1, from the old pair of indices, where the Ibound-s can be arbitrary.

newLbound(:) is in default 1 (if not given).
The following is an example for a 1-dimension array.
integer :: ary(5:8)
ary(7) = -99 ! i=7 is the 3rd element in the array.
call aSub(iPoints=(/7/), lbounds=1lbound(ary))
subroutine aSub(iPoints, lbounds)
integer, intent(in) :: iPoints(:), lbounds(:)
integer :: outAry(size(iPoints))
call getIndicesFromIndices(iPoints, outAry, lbounds)
print *, outAry ! => 3

! nb., the old index=7 corresponds to index=3 in the current context.
end subroutine aSub

2.5 Array or vector — scalar integers
2.5.1 Return largest true index of a logical vector

integer function largestTrueIndex(maskVector)
logical(bool), intent(in) :: maskVector(:)
end function

Examples:

largestTrueIndex(((/0, 1, 1/) > 0)) ! returns 3
largestTrueIndex(((/0, 1, 0/) > 0)) ! returns 2
largestTrueIndex(((/0, 0, 0/) > 0)) ! returns O, ie 1 below vector limit.

0 is also returned if the vector is of zero size.

2.5.2 Return smallest true index of a logical vector

integer function smallestTruelIndex(maskVector)
logical(bool), intent(in) :: maskVector(:)
end function

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 10

Examples:

smallestTrueIndex(((/0, 1, 1/) > 0)) ! returns 2
smallestTrueIndex(((/1, 1, 1/) > 0)) ! returns 1
smallestTrueIndex(((/0, 0, 0/) > 0)) ! returns 4, ie 1 above vector limit.

size(mask Vector)+1 is also returned if the vector is of zero size.

2.5.3 Rectangular bounds of the true area of a logical array

subroutine maskArrayLimits(mask, minXi, maxXi, minYi, max¥i)
logical(bool), intent(in) :: mask(:,:)
integer(int16), intent(out) :: minXi, maxXi, minYi, maxYi
end subroutine

I*** erase the status variable from the actual routine!

Example:

logical(bool) :: mask(4,5)

mask(1,:) = ((/0, 0, 0, 0, 0/) > 0)
mask(2,:) = ((/0, 1, 1, 0, 0/) > 0)
mask(3,:) = ((/1, 1, 0, 1, 0/) > 0)
mask(4,:) = ((/1, 0, 0, 0, 0/) > 0)

call maskArrayLimits(mask, minXi, maxXi, minYi, max¥i)
! returns minXi=1, maxXi=4, minYi=2, maxYi=4

mask = .false.
call maskArrayLimits(mask, minXi, maxXi, minYi, max¥i)

! returns minXi=6, maxXi=0, minYi=5, maxYi=0 (ie, nonsense)

The same nonsense return occurs if mask is of zero size in either direction. It is up to the user to check
that the mask is neither empty nor of zero size before calling maskArrayLimits.

2.5.4 Allocate real to a bin

function getBinNumber (xBinEdges, x) result(binNum)
real(single), intent(in) :: xBinEdges(:), x
integer (int32) :: binNum

end function

In a commonly encountered situation, one has a set of bins defined by a vector of bin edges xBinEdges,
plus a real number x, and it is desired to know into which bin x falls. The present function accomplishes

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 11

this calculation and returns the index of the bin. The bin edges should occur in increasing order, with
no two values the same, but they don’t have to be equidistant. The returned value obeys in general the
rule

xBinEdges(i) < x < xBinEdges(i + 1) = binNum = i

However note the following limiting or pathological cases:

e © < xBinFEdges(1) = binNum = 0, ie 1 under the lower limit, is returned. It is up to the calling
routine to catch these instances if it is necessary to prevent this return value from occurring.

o If v = axBinEdges(size(xBinEdges)) it is judged to fall within the last bin and binNum =
size(xBinFEdges) — 1 is returned.

e = > xBinEdges(size(xBinFEdges)) = binNum = size(xBinEdges), ie 1 over the upper limit, is
returned. It is up to the calling routine to catch these instances if it is necessary to prevent this
return value from occurring.

2.5.5 Simpler maxloc

The fortran routine maxloc(array) returns the indices at which the maximum value in array occurs.
However the return must be a vector quantity of the same size as the array has dimensions. This can be
slightly clunky if array is of dimension 1 - ie, a 1-dimensional vector. The function maxLocld allows one
to obtain the index of the maximum value of the 1-D argument in a scalar return value. This can save
some lines of code.

interface maxLocld
function maxLocldSingle(vector, mask)

real(single), intent(in) :: vector(:)
logical(bool), intent(in), optional :: mask(:)
integer :: maxLocldSingle

end function

function maxLocldDouble(vector, mask)

real (double), intent(in) :: vector(:)
logical(bool), intent(in), optional :: mask(:)
integer :: maxLocldSingle

end function
end interface

2.5.6 Simpler minloc

The fortran routine minloc(array) returns the indices at which the minimum value in array occurs.
However the return must be a vector quantity of the same size as the array has dimensions. This can be
slightly clunky if array is of dimension 1 - ie, a 1-dimensional vector. The function minLocld allows one
to obtain the index of the minimum value of the 1-D argument in a scalar return value. This can save
some lines of code.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 12

interface minLocld
function minLocldSingle(vector, mask)

real(single), intent(in) :: vector(:)
logical(bool), intent(in), optiomnal :: mask(:)
integer :: minLocldSingle

end function

function minLocldDouble(vector, mask)

real (double), intent(in) :: vector(:)
logical(bool), intent(in), optional :: mask(:)
integer :: minLocldSingle

end function
end interface

2.5.7 Get ubound

This returns ubound () for either a given aryEdgesInfoT variable (See Section 2.3) or pair of 1bound and
size.

interface getUbound
function getUboundFromEdgesInfo(aryEdgesInfo) result(outUbound)
type (AryEdgesInfoT), intent(in) :: aryEdgesInfo
integer :: outUbound(aryEdgesInfo\laryDimension) ! return
end function getUboundFromEdgesInfo

function getUboundFromScalars(inLbound, arySize) result(outUbound)
integer, intent(in) :: inLbound(:), arySize(size(inLbound))
integer :: outUbound(size(inLbound)) ! return
end function getUboundFromScalars
end interface

2.6 Array or vector — scalar reals
2.6.1 1-D interpolation

Given a set of piecewise-continuous line segments defined by set of = values (these must be monotonically
increasing) and a corresponding set of y values, and given also a single zSample value, this subroutine
performs a linear interpolation to return the associated ySample value. If zSample is outside the range
of x values, or in other pathological cases, 0 is returned.

function linearInterpolate(x, y, xSample) result(ySample)
real(single), intent(in) :: x(:), y(size(x)), xSample
real(single) :: ySample

end function linearInterpolate

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 13

2.6.2 Trapezoid-rule, 1-D, numerical integral

Given two vectors x and y containing samples of a function F', this subroutine returns the ‘trapezoidal-
rule’ estimate of the integral of F'. In other words, F' is replaced by the set of piecewise-continuous line
segments defined by z and y. Note that x is assumed to be monotonically increasing - if it isn’t, you’ll
get strange results.

interface trapezoidSum
function trapezoidSumSingle(x, y) result(summ)
real(single), intent(in) :: x(:), y(size(x))
real(single) 1 summ
end function trapezoidSumSingle

function trapezoidSumDouble(x, y) result(summ)
real(double), intent(in) :: x(:), y(size(x))
real (double) 1 summ
end function trapezoidSumDouble
end interface

2.6.3 Median

This function calculates the median value of the supplied 1- or 2-d array. The function sorts the array
values: if the number of elements is odd, the central element of the sorted list is returned; if even, the
element in the lower of the two central elements is returned.

interface median
real(single) function medianVector(array)
real(single), intent(in) :: vector(:)
end function medianVector

real(single) function medianArray(array)
real(single), intent(in) :: array(:,:)
end function medianArray
end interface

2.6.4 Value at histogram fraction

For binFraction = 0.5 this gives the same result as median(). The algorithm is as follows: the values
in vector or array are sorted; that element index is identified which, expressed as a fraction of the total
number of elements, comes nearest to binF'raction; finally, the element which occurs at that index of the
sorted list is returned.

If binF'raction is outside the range 0 to 1, the smallest or largest element, whichever is appropriate, is
returned.

interface valueAtHistoFraction
real(single) function valueAtHistoFractionVector(vector, binFraction&
, maskVector)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 14

real(single), intent(in) :: vector(:), binFraction
logical(bool), intent(in), optional :: maskVector(:)
end function valueAtHistoFractionVector

real(single) function valueAtHistoFractionArray(array, binFraction&
, maskArray)

real(single), intent(in) :: array(:,:), binFraction
logical(bool), intent(in), optional :: maskArray(:,:)
end function valueAtHistoFractionArray
end interface

2.6.5 sumInt32Dbl

The Fortran90 builtin function sum() returns the value in as the same type as its argument (at least in
NAG Fortran specification). For example, when aryInt8 is an array of Integer(int8), the returned value
of sum(aryInt8) is also Integer(int8) — which is practically not very useful, as the total sum of aryInt8
is very likely to exceed the maximum (or minimum if negative) possible number of Integer(int8) (which
can be obtained with huge () function).

This subroutine is developed to avoid that problem; it still returns the total sum of the array as sum()
does, but always returns the type Integer(int32) and/or Real(double) if requested, whether the type of
the argument is int8/16/32. In addition if an overflow happens during the calculation, that is, if the
absolute value of the total sum is larger than huge(int32_variable), the returned Integer(int32) are
INTEGER_NULL, which is defined in DAL. Also if the size of the given array is zero, the returned values are
INTEGER_NULL and REAL_NULL.

sumInt32Dbl () can accept up to 4-dimensional arrays at the time of writing.

See also Section 2.6.6 for the handier, function version of this routine sumInt32().

interface sumInt32Dbl

subroutine sumInt32DblInt81d(ary, sumInInt32, sumInDbl)
integer(int8), intent(in) :: ary(:)
integer(int32), intent(out), optional :: sumInInt32
real (double), intent(out), optional :: sumInDbl

end subroutine sumInt32DblInt81d

subroutine sumInt32DblInti61ld(ary, sumInInt32, sumInDbl)
integer(int16), intent(in) :: ary(:)
integer(int32), intent(out), optional :: sumInInt32
real (double), intent (out), optional :: sumInDbl

end subroutine sumInt32DblInt161d

subroutine sumInt32DblInt321d(ary, sumInInt32, sumInDbl)
integer(int32), intent(in) :: ary(:)
integer(int32), intent(out), optional :: sumInInt32
real (double), intent (out), optional :: sumInDbl

end subroutine sumInt32DblInt321d

subroutine sumInt32DblInt82d(ary, sumInInt32, sumInDbl)

integer(int8), intent(in) :: ary(:,:)
integer(int32), intent(out), optional :: sumInInt32

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 15

end subroutine sumInt32DblInt82d
subroutine sumInt32DblInt162d(ary, sumInInt32, sumInDbl)

integer(int16), intent(in) :: ary(:,:)
integer(int32), intent(out), optional :: sumInInt32
real(double), intent (out), optional :: sumInDbl

end subroutine sumInt32DblInt162d

subroutine sumInt32DblInt322d(ary, sumInInt32, sumInDbl)
integer(int32), intent(in) :: ary(:,:)
integer(int32), intent(out), optional :: sumInInt32
real (double), intent (out), optional :: sumInDbl

end subroutine sumInt32DblInt322d

subroutine sumInt32DblInt83d(ary, sumInInt32, sumInDbl)

integer(int8), intent(in) :: ary(:,:,:)
integer(int32), intent(out), optional :: sumInInt32
real(double), intent (out), optional :: sumInDbl

end subroutine sumInt32DblInt83d
subroutine sumInt32DblInt163d(ary, sumInInt32, sumInDbl)

integer(int16), intent(in) :: ary(:,:,:)
integer(int32), intent(out), optional :: sumInInt32
real (double), intent (out), optional :: sumInDbl

end subroutine sumInt32DblInt163d
subroutine sumInt32DblInt323d(ary, sumInInt32, sumInDbl)

integer(int32), intent(in) :: ary(:,:,:)
integer(int32), intent(out), optional :: sumInInt32
real (double), intent (out), optional :: sumInDbl

end subroutine sumInt32DblInt323d

subroutine sumInt32DblInt84d(ary, sumInInt32, sumInDbl)

integer(int8), intent(in) :: ary(:,:,:,:)
integer(int32), intent(out), optional :: sumInInt32
real (double), intent (out), optional :: sumInDbl

end subroutine sumInt32DblInt84d
subroutine sumInt32DblInt164d(ary, sumInInt32, sumInDbl)

integer(int16), intent(in) :: ary(:,:,:,:)
integer(int32), intent(out), optional :: sumInInt32
real (double), intent (out), optional :: sumInDbl

end subroutine sumInt32DblInt164d
subroutine sumInt32DblInt324d(ary, sumInInt32, sumInDbl)

integer(int32), intent(in) :: ary(:,:,:,:)
integer(int32), intent(out), optional :: sumInInt32
real (double), intent (out), optional :: sumInDbl

end subroutine sumInt32DblInt324d
end interface

2.6.6 sumInt32

See Section 2.6.5 (sumInt32Dbl) for detail. This routine is the front-end of that, namely the function
version, just like the Fortran90 builtin function sum() but returns always Integer(int32).

Note that if the returned value is INTEGER_NULL, the caller side then can execute sum(real (ary, double))
in order to get the total sum, in the double-precission float number this time.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page:

16

interface sumInt32

integer(int32) function sumInt32Int81d(ary)
integer(int8), intent(in) :: ary(:)

end function sumInt32Int81d

integer(int32) function sumInt32Int82d(ary)
integer(int8), intent(in) :: ary(:,:)

end function sumInt32Int82d

integer(int32) function sumInt32Int83d(ary)
integer(int8), intent(in) :: ary(:,:,:)

end function sumInt32Int83d

integer(int32) function sumInt32Int84d(ary)
integer(int8), intent(in) :: ary(:,:,:,:)

end function sumInt32Int84d

integer(int32) function sumInt32Inti61d(ary)
integer(int16), intent(in) :: ary(:)

end function sumInt32Int161d

integer(int32) function sumInt32Int162d(ary)
integer(int16), intent(in) :: ary(:,:)

end function sumInt32Inti162d

integer(int32) function sumInt32Int163d(ary)
integer(int16), intent(in) :: ary(:,:,:)

end function sumInt32Int163d

integer(int32) function sumInt32Inti64d(ary)
integer(int16), intent(in) :: ary(:,:,:,:)

end function sumInt32Inti164d

integer(int32) function sumInt32Int321d(ary)
integer(int32), intent(in) :: ary(:)

end function sumInt32Int321d

integer(int32) function sumInt32Int322d(ary)
integer(int32), intent(in) :: ary(:,:)

end function sumInt32Int322d

integer(int32) function sumInt32Int323d(ary)
integer(int32), intent(in) :: ary(:,:,:)

end function sumInt32Int323d

integer(int32) function sumInt32Int324d(ary)
integer(int32), intent(in) :: ary(:,:,:,:)

end function sumInt32Int324d

end interface

2.7 Array or vector — array or vector
2.7.1 vectorCross

Performs a vector cross product.

interface vectorCross
function vectorCrossSingle(vectorA, vectorB)
real(single), intent(in) :: vectorA(3), vectorB(3)
real(single) :: vectorCrossSingle(3)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 17

end function vectorCrossSingle

function vectorCrossDouble(vectorA, vectorB)
real(double), intent(in) :: vectorA(3), vectorB(3)
real (double) :: vectorCrossDouble(3)
end function vectorCrossDouble
end interface

2.7.2 normalizeVector
Given argument ¥ returns 9.

interface normalizeVector
function normalizeVectorSingle (argument)
real(single), intent(in) :: argument(:)
real(single) :: normalizeVectorSingle(size(argument))
end function normalizeVectorSingle

function normalizeVectorDouble(argument)
real(double), intent(in) :: argument(:)
real(double) :: normalizeVectorDouble(size (argument))
end function normalizeVectorDouble
end interface

2.7.3 findEdges

subroutine findEdges(mask, figureEdges, groundEdges)
logical(bool), intent(in) :: mask(:,:)
logical(bool), intent(out), optional ::&
figureEdges(size(mask, 1),size(mask, 2)),&
groundEdges (size (mask, 1),size(mask, 2))
end subroutine findEdges

Given an input logical array mask, this subroutine returns (optionally) an array figureEdges which
is true at all true-valued pixels in mask which have at least 1 false-valued pixel among their 8 nearest
neighbours. (For pixels at the edges of the input array, the number of nearest neighbours is of course
reduced to 5 or 3 as appropriate.)

I give an example as follows, in which false pixels are represented by 0 and true by 1. For an input mask

11110000111
11111000011
11111100011
11111100001
00000000000
11111110000
11101111100

the returned figureEdges should be

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 18

00010000110
00011000010
00001100011
11111100001
00000000000
11111110000
00101011100

A second array groundEdges is also optionally returned, which is equivalent to figureEdges calculated
for .not.mask.

2.7.4 invertMask

This subroutine inverts the 2-d or 3-d input mask array, which is either Logical, Logical(bool) or Inte-
ger(int8), where .true. and .false. are 1 and 0, respectively.

interface invertMask
subroutine invertMask2dLogical (mask)
logical, intent(inout) :: mask(:,:)
end subroutine invertMask2dLogical

subroutine invertMask2dBool (mask)
logical(bool), intent(inout) :: mask(:,:)
end subroutine invertMask2dBool

subroutine invertMask2dInt8(mask)
integer(int8), intent(inout) :: mask(:,:)

end subroutine invertMask2dInt8

subroutine invertMask3dLogical (mask)
logical, intent(inout) :: mask(:,:,:)

end subroutine invertMask3dLogical

subroutine invertMask3dBool (mask)
logical(bool), intent(inout) :: mask(:,:,:)

end subroutine invertMask3dBool

subroutine invertMask3dInt8(mask)
integer(int8), intent(inout) :: mask(:,:,:)

end subroutine invertMask3dInt8
end interface

2.8 Array or vector — other
2.8.1 printAryEdgesInfo
This prints to STDOUT the debug information of a given AryEdgesInfoT (see Section 2.3).

subroutine printAryEdgesInfo(aryEdgesInfo, varName)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page: 19

type (AryEdgesInfoT), intent(in)
character(*), intent(in), optional ::
end subroutine printAryEdgesInfo

2.8.2 getAryEdgesInfo

This returns a AryEdgesInfoT (see Section 2.3).

interface getAryEdgesInfo

:: aryEdgesInfo
varName

function getAryEdgesInfoDblld(ary, lEdge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 1

real(double), intent(in) :: ary(:)

real(double), intent(in), optional ::

integer, intent(in), optional ::

character(*), intent(in), optional ::

type (AryEdgesInfoT) :: aryEdgesInfo !
end function getAryEdgesInfoDblild

1Edge (rankArin), uEdge(rankArin)
1boundIndex (rankArin)

style

return

function getAryEdgesInfoDbl2d(ary, lEdge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 2

real(double), intent(in) :: ary(:,:)

real(double), intent(in), optional ::

integer, intent(in), optional ::

character(*), intent(in), optional ::

type (AryEdgesInfoT) :: aryEdgesInfo !
end function getAryEdgesInfoDbl2d

1Edge (rankArin), uEdge(rankArin)
lboundIndex (rankArin)

style

return

function getAryEdgesInfoDbl3d(ary, lEdge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 3

real(double), intent(in) :: ary(:,:,

real(double), intent(in), optional ::

integer, intent(in), optional ::

character(*), intent(in), optional ::

type (AryEdgesInfoT) :: aryEdgesInfo !
end function getAryEdgesInfoDbl3d

)

1Edge (rankArin), uEdge(rankArin)
1lboundIndex (rankArin)

style

return

function getAryEdgesInfoSglid(ary, 1Edge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 1

real(single), intent(in) :: ary(:)

real(single), intent(in), optional ::

integer, intent(in), optional ::

character(*), intent(in), optional ::

type (AryEdgesInfoT) :: aryEdgesInfo !
end function getAryEdgesInfoSglild

1Edge (rankArin), uEdge(rankArin)
lboundIndex (rankArin)

style

Start

function getAryEdgesInfoSgl2d(ary, lEdge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 2

real(single), intent(in) :: ary(:,:)
real(single), intent(in), optional ::
integer, intent(in), optional ::
character(*), intent(in), optional ::
type (AryEdgesInfoT) :: aryEdgesInfo !

xmmsas_20230412_1735-21.0.0

1Edge (rankArin), uEdge(rankArin)
1lboundIndex (rankArin)

style

return

XMM-Newton Science Analysis System

Page: 20

end function getAryEdgesInfoSgl2d

function getAryEdgesInfoSgl3d(ary, 1lEdge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 3
real(single), intent(in)
real(single), intent(in), optional
integer, intent(in), optional ::
character(*), intent(in), optional ::
type (AryEdgesInfoT) :: aryEdgesInfo !

end function getAryEdgesInfoSgl3d

:ary(:,:,:
: 1Edge(rankArin), uEdge(rankArin)

)

lboundIndex (rankArin)
style
return

function getAryEdgesInfoInt321d(ary, 1Edge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 1
integer(int32), intent(in) :oary(:)
real(single), intent(in), optional ::
integer, intent(in), optional ::
character(*), intent(in), optional ::
type (AryEdgesInfoT) :: aryEdgesInfo !
end function getAryEdgesInfolInt321d

1Edge (rankArin), uEdge(rankArin)
1lboundIndex (rankArin)

style

return

function getAryEdgesInfoInt322d(ary, 1lEdge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 2
integer(int32), intent(in) :ary(:,
real(single), intent(in), optional ::

integer, intent(in), optional ::
character(*), intent(in), optional ::
type (AryEdgesInfoT) :: aryEdgesInfo !

end function getAryEdgesInfoInt322d

)

1Edge (rankArin), uEdge(rankArin)
lboundIndex (rankArin)

style

return

function getAryEdgesInfoInt323d(ary, 1lEdge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 3
integer(int32), intent(in) : ary(:,
real(single), intent(in), optional ::
integer, intent(in), optional ::
character(*), intent(in), optional ::
type (AryEdgesInfoT) :: aryEdgesInfo !
end function getAryEdgesInfoInt323d

1, 0)

1Edge (rankArin), uEdge(rankArin)
lboundIndex (rankArin)

style

return

function getAryEdgesInfoInti6ld(ary, 1Edge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 1
integer(int16), intent(in) :ary(:)
real(single), intent(in), optional ::
integer, intent(in), optional ::
character(*), intent(in), optional ::
type (AryEdgesInfoT) :: aryEdgesInfo !
end function getAryEdgesInfolInt161d

1Edge (rankArin), uEdge(rankArin)
1lboundIndex (rankArin)

style

return

function getAryEdgesInfoIntl162d(ary, 1Edge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 2
integer(int16), intent(in) :ary(:,
real(single), intent(in), optional ::

integer, intent(in), optional ::
character(*), intent(in), optional ::
type (AryEdgesInfoT) :: aryEdgesInfo !

xmmsas_20230412_1735-21.0.0

)

1Edge (rankArin), uEdge(rankArin)
lboundIndex (rankArin)

style

return

XMM-Newton Science Analysis System

Page: 21

end function getAryEdgesInfoInt162d

function getAryEdgesInfoInt163d(ary, 1Edge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 3

integer(int16), intent(in) s ary(:,:

real(single), intent(in), optional ::

integer, intent(in), optional ::

character(*), intent(in), optional ::

type (AryEdgesInfoT) :: aryEdgesInfo !
end function getAryEdgesInfoInt163d

, 1)

1Edge (rankArin), uEdge(rankArin)
lboundIndex (rankArin)

style

return

function getAryEdgesInfoInt8ld(ary, 1Edge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 1

integer(int8), intent(in) toary(:)

real(single), intent(in), optional ::

integer, intent(in), optional ::

character(*), intent(in), optional ::

type (AryEdgesInfoT) :: aryEdgesInfo !
end function getAryEdgesInfolInt81d

1Edge (rankArin), uEdge(rankArin)
1lboundIndex (rankArin)

style

return

function getAryEdgesInfoInt82d(ary, 1lEdge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 2

integer(int8), intent(in) tary(:,:)

real(single), intent(in), optional ::

integer, intent(in), optional ::

character(*), intent(in), optional ::

type (AryEdgesInfoT) :: aryEdgesInfo !
end function getAryEdgesInfoInt82d

1Edge (rankArin), uEdge(rankArin)
lboundIndex (rankArin)

style

return

function getAryEdgesInfoInt83d(ary, lEdge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 3
integer(int8), intent(in) :ary(:,:,
real(single), intent(in), optional ::
integer, intent(in), optional ::
character(*), intent(in), optional ::
type (AryEdgesInfoT) :: aryEdgesInfo !
end function getAryEdgesInfoInt83d
end interface

Among the input arguments, 1boundIndex is lbound(ary) (in the caller); or 1 if unspecified.

:)

1Edge (rankArin), uEdge(rankArin)
lboundIndex (rankArin)

style

return

If

style==’wcs’, then it is allowed neither 1Edge nor uEdge are given (nb., if you for some reason choose to
give one, please give the both); in that case 1Edge is 1boundIndex-0.5 and uEdge is accordingly defined.

Otherwise 1Edge and uEdge MUST be given.

2.8.3 getAryStatInfo

This function returns the structure aryStatInfo???T (See Section 2.2), which contains the statistical
information of the array. This function offers an interface for five (numerical) types of input Array and
the type of the returned value (aryStatInfo???T) varies accordingly.

At the time of writing (ssclib-4.6), it accepts the 1- and 2-dimensional arrays. In the future it is planned

to accept 3-dimensional arrays as well.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 22

The following is an example interface for the Double-type one. In other types, only the difference is the
type of the input Array, arin (and the returned type, accordingly — see Section 2.2 for detail).

interface getAryStatInfo
function getAryStatInfoDoubleld(arin, arMaskIn &
, minAreaIndices, maxArealndices, vallower, valUpper, flagInfo) result(retInfo)

integer, parameter :: rankArin =1

type(aryStatInfoDoubleT) :: retInfo

real(double), intent(in) :: arin(:)

logical, intent(in), optional :: arMaskIn(:)

integer(int32), intent(in), optional :: minAreaIndices(rankArin), maxArealndices(rankArin)
real(double), intent(in), optional :: valLower, valUpper

type(aryStatInfoFlagT), intent(in), optional :: flagInfo
end function getAryStatInfoDoubleld

function getAryStatInfoDouble2d(arin, arMaskIn &
, minAreaIndices, maxArealndices, vallLower, valUpper, flagInfo) result(retInfo)

integer, parameter :: rankArin = 2

type(aryStatInfoDoubleT) :: retInfo

real(double), intent(in) :: arin(:,:) ! Input data Array

logical, intent(in), optional :: arMaskIn(:,:)

integer(int32), intent(in), optional :: minAreaIndices(rankArin), maxArealIndices(rankArin)
real(double), intent(in), optional :: valLower, valUpper

type(aryStatInfoFlagT), intent(in), optional :: flagInfo
end function getAryStatInfoDouble2d
end interface

Note that the ranks of arin and arMaskIn (if specified) have to be identical.

2.8.4 calcAryStatInfoMask

This subroutine is the core routine for the function getAryStatInfo (Section 2.8.3). The difference is
that this function returns, as well as (aryStatInfo??7?T), the final mask file, which is used to determine
the valid entry to calculate the statistical information of the array. If that is what you want, you can call
this subroutine directly.

The following is an example interface for the Double-type one. Again, in other types, only the difference
is the type of the input Array, arin (and the returned type, accordingly — see Section 2.2 for detail).

interface calcAryStatInfoMask
subroutine calcAryStatInfoMaskDoubleld(arin, retInfo, arMaskOut, arMaskIn &
, minAreaIndices, maxArealndices, vallLower, valUpper, flagInfo)

integer, parameter :: rankArin =1

real(double), intent(in) :: arin(:) ! Input data Array

type (aryStatInfoDoubleT), intent(out) :: retInfo

logical, intent(out) :: arMaskOut(:) ! Must be predefined.

logical, intent(in), optional :: arMaskIn(:)

integer(int32), intent(in), optional :: minArealndices(rankArin), maxArealndices(rankArin)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 23

real(double), intent(in), optional :: valLower, valUpper
type(aryStatInfoFlagT), intent(in), optional :: flagInfo
end subroutine calcAryStatInfoMaskDoubleld

subroutine calcAryStatInfoMaskDouble2d(arin, retInfo, arMaskOut, arMaskIn &
, minAreaIndices, maxArealndices, vallLower, valUpper, flagInfo)

integer, parameter :: rankArin = 2

real (double), intent(in) :: arin(:,:) ! Input data Array

type(aryStatInfoDoubleT), intent(out) :: retInfo

logical, intent(out) :: arMaskOut(:,:) ! Must be predefined.

logical, intent(in), optional :: arMaskIn(:,:)

integer(int32), intent(in), optional :: minArealndices(rankArin), maxArealndices(rankArin)
real(double), intent(in), optional :: valLower, valUpper

type(aryStatInfoFlagT), intent(in), optional :: flagInfo
end subroutine calcAryStatInfoMaskDouble2d
end interface

Note that the ranks of arin and arMaskIn (if specified) and arMaskOut have to be identical. And (the
rank of) arMaskOut has to be defined in the caller side before the call.

2.8.5 printAryStatInfo

Print the contents of aryStatInfo???T structure variable to STDOUT. Note that some of the values are
not printed if undefined. This returns nothing.

interface printAryStatInfo
subroutine printAryStatInfoDouble(aryInfo)
type(aryStatInfo???T), intent(in) :: aryInfo
end subroutine printAryStatInfoDouble
end interface

2.8.6 getAnnularMaskAry

Return a Logical 2-dimensional mask array for a given size, where the area of the pixels at (rInner <=
radius < rOuter) are True.

Note: Make sure to deallocate the returned array after use.

interface getAnnularMaskAry
function getAnnularMaskAry(sizeX, sizeY, centX, centY &
, rOuter, rInner) result(arMask)
logical, allocatable :: arMask(:,:)

integer(int32), intent(in) :: sizeX, sizeY
real (double), intent(in) :: centX, centY, rOuter
real (double), intent(in), optional :: rInner ! O in default.

end function getAnnularMaskAry
end interface

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

3 Subroutine shortcuts for manipulating information used for

setting the CAL state

Module name: cal_aux

Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)

3.1 Extract information about the instrument, exposure start time and space-

craft and instrument attitude from a dataset header.

interface getCallnfo

subroutine getCalInfoName(setName, instrumentId, expStartTimeStamp&

, scAttitude, instrumAttitude)

character (*), intent (in)
integer(int32), intent (out)
real (double), intent (out)

type (SpacecraftAttitudeType), intent(out)
end subroutine getCalInfoName

subroutine getCallnfoSet(set, instrumentId,

, instrumAttitude)

type (DataSetT), intent (in)
integer(int32), intent (out)
real (double), intent (out)

type(SpacecraftAttitudeType), intent (out)
end subroutine getCalInfoSet
end interface

:: setName
instrumentId
:: expStartTimeStamp
:: scAttitude, instrumAttitude

expStartTimeStamp, scAttitude&

;. set
instrumentId
:: expStartTimeStamp
:: scAttitude, instrumAttitude

NOTE that this call also sets the state of the cal to the returned instrument.

The instrumentld and expStartTimeStamp are obtained from respectively from the INSTRUME and
DATE-0BS keywords of the dataset header. The scAttitude is read from the RA_PNT, DEC_PNT and PA_PNT
keywords (this is actually wrong, since the instrument attitude is what should be stored in these, not the
spacecraft attitude). The boresight is then obtained for the exposure start time, and instrumAttitude

calculated by applying the boresight rotation to scAttitude.

3.2 Spacecraft — instrument attitude

function getInstrumentAttitude(scAttitude, timeStamp) result(instrumAttitude)

real(double), intent (in)
type (SpacecraftAttitudeType), intent(in)
type (SpacecraftAttitudeType)

end function getInstrumentAttitude

: timeStamp
:: scAttitude
:: instrumAttitude

NOTE this function requires the cal to have been set to the correct instrument before the call.

xmmsas_20230412_1735-21.0.0

Page:

XMM-Newton Science Analysis System Page: 25

3.3 Instrument — spacecraft attitude

function getScAttitude(instrumAttitude, timeStamp) result(scAttitude)

real(double), intent(in) :: timeStamp
type(SpacecraftAttitudeType), intent(in) :: instrumAttitude
type (SpacecraftAttitudeType) 1: scAttitude

end function getScAttitude

NOTE this function requires the cal to have been set to the correct instrument before the call.

4 Routines to calculate source confusion

Module name: confusion

Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)

subroutine findConfusedSets(srcX, srcY, srcRadius, confSetNum)

real (double), intent(in) :: srcX(:), srcY(size(srcX))
real (double), intent(in) :: srcRadius(size(srcX))
integer(int16), intent(out) :: confSetNum(size(srcX))

end subroutine findConfusedSets
This subroutine takes as inputs a list of source positions $srcX$ and $srcY$ and nominal radii $

There are no gaps in the returned sequence of confusion indices. Ie for all valid confusion indi

5 A module which contains various mathematical and physical
constants

Module name: constants

Authors: Richard West (University of Leicester, rgw@star.le.ac.uk), Tan Stewart (University of Leicester,
ims@star.le.ac.uk).

5.1 Constants

The constants module defines a set of widely used mathematical and physical constants. The constants
are defined as “double precision” (real (kind=double)).

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:
5.1.1 Pi-related constants
Name Value Description
Pi 3.1415926535897931 s
TwoPi 2.0*%Pi 27
FourPi 4.0*Pi 4
PiOverTwo 0.5*Pi /2
PiOn2 0.5*Pi /2
OneOverPi 1.0/Pi 1/m
OneOverTwoPi 0.5/Pi 1/2m
5.1.2 Angle conversion factors
Name Value Description
DegToRad TwoPi/360.0 Degrees to radians
RadToDeg 360.0/TwoPi Radians to degrees
Deg2Rad TwoPi/360.0 Degrees to radians
PiOn180 TwoP1i/360.0 Degrees to radians
ArcminToRad DegToRad/60.0 Arcminutes to radians
RadToArcmin RadToDeg*60.0 Radians to arcminutes
ArcsecToRad DegToRad/3600.0 Arcseconds to radians
RadToArcsec RadToDeg*3600.0 Radians to arcseconds

5.1.3 Solid angle conversion factors

Name Value Description

SgDegToSterad DegToRad2 Square degrees to steradian
SqArcminToSterad SqDegToSterad/3600.0 Square arcminutes to steradians
SqArcsecToSterad SqDegToSterad/1.296 x 107 Square arcseconds to steradian
SteradToSqDeg RadToDeg? Steradian to square degrees
SteradToSgArcmin SteradToSqDeg*3600.0 Steradian to square arcminutes
SteradToSqArcsec SteradToSqDeg*1.296 x 107 Steradian to square arcseconds

5.1.4 Square roots

Name Value Description
RootTwo 1.4142135623730951 V2
RootThree 1.7320508075688772 V3
RootTen 3.1622776601683795 V10
RootPi 1.7724538509055159 VT

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 27
5.1.5 Natural log-related
Name Value Description
NapierE 2.7182818284590455 e
1nTwo 0.6931471805599453 In2
1nThree 1.0986122886681098 In3
InFive 1.6094379124341003 In5
1nSeven 1.9459101490553132 In7
1nTen 2.3025850929940459 In 10
1nPi 1.1447298858494002 Inm
5.1.6 Fundamental physical constants
Name Value Description
SpeedOfLight 299792458.0 c(ms™1)
PlanckH 6.62606876 x 1034 h(Js)
NewtonG 6.673 x 107! G (m3 kg™t s72)
ElectronQ 1.602176462 x 10~ 19 e (C)
Boltzmann 1.3806503 x 1023 kE(JK™)
StefanBoltzmann 5.670400 x 1078 o (Wm 2 K™
Avogadro 6.02214199 x 10%3 Na (mol™1)
5.1.7 Energy conversion factors
Name Value Description
ErgToeV 1.0d-7 / ElectronQ erg to eV
ErgTokeV ErgToeV/1000.0 erg to keV
eVToErg 1.0/ErgToev eV to ergs
keVToErg 1000.0/ErgToev keV to ergs
5.1.8 Solar system constants
Name Value Description
EarthRadius 6378.14 km

5.2 Unit conversion routines

function angstroms2eV(angstroms) result(EeV)
real(double), intent(in) :: angstroms
real (double) :: EeV

end function angstroms2eV

function eV2angstroms(EeV) result(angstroms)
real (double), intent(in) :: EeV
real (double) 11 angstroms

end function eV2angstroms

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 28

5.3 Black Body routines

These subroutines calculate the power (in watts) radiated per unit surface area (m2) per unit solid angle
(sr) by a black body at temperature="kelvin’. The power can be calculated either per unit frequency, at
a given frequency (both in hertz), or per unit wavelength (in metres) at a given supplied wavelength (in
angstroms).

The subroutines are designed to be portable and as fast yet as accurate as possible.

5.3.1 Per unit frequency

The precision at low frequencies f is limited by the calculation of exp(x)-1, where x = hfk/T. At low
values of x, exp(x) is close to 1 and thus the difference between exp(x) and 1 is a number of low precision.
Thus for x values less than 0.1, a series expansion of (exp(x)-1)/x is used instead. The minimum precision
occurs at x = 0.1 and is approximately equal to precision(1d0)-1.

subroutine getBBfluxPerHertz(hertzValues, kelvin, powerValues)
real (double), intent(in) :: hertzValues(:), kelvin
real(double), intent(out) :: powerValues(size(hertzValues))
end subroutine getBBfluxPerHertz

function bbFluxPerHertz(hertz, kelvin) result(power)
real (double), intent(in) :: hertz, kelvin
real (double) 11 power

end function bbFluxPerHertz

5.3.2 Per unit wavelength

The precision at long wavelengths L is limited by the calculation of exp(x)-1, where x = hk/TL. At low
values of x, exp(x) is close to 1 and thus the difference between exp(x) and 1 is a number of low precision.
Thus for x values less than 0.1, a series expansion of (exp(x)-1)/x is used instead. The minimum precision
occurs at x = 0.1 and is approximately equal to precision(1d0)-1.

subroutine getBBfluxPerMetre(angstromValues, kelvin, powerValues)
real(double), intent(in) :: angstromValues(:), kelvin
real(double), intent(out) :: powerValues(size(angstromValues))
end subroutine getBBfluxPerMetre

function bbFluxPerMetre(angstroms, kelvin) result(power)
real(double), intent(in) :: angstroms, kelvin

real (double) 11 power
end function bbFluxPerMetre

6 Routines for performing coordinate transforms

**** include changes in version 3.6.5 etc

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 29

Module name: coordinate
Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)
This module contains subroutines to perform a variety of coordinate transformations. Where possible

the cal coordinate-transformation routines are used. The present subroutines have been designed to act
as wrappers-of-convenience for one or more of the cal routines rather than to supplant them.

6.1 getPsfIlmagePixelCorners

subroutine getPsfImagePixelCorners(psfThetaArcsec, psfPhi, psfPixelSizeMm&
, psfImage, wcs, wcsType, instrumentId, timeStamp, scAttitude&
, psfImagePixelCorners, psfCentrePixels)

real (double), intent(in) :: psfThetaArcsec, psfPhi

type (PsfBinSizeT), intent(in) :: psfPixelSizeMm

real(single), intent(in) :: psflmage(:,:)

type (WcsT), intent(in) :: wcs

character(x), intent(in) :: wcsType

integer (int32), intent(in) :: instrumentId

real (double), intent(in) :: timeStamp

type(SpacecraftAttitudeType), intent(in) :: scAttitude

type (Point2dT), intent (out) :: psfImagePixelCorners(&
size(psfImage,1)+1&
,size(psfImage,2)+1)

type (Point2dT), intent(out) :: psfCentrePixels

end subroutine getPsfImagePixelCorners

This subroutine takes an image of the Point Spread Function (PSF) returned by the cal call CAL_getPsflmage
for a given instrument and returns an array of x and y coordinates, in the sky image coordinate system
defined by the wcs structure wes, of the intersections of the pixel edge grid of this image. This grid
intersections array is necessary as input to the routine regrid (see section ??), the purpose of which is to
rebin the PSF image to sky coordinates.

NOTE this subroutine requires the cal to have been set to the correct instrument before the call.

6.2 raDecTolnst

interface raDecTolnst
subroutine raDecTolInstScalar(raDeg, decDeg, scAttitude&
, timeStamp, detX, detY, thetaArcsec, phi)

real(double), intent(in) :: raDeg,&
decDeg
type(SpacecraftAttitudeType), intent(in) :: scAttitude
real(double), intent(in) :: timeStamp
real(single) , optional, intent(out) :: detX,&
detY
real (double) , optional, intent(out) :: thetaArcsec,&
phi

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 30

end subroutine raDecToInstScalar

subroutine raDecTolInstVector(raDeg, decDeg, scAttitude&
, timeStamp, detX, detY, thetaArcsec, phi)

real(double), intent(in) :: raDeg(:),&
decDeg(size(raDeg))

type(SpacecraftAttitudeType), intent(in) :: scAttitude

real (double), intent(in) :: timeStamp

real(single) , optional, intent(out) :: detX(size(raDeg)),&
detY(size(raDeg))

real (double) , optional, intent(out) :: thetaArcsec(size(raDeg)),&
phi(size(raDeg))

end subroutine raDecTolnstVector

end interface

This subroutine converts from celestial coordinates to instrument-centric coordinates, in either the
DETX/Y (the same, up to a scalar multiple, as the CAMCOORD2 system) or TELCOORD systems,
depending on which of the optional variables detX, detY, theta Arcsec and phi the caller has supplied.

NOTE this subroutine requires the cal to have been set to the correct instrument before the call.

6.3 instToRaDec

*** There is no subroutine with this name???

interface instToRaDec
subroutine instToRaDecScalar(raDeg, decDeg, scAttitude&
, timeStamp, detX, detY, thetaArcsec, phi)

real (double), intent(out) :: raDeg,&
decDeg
type(SpacecraftAttitudeType), intent(in) :: scAttitude
real (double), intent(in) :: timeStamp
real(single), optional, intent(in) :: detX,&
detY
real (double), optional, intent(in) :: thetaArcsec,&
phi

end subroutine instToRaDecScalar

subroutine instToRaDecVector(raDeg, decDeg, scAttitude&
, timeStamp, detX, detY, thetaArcsec, phi)

real (double), intent (out) :: raDeg(:),&
decDeg(size(raDeg))

type(SpacecraftAttitudeType), intent(in) :: scAttitude

real(double), intent(in) :: timeStamp

real(single), optional, intent(in) :: detX(size(raDeg)),&
detY(size(raDeg))

real (double), optional, intent(in) :: thetaArcsec(size(raDeg)),&

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 31

phi(size(raDeg))
end subroutine instToRaDecVector

! instToRaDecArray not yet done

end interface

This subroutine converts to celestial coordinates from instrument-centric coordinates, in either the
DETX/Y (the same, up to a scalar multiple, as the CAMCOORD2 system) or TELCOORD systems,
depending on which of the optional variables det X, detY, theta Arcsec and phi the caller has supplied.

NOTE this function requires the cal to have been set to the correct instrument before the call.

6.4 raDecToPixels

interface raDecToPixels
subroutine raDecToPixelsScalar(ra, dec, wcs, xPixel, yPixel)

real (double), intent(in) :: ra,&

dec
type(WcsT), intent(in) :: wcs ! defined in ssclib/wcs_aux
real(single), intent(out) :: xPixel,&

yPixel

end subroutine raDecToPixelsScalar

subroutine raDecToPixelsVector(ra, dec, wcs, xPixel, yPixel)

real(double), intent(in) :: ra(:),&

dec(size(ra))
type(WcsT), intent(in) :: wcs ! defined in ssclib/wcs_aux
real(single), intent(out) :: xPixel(size(ra)),&

yPixel(size(ra))
end subroutine raDecToPixelsVector

subroutine raDecToPixelsArray(ra, dec, wcs, xPixel, yPixel)

real (double), intent(in) :: ra(:,:),&
dec(size(ra,l1),size(ra,2))

type(WcsT), intent(in) :: wcs ! defined in ssclib/wcs_aux

real(single), intent(out) :: xPixel(size(ra,l),size(ra,2)),&

yPixel(size(ra,1) ,size(ra,2))
end subroutine raDecToPixelsArray

end interface

This subroutins returns the pixel coordinates for the given set of the celestial coordinates in degree.

6.5 pixelsToRaDec

interface pixelsToRaDec

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 32

subroutine pixelsToRaDecScalar(xPixel, yPixel, wcs, ra, dec)

real(single), intent(in) :: xPixel,&

yPixel
type(WcsT), intent(in) :: wcs ! defined in ssclib/wcs_aux
real (double), intent(out) :: ra,&

dec

end subroutine pixelsToRaDecScalar

subroutine pixelsToRaDecVector(xPixel, yPixel, wcs, ra, dec)

real(single), intent(in) :: xPixel(:),&
yPixel(size(xPixel))

type(WcsT), intent(in) :: wcs ! defined in ssclib/wcs_aux

real(double), intent(out) :: ra(size(xPixel)),&

dec(size(xPixel))
end subroutine pixelsToRaDecVector

subroutine pixelsToRaDecArray(xPixel, yPixel, wcs, ra, dec)

real(single), intent(in) :: xPixel(:,:),&
yPixel(size(xPixel,1),size(xPixel,2))

type(WcsT), intent(in) :: wcs ! defined in ssclib/wcs_aux

real (double), intent(out) :: ra(size(xPixel,1),size(xPixel,2)),&

dec(size(xPixel,1),size(xPixel,?2))
end subroutine pixelsToRaDecArray(xPixel, yPixel, wcs, ra, dec)
end interface

The inverse subroutine of raDecToPixels(). This retuns the celestial coordinates (in J2000) in degrees
for the given pair of the sky pixel coordinates.

6.6 raDecToTan

interface raDecToTan
subroutine raDecToTanScalar(refRaDeg, refDecDeg, raDeg, decDeg, tanX, tanY)
real(double), intent(in) :: refRaDeg,&
refDecDeg,&
raDeg,&
decDeg
real(double), intent(out) :: tanX,&
tanY
end subroutine raDecToTanScalar

subroutine raDecToTanVector(refRaDeg, refDecDeg, raDeg, decDeg, tanX, tanY)
real(double), intent(in) :: refRaDeg,&
refDecDeg,&
raDeg(:) ,&
decDeg(size(raDeg))
real(double), intent(out) :: tanX(size(raDeg)),&
tanY(size(raDeg))
end subroutine raDecToTanVector

subroutine raDecToTanArray(ra, dec, refRa, refDec, xTan, yTan)

real (double), intent(in) :: refRa,&
refDec,&

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 33

ra(:,:),&
dec(size(ra,1),size(ra,2))
real (double), intent(out) :: xTan(size(ra,1),size(ra,2)),&

yTan(size(ra,1),size(ra,2))
end subroutine raDecToTanArray

subroutine raDecToTanScalarWcs(ra, dec, wcs, xTan, yTan)

real (double), intent(in) :: ra, dec
type(WcsT), intent(in) :: wcs
real(double), intent(out) :: xTan, yTan

end subroutine raDecToTanScalarWcs

subroutine raDecToTanVectorWcs(ra, dec, wcs, xTan, yTan)

real(double), intent(in) :: ra(:),&
dec(size(ra))

type(WcsT), intent(in) :: wcs

real(double), intent(out) :: xTan(size(ra)),&

yTan(size(ra))
end subroutine raDecToTanVectorWcs

subroutine raDecToTanArrayWcs(ra, dec, wcs, xTan, yTan)

real(double), intent(in) :: ra(:,:),&
dec(size(ra,1),size(ra,2))

type(WcsT), intent(in) :: wcs

real(double), intent(out) :: xTan(size(ra,1),size(ra,2)),&

yTan(size(ra,1),size(ra,2))
end subroutine raDecToTanArrayWcs
end interface

This transform is a projection from celestial coordinates to that tangent plane normal to the direction
defined by refRaDeg and refDecDeg. The signs of the returned values are such that tanX increases in
the direction of decreasing ra and tanY increases in the direction of increasing dec. If the tangent plane
were viewed from the centre of the celestial sphere, with the celestial north pole at the zenith, tanX would
increase to rightwards and tanY upwards.

6.7 tanToRaDec

interface tanToRaDec
subroutine tanToRaDecScalar(refRaDeg, refDecDeg, tanX, tanY, raDeg, decDeg)
real(double), intent(in) :: refRaDeg,&
refDecDeg, &
tanX,&
tanY
real(double), intent(out) :: raDeg,&
decDeg
end subroutine tanToRaDecScalar

subroutine tanToRaDecVector(refRaDeg, refDecDeg, tanX, tanY, raDeg, decDeg)
real(double), intent(in) :: refRaDeg,&
refDecDeg,&
tanX(:),&
tanY(size(tanX))

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 34

real(double), intent(out) :: raDeg(size(tanX)),&
decDeg(size(tanX))
end interface

! tanToRaDecArray not yet done

This transform is a projection to celestial coordinates from that tangent plane normal to the direction
defined by refRaDeg and refDecDeg. The signs of the the returned values are such that tanX increases
in the direction of decreasing ra and tanY increases in the direction of increasing dec. If the tangent
plane were viewed from the centre of the celestial sphere, with the celestial north pole at the zenith, tanX
would increase to rightwards and tanY upwards.

6.8 polarsToRaDec

interface polarsToRaDec
subroutine polarsToRaDecVector(refRaDeg, refDecDeg, theta, phi, raDegk&

, decDeg)

real(double), intent(in) :: refRaDeg,&
refDecDeg, &
theta(:),&
phi(size(theta))

real(double), intent(out) :: raDeg(size(theta)),&
decDeg(size(theta))

end subroutine polarsToRaDecVector
end interface

! tanToRaDecScalar, tanToRaDecArray not yet done

The same as tanToRaDec (section ??), except the coordinates on the tangent plane are now given in
polar coordinates theta and phi instead of cartesian tanX and tanY. The relationship between the two
sets is as follows:

tanX = tan(theta) cos(phi)tanY = tan(theta) sin(phi)

6.9 instToTan

interface instToTan
subroutine instToTanScalar(tanX, tanY, refRaDeg, refDecDeg, scAttitude&
, timeStamp, detX, detY, thetaArcsec, phi)

real (double), intent(out) :: tanX,&
tanY

real (double), intent(in) :: refRaDeg,&
refDecDeg

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 35

type (SpacecraftAttitudeType), intent(in) scAttitude

real (double), intent(in) :: timeStamp

real(single), optional, intent(in) :: detX,&
detY

real (double), optional, intent(in) : thetalArcsec,&
phi

end subroutine instToTanScalar
subroutine instToTanVector(tanX, tanY, refRaDeg, refDecDeg, scAttitude&

, timeStamp, detX, detY, thetaArcsec, phi)

real (double), intent(out) :: tanX(:),&
tanY(size(tanX))

real (double), intent (in) : refRaDeg,&
refDecDeg

type (SpacecraftAttitudeType), intent(in) scAttitude

real (double), intent(in) :: timeStamp

real(single), optional, intent(in) :: detX(size(tanX)),&
detY(size(tanX))

real (double), optional, intent(in) :: thetaArcsec(size(tanX)),&
phi(size(tanX))

end subroutine instToTanVector

subroutine instToTanArray(tanX, tanY, refRaDeg, refDecDeg, scAttitude&
, timeStamp, detX, detY, thetaArcsec, phi)

real(double), intent (out) :: tanX(:,:),&
tanY(size(tanX,1),&
size(tanX,2))
real (double), intent(in) :: refRaDeg,&
refDecDeg
type(SpacecraftAttitudeType), intent(in) scAttitude
real (double), intent(in) :: timeStamp

:: detX(size(tanX,1),&
size(tanX,2)),&
detY(size(tanX,1),&
size(tanX,2))
:: thetaArcsec(size(tanX,1),&
size(tanX,2)),&
phi(size(tanX,1),&
size(tanX,2))

real(single), optional, intent(in)

real(double), optional, intent(in)

end subroutine instToTanArray
end interface

Effectively this is just instToRaDec (section ??) followed by raDecToTan (section ?7?).

NOTE this function requires the cal to have been set to the correct instrument before the call.

6.10 tanTolnst

interface tanTolnst
subroutine tanToInstScalar(tanX, tanY, refRaDeg, refDecDeg, scAttitude&

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

36

, timeStamp, detX, detY, thetaArcsec, phi)

real (double), intent(in) :: refRaDeg,&
refDecDeg,&
tanX,&
tanY
type(SpacecraftAttitudeType), intent(in) :: scAttitude
real(double), intent(in) :: timeStamp
real(single), optional, intent(out) :: detX,&
detY
real(double), optional, intent(out) :: thetaArcsec,&
phi

end subroutine tanTolInstScalar

subroutine tanToInstVector(tanX, tanY, refRaDeg, refDecDeg, scAttitude&
, timeStamp, detX, detY, thetaArcsec, phi)

real(double), intent(in) :: refRaDeg,&
refDecDeg,&
tanX(:),&
tanY (size(tanX))
type(SpacecraftAttitudeType), intent(in) :: scAttitude
real (double), intent(in) :: timeStamp
real(single), optional, intent(out) :: detX(size(tanX)),&
detY(size(tanX))
real (double), optional, intent(out) :: thetaArcsec(size(tanX)),&
phi (size(tanX))

end subroutine tanToInstVector

subroutine tanToInstArray(tanX, tanY, refRaDeg, refDecDeg, scAttitude&
, timeStamp, detX, detY, thetaArcsec, phi)

real(double), intent(in) :: refRaDeg,&
refDecDeg,&
tanX(:,:),&
tanY(size(tanX,1),&
size(tanX,2))

type(SpacecraftAttitudeType), intent(in) :: scAttitude
real (double), intent(in) :: timeStamp
real(single), optional, intent(out) :: detX(size(tanX,1),&

size(tanX,2)),&
detY(size(tanX,1),&
size(tanX,2))
real (double), optional, intent(out) :: thetaArcsec(size(tanX,1),&
size(tanX,2)),&
phi(size(tanX,1),&
size(tanX,2))
end subroutine tanToInstArray
end interface

Effectively this is just tanToRaDec (section ??) followed by raDecTolnst (section ?7).

NOTE this function requires the cal to have been set to the correct instrument before the call.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 37

6.11 instToRaw

interface instToRaw

subroutine instToRawScalarIntl16(rawX, rawY, detX, detY, thetaArcsec, phi)

real(single),
real(double),
integer(int16), intent(out)

end subroutine instToRawScalarIntl6

intent(in), optional ::

intent(in), optional ::

detX,&

detY
thetaArcsec,&
phi

: rawX,&

rawY

subroutine instToRawVectorIntl16(rawX, rawY, detX, detY, thetaArcsec, phi)

real(single),
real(double),
integer(int16), intent(out)

end subroutine instToRawVectorIntl6

intent(in), optional ::

intent(in), optional ::

detX(size(rawX)),&
detY(size(rawX))
thetaArcsec(size(rawX)),&
phi(size(rawX))

: rawX(:),&

rawY (size(rawX))

subroutine instToRawScalarReal32(rawXreal, rawYreal, detX, detY&

, thetaArcsec, phi, is0ffChip)

real(single), intent(in), optional ::

real(double), intent(in), optional

real(single), intent(out)

logical(bool), intent(out), optional ::

end subroutine instToRawScalarReal32

detX, &
detY

:: thetalArcsec,&

phi

:: rawXreal,&

rawYreal
is0ffChip

subroutine instToRawVectorReal32(rawXreal, rawYreal, detX, detY&

, thetaArcsec, phi, isOffChip)

real(single), intent(in), optional ::

real(double), intent(in), optional ::

real(single), intent(out)

logical(bool), intent(out), optional ::

end subroutine instToRawVectorReal32
end interface

These subroutines convert to chip coordinates (ie, the RAWX/Y or PIXCOORD1 system) from instrument-

detX(size(rawXreal)),&
detY(size(rawXreal))
thetaArcsec(size(rawXreal)) ,&
phi(size(rawXreal))

:: rawXreal(:),&

rawYreal (size(rawXreal))
is0ffChip(size(rawXreal))

centric coordinates, the latter being either the DETX/Y (the same, up to a scalar multiple, as the CAM-
COORD2 system) or the TELCOORD system, depending on which of the optional variables detX, detY’,

thetaArcsec and phi the caller has supplied.

The ‘int16’ routines employ the cal calls CAL_camCoord1ToChipCoord and CAL_chipCoordToPixCoord1.
However, these calls have two drawbacks: firstly, they return integer values, and secondly, they are only

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 38

valid ‘on-chip’. However there are occasions when it is desirable to obtain finer precision in the chip
coordinates and also to be able to out of the strict range. For this reason I wrote the ‘real32’ routines.
The latter do not use the cal calls mentioned above. Instead they first move forward by calculating the
instrument-centric coordinates of the corners of the CCD; this information is then iused to perform a
linear back-transformation of the input instrument-centric coordinates. The logical variable ¢sO f fChip
is also set.

NOTE this subroutine requires the cal to have been set to the correct instrumentld, ccdChipld and (if
instrumentId is EMOS1 or EMOS2) ccdNodeld before the call.

6.12 rawTolnst (rawToDet)

interface rawTolnst
subroutine rawToInstScalar(rawX, rawY, detX, detY, thetaArcsec, phi)

integer(int16), intent(in) :: rawX,&
rawY
real(single), intent(out) :: detX,&
detY
real (double), intent(out) :: thetaArcsec,&
phi

end subroutine rawToInstScalar

subroutine rawToInstVector(rawX, rawY, detX, detY, thetaArcsec, phi)

integer(int16), intent(in) :: rawX(:),&
rawY (size(rawX))

real(single), intent(out) :: detX(size(rawX)),&
detY(size(rawX))

real (double), intent(out) :: thetaArcsec(size(rawX)),&
phi (size(rawX))

end subroutine rawToInstVector

subroutine raWToInstArray(ran, rawY, detX, detY, thetaArcsec, phi)

integer(int16), intent(in) :: rawX(:,:),&
rawY(size(rawX,1),size(rawX,2))
real(single), intent(out) :: detX(size(rawX,1),size(rawX,2)),&
detY(size(rawX,1),size(rawX,2))
real (double), intent(out) :: thetaArcsec(size(rawX,1)&

,size(rawX,2)),&
phi(size(rawX,1),size(rawX,2))
end subroutine rawToInstArray
end interface

These subroutines convert from chip coordinates (ie, the RAWX/Y or PIXCOORDI system) to instrument-
centric coordinates, the TELCOORD system (thetaArcsec and phi), as well as the DETX/Y (detX and
detY) (the same, up to a scalar multiple, as the CAMCOORD?2 system) in unit of pixels, i.e., not mm
as cal supplies. The cal calls CAL_rawXY2mm and CAL_camCoord2ToTelCoord are employed.

NOTE this function requires the cal to have been set to the correct instrumentld, ccdChipld and (if
instrumentld is EMOS1 or EMOS2) ccdNodeld before the call. This routine does not alter the random-
ization state of CAL. Hence if you want an identical result every time you call this subroutine,

call CAL_setState(randomize=.false.)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 39

should be set beforehand.

The subroutine rawToDet() is identical to this, except it does not return the TELCOORD system
variables (thetaArcsec and phi).

6.13 getThetaPhiMaps

subroutine getThetaPhiMaps(wcs, scAttitude, timeStamp, thetaMap, phiMap)

type (WcsT), intent(in) :: wcs

type (SpacecraftAttitudeType), intent(in) :: scAttitude

real (double), intent(in) :: timeStamp

real (double), intent(out) :: thetaMap(:,:),&

phiMap(size(thetaMap,1)&
, size(thetaMap,2))
end subroutine getThetaPhiMaps

This subroutine returns two arrays in the sky image coordinate system defined by the WCS structure wcs:
one containing the # and the other the ¢ value at that pixel; 6 and ¢ being the instrument-mirror-centric
TELCOORD-system polar coordinates.

6.14 skyToCartesian

interface skyToCartesian
function skyToCartesianSingle(ra, dec) result(vector)
real(single), intent(in) :: ra, dec
real(single) :: vector(3)
end function skyToCartesian

function skyToCartesianDouble(ra, dec) result(vector)
real (double), intent(in) :: ra, dec
real (double) :: vector(3)
end function skyToCartesian
end interface

Returns a vector of direction cosines of the celestial coordinates ra and dec. NOTE ra and dec must be
in radians.

6.15 cartesianToSky

subroutine cartesianToSky(vector, ra, dec)
real (double), intent(in) :: vector(3)
real (double), intent(out) :: ra, dec
end subroutine cartesianToSky

Takes a vector of direction cosines and returns the corresponding celestial coordinates ra and dec. NOTE
ra and dec are in radians.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 40

6.16 telCoordToDetXY

interface telCoordToDetXY
subroutine telCoordToDetXYScalar (thetaArcsec, phi, detX, detY)
real(double), intent(in) :: phi, thetaArcsec
real(single), intent(out) :: detX, detY
end subroutine telCoordToDetXYScalar

subroutine telCoordToDetXYVector (thetaArcsec, phi, detX, detY)
real(double), intent(in) :: phi(:), thetaArcsec(size(phi))
real(single), intent(out) :: detX(size(phi)), detY(size(phi))
end subroutine telCoordToDetXYVector
end interface

Takes a position in the TELCOORD system and returns it in DETXY (ie, in CAMCOORD2 multiplied
by a factor to convert mm at the focal plane (the unit of CAMCOORD2) to units of 0.05 arcsec (the unit
of DETXY)).

6.17 detXYToTelCoord

interface detXYToTelCoord
module procedure detXYToTelCoordScalar
module procedure detXYToTelCoordVector
end interface

Takes a position in the DETXY (ie, in CAMCOORD2 multiplied by a factor to convert mm at the focal
plane (the unit of CAMCOORD2) to units of 0.05 arcsec (the unit of DETXY)) system and returns it
in TELCOORD.

6.18 detXY unit definition

The coordinate module also contains the following line:

real(single), public, parameter :: detUnitArcsec = 0.05

A better place for this would arguably be in a .par file somewhere.

6.19 angleBetweenCelCoords

interface angleBetweenCelCoords
function angleBetweenCelCoordsSingle(vectorA, vectorB, isRadian) result(angle)

real(single) :: angle
real(single), intent(in) :: vectorA(2), vectorB(2)
logical, intent(in), optional :: isRadian

end function angleBetweenCelCoordsSingle

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 41

function angleBetweenCelCoordsDouble(vectorA, vectorB, isRadian) result(angle)
real(double) :: angle
real (double), intent(in) :: vectorA(2), vectorB(2)
logical, intent(in), optional :: isRadian
end function angleBetweenCelCoordsDouble
end interface angleBetweenCelCoords

Returns the angle between the two pair of input celestial coordinates. The default unit is radian (isRadian
is T), but can be degree (isRadian is F).

7 An additional layer over the DAL which implements some
short cuts

Module name: dal_aux
Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)

This module contains subroutines designed to augment the Data Access Layer routines for accessing data
in FITS files (see the dal library). The subroutines perform some short cuts I have found useful.

7.1 splitSetTabName

subroutine splitSetTabName(setTabName, setName, tabName, noColonFound, useBlock)

character(*), intent(in) :: setTabName
character(*), intent(out) :: setName, tabName
logical, intent(out), optional :: noColonFound
logical, intent(in), optional :: useBlock

end subroutine splitSetTabName

The parameter type ‘table’ (see param) accepts a string consisting of a dataset name followed by a colon
followed by a binary table name. If the user forgets to include the colon + table name, the resulting
dal error is not very helpful as an indication of what has gone wrong. Personally I find it more useful
to have as the default behaviour in this case that the first table in the dataset should be opened, with
an accompanying warning. So I have written this routine splitSetTabName() to act as a trap for the
situation in which the user leaves off the colon+table name. The idea is that the string read from a
‘table’-type parameter is sent first to splitSet TabName(), which searches the string for a colon; if it finds
one, then it returns the before- and after-colon strings respectively in setName and tabName; if no colon
is detected, splitSetTabName() issues a warning (if noColonFound is not given), returns the entire string
in setName, and also attempts to extract the name of the first table in the dataset (unless useBlock is
given and is .false.) and returns this in tabName, which can be an empty string. In the latter case, if the
file does not exist and if noColonFound is not given, then it raises an error.

An example of how to use splitSetTabName() is as follows:

setTabName = stringParameter(’mytable’) ! this should be of param type ‘table’
call splitSetTabName (setTabName, setName, tabName)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 42

dataSet (setName, READ)
table(set, tabName)

set
tab

7.2 readArrayData

It is often useful to be able to read an array of any data type into a fortran array of a single data type.
The following interface covers just about every combination I could think of.

interface readArrayData
subroutine readArrayDataNameldReal32(imageSetName, vector)
character(*), intent(in) :: imageSetName
real(single), pointer :: vector(:)
end subroutine readArrayDataNameldReal32

subroutine readArrayDataName2dReal32(imageSetName, image)
character(*), intent(in) :: imageSetName
real(single), pointer 1 image(:,:)

end subroutine readArrayDataName2dReal32

subroutine readArrayDataName3dReal32(imageSetName, cube)
character(*), intent(in) :: imageSetName
real(single), pointer :: cube(:,:,:)

end subroutine readArrayDataName3dReal32

subroutine readArrayDataNameldReal64(imageSetName, vector)
character(*), intent(in) :: imageSetName
real(double), pointer :: vector(:)

end subroutine readArrayDataNameldReal64

subroutine readArrayDataName2dReal64(imageSetName, image)
character(*), intent(in) :: imageSetName
real(double), pointer :: image(:,:)

end subroutine readArrayDataName2dReal64

subroutine readArrayDataName3dReal64(imageSetName, cube)
character(*), intent(in) :: imageSetName
real(double), pointer :: cube(:,:,:)

end subroutine readArrayDataName3dReal64

subroutine readArrayDataName2dBool(imageSetName, image)
character(*), intent(in) :: imageSetName
logical(bool), pointer :: image(:,:)

end subroutine readArrayDataName2dBool

subroutine readArrayDataName2dInt16(imageSetName, image)
character(*), intent(in) :: imageSetName
integer(int16), pointer 1: image(:,:)

end subroutine readArrayDataName2dIntl16

subroutine readArrayDataName2dInt32(imageSetName, image)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 43

character (*), intent(in) :: imageSetName
integer(int32), pointer 11 image(:,:)
end subroutine readArrayDataName2dInt32

subroutine readArrayDataArrayldReal32(inArray, vector)
type(ArrayT), intent(in) :: inArray
real(single), pointer :: vector(:)

end subroutine readArrayDataArrayldReal32

subroutine readArrayDataArray2dReal32(inArray, image)
type(ArrayT), intent(in) :: inArray
real(single), pointer 1 image(:,:)

end subroutine readArrayDataArray2dReal32

subroutine readArrayDataArray3dReal32(inArray, cube)
type(ArrayT), intent(in) :: inArray
real(single), pointer :: cube(:,:,:)

end subroutine readArrayDataArray3dReal32

subroutine readArrayDataArrayldReal64(inArray, vector)
type(ArrayT), intent(in) :: inArray
real(double), pointer :: vector(:)

end subroutine readArrayDataArrayldReal64

subroutine readArrayDataArray2dReal64(inArray, image)
type(ArrayT), intent(in) :: inArray
real(double), dimension(:,:), pointer :: image

end subroutine readArrayDataArray2dReal64

subroutine readArrayDataArray3dReal64(inArray, cube)
type(ArrayT), intent(in) :: inArray
real(double), dimension(:,:,:), pointer :: cube
end subroutine readArrayDataArray3dReal64

subroutine readArrayDataArray2dBool(inArray, image)
type(ArrayT), intent(in) :: inArray
logical(bool), dimension(:,:), pointer :: image
end subroutine readArrayDataArray2dBool

subroutine readArrayDataArray2dIntl16(inArray, image)
type(ArrayT), intent(in) :: inArray
integer(int16), dimension(:,:), pointer :: image
end subroutine readArrayDataArray2dInti16

subroutine readArrayDataArray2dInt32(inArray, image)
type(ArrayT), intent(in) :: inArray
integer(int32), dimension(:,:), pointer :: image
end subroutine readArrayDataArray2dInt32
end interface

Boolean values are converted to real or integer Os and 1s; real or integer are converted to boolean TRUE
if ; 0, FALSE otherwise.

Where the dimensions of the dataset array don’t match those of the to-be-returned pointer array, it is

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 44

eventually intended to convert these as follows:

Dims: | Out 1 Out2 Out 3

In1l simple -iimage(1,:) -icube(1,1;:)
In 2 take 1st row simple -i, cube(1,:,:)
In3 take 1st row, 1st plane take 1st plane simple

In ;3 not supported not supported not supported

First rows or planes are always aligned with the biggest dimension(s).

However most of the inter-dimensional functionality is not yet in place.

Note that the returned pointer is not associated with any pointer allocated by a dal call such as, for

example:

arrayDataReal32 => real32Array2Data(inArray)

Where readArrayData is called with the name of image dataset, the dataset is released within the sub-
routine, and all such dataset pointers are at that time deallocated; if readArrayData is called instead
with the pointer inArray specified, the dataset and its array remain open, all dataset pointers which were

allocated within the subroutine also remain allocated, but deallocate in the normal way at the time the

calling routine releases the dataset (or its array). In either case, the returned pointer argument ‘vector’,

‘image’, or ‘cube’ REMAINS ALLOCATED and therefore should be expressely deallocated in the calling

routine via the fortran ‘deallocate’ statement.

7.3 addOrOpenColumn

function addOrOpenColumn(tab, colName, dataType, units, comment)&

result(col)
type(TableT),
character (x),
integer (int32),
character(x),
type (ColumnT)

end function addOrOpenColumn

This function opens the column if hasColumn(tab, colName) returns TRUE but adds a new column of
this name if not. If a new column is creatd, defaults for the optional arguments ‘dataType’; ‘units’ and

intent (in) :: tab

intent (in) :: colName

intent(in), optional :: dataTyp

intent(in), optional :: units,
1 col

‘comment’ are REAL32, " and ’ respectively.

7.4 readColDataToFixed

e
comment

This is similar in intention to readArrayData (subsection 7.2). The interface below covers most combi-

nations.

interface readColDataToFixed
subroutine readColToFixedNameReal32(tab, colName, colData)
type(TableT), intent(in) :: tab

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

45

character(*x), intent(in) :: colName
real(single), intent(out) :: colData(:)
end subroutine readColToFixedNameReal32

subroutine readColToFixedNameReal64(tab, colName, colData)

type(TableT), intent(in) :: tab
character(*), intent(in) :: colName
real (double), intent(out) :: colData(:)

end subroutine readColToFixedNameReal64

subroutine readColToFixedNameInt8(tab, colName, colData)

type(TableT), intent(in) :: tab
character(*), intent(in) :: colName
integer(int8), intent(out) :: colData(:)

end subroutine readColToFixedNameInt8

subroutine readColToFixedNameInt16(tab, colName, colData)

type(TableT), intent(in) :: tab
character (), intent(in) :: colName
integer(int16), intent(out) :: colData(:)

end subroutine readColToFixedNameInt16

subroutine readColToFixedNameInt32(tab, colName, colData)

type(TableT), intent(in) :: tab
character(x), intent(in) :: colName
integer(int32), intent(out) :: colData(:)

end subroutine readColToFixedNameInt32

subroutine readColToFixedNameStr(tab, colName, colData)

type(TableT), intent(in) :: tab
character(*), intent(in) :: colName
character(*), intent(out) :: colData(:)

end subroutine readColToFixedNameStr

subroutine readColToFixedNameBool(tab, colName, colData)

type(TableT), intent(in) :: tab
character(*), intent(in) :: colName
logical(bool), intent(out) :: colData(:)

end subroutine readColToFixedNameBool

subroutine readColToFixedCol2dReal32(col, colData)
type(ColumnT), intent(in) :: col
real(single), intent(out) :: colData(:,:)

end subroutine readColToFixedCol2dReal32

subroutine readColToFixedCol2dReal64(col, colData)
type(ColumnT), intent(in) :: col
real (double), intent(out) :: colData(:,:)

end subroutine readColToFixedCol2dReal64

subroutine readColToFixedColReal32(col, colData)
type(ColumnT), intent(in) :: col
real(single), intent(out) :: colData(:)

end subroutine readColToFixedColReal32

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 46

subroutine readColToFixedColReal64(col, colData)
type (ColumnT), intent(in) :: col
real (double), intent(out) :: colData(:)

end subroutine readColToFixedColReal64

subroutine readColToFixedColInt8(col, colData)
type(ColumnT), intent(in) :: col
integer(int8), intent(out) :: colData(:)
end subroutine readColToFixedColInt8

subroutine readColToFixedColInt16(col, colData)
type(ColumnT), intent(in) :: col
integer(int16), intent(out) :: colData(:)
end subroutine readColToFixedColInt16

subroutine readColToFixedColInt32(col, colData)
type(ColumnT), intent(in) :: col
integer(int32), intent(out) :: colData(:)
end subroutine readColToFixedColInt32

subroutine readColToFixedColStr(col, colData)
type(ColumnT), intent(in) :: col
character(*), intent(out) :: colData(:)
end subroutine readColToFixedColStr

subroutine readColToFixedColBool(col, colData)
type(ColumnT), intent(in) :: col
logical(bool), intent(out) :: colData(:)
end subroutine readColToFixedColBool
end interface

The rules for conversion between datatypes are the same as for readArrayData (subsection 7.2). There
is at present no conversion between non-string data and a string-valued ‘colData’ argument.

Note that the argument ‘colData’ is NOT a pointer and thus should be made the same size as the column
to be read in the calling program.

7.5 readColDataToPtr

These are exactly the same as those routines described in subsection 7.4, except that now the argument
‘colData’ is a pointer array. This allows the calling routine to avoid having to size it before the call to
readColDataToPtr, on the other hand ‘colData’ should now be DEALLOCATED by the calling program
after use. As with readArrayData (subsection 7.2), there is no association between ‘colData’ and the
dataset pointers opened within the subroutine, which are either disassociated within the subroutine (if
readColDataToPtr was called with the column name) or at the time the calling program releases the
dataset (if readColDataToPtr was called with the column pointer).

interface readColDataToPtr
subroutine readColToPtrName2dReal32(tab, colName, colData)
type(TableT), intent(in) :: tab

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

47

character(*), intent(in) :: colName
real(single), pointer :: colData(:,:)
end subroutine readColToPtrName2dReal32

subroutine readColToPtrName2dReal64(tab, colName, colData)
type(TableT), intent(in) :: tab
character(*), intent(in) :: colName
real(double), pointer :: colData(:,:)

end subroutine readColToPtrName2dReal64

subroutine readColToPtrNameReal32(tab, colName, colData)
type(TableT), intent(in) :: tab
character(*), intent(in) :: colName
real(single), pointer :: colData(:)

end subroutine readColToPtrNameReal32

subroutine readColToPtrNameReal64(tab, colName, colData)
type(TableT), intent(in) :: tab
character(*), intent(in) :: colName
real(double), pointer :: colData(:)

end subroutine readColToPtrNameReal64

subroutine readColToPtrNameInt8(tab, colName, colData)
type(TableT), intent(in) :: tab
character(*), intent(in) :: colName
integer(int8), pointer :: colData(:)

end subroutine readColToPtrNameInt8

subroutine readColToPtrNameIntl16(tab, colName, colData)

type(TableT), intent(in) :: tab
character(x), intent(in) :: colName
integer(int16), pointer :: colData(:)

end subroutine readColToPtrNameInt16

subroutine readColToPtrNameInt32(tab, colName, colData)

type(TableT), intent(in) :: tab
character(x), intent(in) :: colName
integer(int32), pointer :: colData(:)

end subroutine readColToPtrNameInt32

subroutine readColToPtrColReal32(col, colData)
type(ColumnT), intent(in) :: col
real(single), pointer :: colData(:)

end subroutine readColToPtrColReal3?2

subroutine readColToPtrColReal64(col, colData)
type(ColumnT), intent(in) :: col
real(double), pointer :: colData(:)

end subroutine readColToPtrColReal64

subroutine readColToPtrColInt8(col, colData)
type(ColumnT), intent(in) :: col
integer(int8), pointer :: colData(:)
end subroutine readColToPtrColInt8

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 48

subroutine readColToPtrColInti16(col, colData)
type (ColumnT), intent(in) :: col
integer(int16), pointer 1t colData(:)
end subroutine readColToPtrColIntl6

subroutine readColToPtrColInt32(col, colData)
type(ColumnT), intent(in) :: col
integer(int32), pointer 1t colData(:)
end subroutine readColToPtrColInt32
end interface

The rules for conversion between datatypes are the same as for read ArrayData (subsection 7.2). There
is at present no conversion between non-string data and a string-valued ‘colData’ argument.

7.6 minNonNullValue

This and the following subroutine are useful if you want to find min and max values of a column (at
present restricted to REAL32 and REAL64 data types) but have reason to fear that nulls may be present.
Real-valued nulls can do funny things to fortran minval() and maxval() functions.

interface minNonNullValue
subroutine minNonNullValueSingle(tab, colName, minValue, allRowsNull)

type(TableT), intent(in) :: tab
character(*), intent(in) :: colName
real(single), intent(out) :: minValue

logical(bool), intent(out) :: allRowsNull
end subroutine minNonNullValueSingle

subroutine minNonNullValueDouble(tab, colName, minValue, allRowsNull)

type(TableT), intent(in) :: tab
character(*), intent(in) :: colName
real (double), intent(out) :: minValue
logical(bool), intent(out) :: allRowsNull

end subroutine minNonNullValueDouble
end interface

7.7 maxNonNullValue

interface maxNonNullValue
subroutine maxNonNullValueSingle(tab, colName, maxValue, allRowsNull)

type(TableT), intent(in) :: tab
character(*), intent(in) :: colName
real(single), intent(out) :: maxValue
logical(bool), intent(out) :: allRowsNull

end subroutine maxNonNullValueSingle

subroutine maxNonNullValueDouble(tab, colName, maxValue, allRowsNull)
type(TableT), intent(in) :: tab

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 49

character(*), intent(in) :: colName
real(double), intent(out) :: maxValue
logical(bool), intent(out) :: allRowsNull

end subroutine maxNonNullValueDouble
end interface

7.8 getDataType

This function returns the dataType (see dal) of a given FITS-image or table-column. For the input FITS
filename, the form of ‘ABC.fits: TABNAME’ is allowed, where the TABNAME is the name of the FITS
extention of interest. The priority order for the table-name (tabName) in given setTabName, extention
number (extNum) and extention name (extName) explicitly given is

extName > tabName > extNum,

that is, extName is always considered first if given. Note that if the given extName (or tabName) is an
empty string, it is ignored and the next highest priority one is used.

interface getDataType
function getDataTypeFromName (setTabName, extNum, extName, colName) result(iType)
integer :: iType

character(*), intent(in) :: setTabName
integer, intent(in), optional :: extNum
character(*), intent(in), optiomnal :: extName, colName

end function getDataTypeFromName

function getDataTypeFromSet(set, extNum, extName, colName) result(iType)
integer :: iType

type(DataSetT), intent(in) :: set
integer, intent(in), optional :: extNum
character(*), intent(in), optional :: extName, colName

end function getDataTypeFromSet

function getDataTypeFromTab(tab, colName) result(iType)
integer :: iType
type(TableT), intent(in) :: tab
character(*), intent(in) :: colName
end function getDataTypeFromTab
end interface

7.9 getTypeName

This function returns the string expression for the given Integer as the datatype. This is meant to be
used (mainly) in debugging. See /packages/dal/interface/dal.f£90 for detail re the definition.

interface getTypeName
subroutine getTypeName(inInt, outStr)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 50

integer, intent(in) :: inInt
character(*), intent(out) :: outStr
end subroutine getTypeName
end interface

7.10 getAttributeTypeName

This function returns the string expression for the given Integer as the data-attribute-type. This is meant
to be used (mainly) in debugging. See /packages/dal/interface/dal.f90 for detail re the definition.

interface getAttributeTypeName
subroutine getAttributeTypeName(inInt, outStr)
integer, intent(in) :: inInt
character(*), intent(out) :: outStr
end subroutine getAttributeTypeName
end interface

8 Poissonian statistics and source detectability in this regime

Module name: detection_stats
Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)

The subroutines in this module deal broadly with source detection in the Poissonian regime.

8.1 Integrated Y2 probability

This subroutine gives the probability P, (x?;v) of exceeding chi? for a given number of degrees of freedom
v, i.e., the single-sided integrated probability, where P, (z%;v) is the chi? probability distribution function
(e.g., see Appendix C.4 in Bevington & Robinson (1992, “Data reduction and error analysis for the
physical sciences”, 2nd edition)).

subroutine integratedChi2Prob(chi2, degFree, probability, status)

real(single), intent(in) :: chi2

integer, intent (in) :: degFree ! or real(single)
real(single), intent(out) :: probability

integer, intent (out), optiomnal :: status

end subroutine integratedChi2Prob

Status Description
n(n >0) (status in incompleteGammaQ; see math utils, Secti
. . 0 Normal end
The optional argument status is returned as follows; 1 When the given chi2 < 0
-2 When the given degFree <0

n(n < —2) ((status in incompleteGammaQ) —2; see math_utils,

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 51

8.2 Poisson probability
This returns the probability P () of the occurrence of an integer i according to the Poisson distribution

Pl = a‘exp(—a)

0!
where a is the average or expectation value of i.

Note that the argument may also be a real number. In this case what is returned is

a"exp(—a)

P = Ta 5

The value p is not quite a probability density: it would need to be normalized by

/i“f dr a"exp(—a)
0 L(r+1)

in order for this to be true. However it does have the property that, if r =4, p(r) = P(i).

interface poissonProb
real function poissonProbSingle(av, reall)
real(single), intent(in) :: av, reall
end function poissonProbSingle

real function poissonProbInt32(av, i)
real(single), intent(in) :: av
integer(int32), intent(in) :: i

end function poissonProbInt32

end interface

8.3 Integrated Poisson probability

This function returns the probability that an integer random variable which obeys a Poisson distribution
about an average ‘av’ will EQUAL OR EXCEED ‘.

real(single) function integratedPoissonProb(av, i)
real(single), intent(in) :: av
integer, intent(in) :: i

end function integratedPoissonProb

8.4 Source detection limits

The logic of source detection goes as follows. Let us assume to begin with that there is no source at a
given location, only background. Let us calculate the probability that the observed counts at that location

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 52

are due solely to background. If this probability is less than a specified value, our initial assumption was
incorrect and there is in fact a source at that location.

The routines described in the present section are designed to take as arguments the probability cutoff
(actually a cutoff in likelihood is used) and the background, or expectation value for the counts, and use
them to calculate the minimum value of source counts which is detectable at those levels.

To elaborate: given a discrete probability distribution p(j) of event counts j, any sample value ¢ is
associated with a certain probability pint (and therefore likelihood L = —In(pins)) of it not being due to
chance. This probability is obtained by summing the probability values p(j) from j = ¢ to j = inf. For
p given by the Poisson distribution, this sum is equal to the incomplete gamma function P(c,a), where
a is the expectation value of ¢. In mathematical terms, the Poissonian likelihood is thus

L = —In[P(c,a)]. (1)

(Note: This is ONLY true if the uncertainty in the background or expectation value is insignificant.)
The two subroutines described in the present section invert equation 1 to return that value of ¢ which is
associated with specified L and a.

8.4.1 Single-band detection

interface minDetPoissonCounts
subroutine minDetPoissonCountsScalar (bkgCount, likelihoodCutoff&
, detectableSrcCount, detectableSrcCountUncert, status)

real(single), intent(in) :: bkgCount, likelihoodCutoff
real(single), intent(out) :: detectableSrcCount
real(single), intent(out) :: detectableSrcCountUncert
integer, intent (out), optional :: status

end subroutine minDetPoissonCountsScalar

8.4.2 Parallel detection over N bands (with no assumptions made about source spectrum)

Here the situation is a little more complicated. If nothing can be assumed about the spectra of the
sources, the best detection strategy appears to be as follows:

e Detect in each band separately.
e Calculate likelihood values according to equation 1.

e Add the band likelihoods together for each position.

This sum over likelihoods itself follows a Poisson-like distribution. It can thus be shown that the overall
likelihood for any given value of this sum being not due to chance, ie, the overall likelihood Lytota that
there is a source at this position, is given by

N

Liotar = —In{1 = P|f(N), > Lil}.

i=1

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 53

where f(z) approximates a linear function of x of slope 1. Monte Carlo studies indicate that f(2) ~ 2,
f(5) ~ 4, f(10) ~ 8 and so forth; however eboxdetect at the present time assumes that f(N) = N;
hence that (arguably not quite correct) assumption has been built into the present subroutine as well.

subroutine minDetPoissonCountsVector (bkgCounts, likelihoodCutoff&
, detectableSrcCounts, detectableSrcCountsUncert, srcCountRatios, status)

real(single), intent(in) :: srcCountRatios(:),&
bkgCounts (size(srcCountRatios)) ,&
likelihoodCutoff
real(single), intent(out) :: detectableSrcCounts(&
size(srcCountRatios))
real(single), intent(out) :: detectableSrcCountsUncert (&
size(srcCountRatios))
integer, intent(out), optional :: status

end subroutine minDetPoissonCountsVector
end interface minDetPoissonCounts

8.5 Integrated Gaussian probability

This function returns the probability that a gaussian-distributed variable y will depart from the mean
Ymean Dy greater than abs(y — Ymean). For values obeying a gaussian distribution of standard deviation
o, the probability P of a given y value (or greater) occurring by chance is

P(y) =1- 67’f [abs(y - ymean)/a'\@] .

function integratedGaussProb(testY, meanY, sigma) result(probability)
real(single), intent(in) :: testY, meanY, sigma
real(single) :: probability

end function integratedGaussProb

8.6 ‘Degrees of freedom’ for a sum of likelihoods

function calcChi2HalfDegFree(numLikelihoods) result(f)
integer(int16), intent(in) :: numLikelihoods
real (single) R

end function calcChi2HalfDegFree

A sum over likelihoods seems to have a probability distribution similar to that of a x? distribution with
2f degrees of freedom. The factor f is approximately equal to the number of likelihoods in the sum but
not quite. However for the time being (until more accurate information is available, that is) it is assumed
that the equality holds exactly.

9 DSS utilities

Module name: dss_aux

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 54

Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)

The routines are designed to act as an additional layer over the dsslib library. They implement many
useful short cuts.

Full information about the Data Sub Space (DSS) should of course be sought in the dsslib task docu-
mentation. However a few explanatory words here would not be out of place.

The function of the DSS is to store information about the criteria used to select events. Thus an XMM
event list may contain a DSS if it has been filtered in some way; XMM products such as light curves or
spectra, which have been created from event lists, nearly always filtered, may also contain them.

The formal structure of a DSS comprises a list of components, each of which may contain a list of filters.
Suuposedly the selection should be reconstructed by ANDing all the filters for each component then
ORing all the components, but many filter types (eg GTIs) imply a logical OR internal to the filter.

The DSS is implemented in terms of keywords and extensions, but it is not intended that the user should

need to know how the DSS is encoded in these things: the dsslib library supplies subroutines to permit
basic access to the DSS details without this knowledge.

9.1 Routines which involve the whole DSS
9.1.1 hasDss

Tests whether a dataset, array or table has a Data Sub Space (DSS) attached.

logical(bool) function hasDssSet(set)
type (DataSetT), intent(in) :: set
end function hasDssSet

logical(bool) function hasDssArray(inArray)
type(ArrayT), intent(in) :: inArray
end function hasDssArray

logical(bool) function hasDssTab(tab)
type(TableT), intent(in) :: tab

end function hasDssTab

logical(bool) function hasDssBlock(inBlock)

type(BlockT), intent(in) :: inBlock
end function hasDssBlock

9.1.2 dumpDss

Dumps contents of a DSS to STDOUT.

subroutine dumpDssBlock(inBlock)
type(BlockT), intent(in) :: inBlock
end subroutine dumpDssBlock

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 55

subroutine dumpDssPointer(dssPointer)
type(DssT), intent(in) :: dssPointer
end subroutine dumpDssPointer

subroutine dumpDssComponent (dssComp)

type (DScompT), intent(in) :: dssComp
end subroutine dumpDssComponent

9.2 Routines which return information about DSS components

Each DSS component contains several filters. Each filter is associated with the name of the event-list col-
umn (called in DSS-speak the ’axis’ name) which was filtered (for some filter types, eg REGIONFILTERT,
two names are supplied), plus a specification for a set of values of that (or those) column(s).

9.2.1 getNumlstDssCompWithValue

Returns the number of the first component which has a filter of the specified column or ’axis’ name which
passes the specified value. This searches only filters on single columns.

Note that the component number is meaningful for several dsslib calls, eg dssComponent(). Component
numbers start from zero.

subroutine getNumlstDssCompWithValue(dssPointer, axisName, axisValue&
, firstCompNum, filterType)

type (DssT), intent(in) :: dssPointer
character(*), intent(in) :: axisName
real(single), intent(in) :: axisValue
integer, intent(out) :: firstCompNum

integer, intent(in), optional :: filterType
end subroutine getNumlstDssCompWithValue

9.2.2 numDssCompsOfAxis

Returns the number of components which have at least 1 filter on the specified axis. (Note that this
searches only filters on single columns.)

integer function numDssCompsOfAxis(dssPointer, axisName)
type (DssT), intent(in) :: dssPointer
character(*), intent(in) :: axisName

end function numDssCompsOfAxis

9.2.3 numDssCompsWithValue

Returns the number of components which have a filter of the specified column or ’axis’ name which passes
the specified value. This searches only filters on single columns.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 56

integer function numDssCompsWithValue(dssPointer, axisName, axisValue)

type (DssT), intent(in) :: dssPointer
character(*), intent(in) :: axisName
real(single), intent(in) :: axisValue

end function numDssCompsWithValue

9.3 Routines which return information about the filters in a specific compo-
nent

9.3.1 valuelsPassedByDssComp

Returns TRUE if the component has a filter of the specified column or ’axis’ name which passes the
specified value. This searches only filters on single columns.

logical(bool) function valueIsPassedByDssComp(dssComp, axisName, axisValue)
type (DScompT) ,intent (in) :: dssComp
character(*), intent(in) :: axisName
real(single), intent(in) :: axisValue

end function valueIsPassedByDssComp

9.3.2 anyFilterOfThisAxis

Returns TRUE if the component has a filter of the specified column or ’axis’ name. This searches only
filters on single columns.

logical(bool) function anyFilterOfThisAxis(dssComp, axisName)
type(DScompT), intent(in) :: dssComp
character(*), intent(in) :: axisName

end function anyFilterOfThisAxis

9.3.3 numPFiltersOfAxis

Returns the number of filters on the specified column or ’axis’ name. This searches only filters on single
columns.

integer function numFilters0fAxis(dssComp, axisName)
type (DScompT), intent(in) :: dssComp
character(*), intent(in) :: axisName

end function numFiltersOfAxis

9.3.4 getlstFilterThisAxis

Returns the handle of the first filter on the specified column or ‘axis’ name. This searches only filters on
single columns.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 57

subroutine getlstFilterThisAxis(dssComp, axisName, firstFilter, status)

type(DScompT), intent(in) :: dssComp
character(x), intent(in) :: axisName
type(DSfilterT), intent(out) :: firstFilter
integer, intent (out) :: status

end subroutine getlstFilterThisAxis

9.3.5 allFiltersPassValue

This returns true EITHER if the specified component contains no filter on the specified axis OR, all of
the filters of this component and on this axis pass the specified value.

NOTE: In the original version, it calls dssFilterName (filter), which may cause Segmenation Fault
at the time of writing (Apr 2011). Therefore it is rewritten with dssHasFilter (). The algorithm is not
completely identical, however, in the practical cases it should not cause any trouble, especially if the FITS
files do not contain multiple DSS in the same dssComp with the same axis name and filterName (which
should not be the case in any FITS file). Note that the original and revised algorithms are switched via
a parameter isUsed_dssFilterName.

The revised algorithm is as follows:

1. Prepare the array AryIdFilterT=(/ RANGEFILTERT, REGIONFILTERT, ... /). Then, the loop
over ¢ = (1..7):

2. Check whether a filter with the given axisName for AryIdFilterT(i) exists.
3. If so, check the consistency with the given axisValue in the filter.

4. Those results are stored in filterOnThisAxisExists(i) and valueIsPassed(i). For example, if
i == 2, then that is for filterType==REGIONFILTERT (for the given dssComp and axisName).

5. Finally returns true/false, as described at the top of this comments here.

logical(bool) function allFiltersPassValue(dssComp, axisName, axisValue, filterType)
type(DScompT), intent(in) :: dssComp
character(*x), intent(in) :: axisName
real(single), intent(in) :: axisValue
integer, intent(in), optional :: filterType
end function allFiltersPassValue

9.3.6 valuelsPassedByFilter

Returns TRUE if the specified filter passes the value.

logical(bool) function valueIsPassedByFilter(value, filter)
real(single), intent(in) :: value
type(DSfilterT), intent(in) :: filter

end function valueIsPassedByFilter

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 58

9.4 Routines which act on DSS RangeT scalars

The DSS structure type RangeT is described in dsslib. It specifies a lower and an upper bound to an
interval on the real line, and the types of these bounds. Possible types are INCLUSIVE (which means the
bound is included in the interval), EXCLUSIVE (which means the bound is not included in the interval)
and UNDEFINED in which case there is no bound at this end of the interval.

Note that the integer constants INCLUSIVE, EXCLUSIVE and UNDEFINED are defined in dsslib.

9.4.1 copyRange
Copies one range structure to another.

function copyRange(inRange) result(outRange)
type(RangeT), intent(in) :: inRange
type (RangeT) :: outRange

end function copyRange

9.4.2 checkRangeOverlap

This function compares two ranges to see if they overlap, and if not, which is higher than the other. An
integer value is returned, which has the posisble values BOVERLAPSA, BISTOOHIGH, BISTOOLOW.
These integer constants are defined in the present module.

function checkRangeOverlap(rangeA, rangeB) result(status)
type(RangeT), intent(in) :: rangeA, rangeB
integer :: status

end function checkRangeOverlap

9.4.3 andRangePair

This subroutine takes two overlapping ranges and returns a single range which contains the region of
overlap.

Note that the function will not work UNLESS THE RANGES OVERLAP as tested by checkRangeOver-
lap() (see section 9.4.2).

function andRangePair(rangeA, rangeB) result(andedRanges)
type(RangeT), intent(in) :: rangeA, rangeB
type (RangeT) :: andedRanges

end function andRangePair

9.4.4 orRangePair

This subroutine takes two overlapping ranges and returns a single range which contains the sum of the
two ranges.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 59

Note that the function will not work UNLESS THE RANGES OVERLAP as tested by checkRangeOver-
lap() (see section 9.4.2).

function orRangePair(rangeA, rangeB) result(oredRanges)
type (RangeT), intent(in) :: rangeA, rangeB
type (RangeT) :: oredRanges

end function orRangePair

9.4.5 valueIsWithinRange

Returns TRUE if the value is within the specified range.

logical(bool) function valueIsWithinRangeSingle(value, range)
real(single), intent(in) :: value
type(RangeT), intent(in) :: range

end function valueIsWithinRangeSingle

logical(bool) function valueIsWithinRangeInt32(value, range)
integer (int32), intent(in) :: value
type(RangeT), intent(in) :: range

end function valueIsWithinRangeInt32

9.5 Routines which act on DSS RangeT vectors

See section 9.4 for some additional information about the dsslib RangeT structure type.

The routines in the present section deal with vectors of ranges.

9.5.1 rangesAreWellFormed

A RangeT vector (of size N) is defined as well-formed if and only if it obeys the following conditions:

e Only the lowest and highest bounds of the sequence of ranges are permitted to be of type UNDE-
FINED.

e For each range for which neither the lower or upper bound is of type UNDEFINED (ie, for each
internal range in the sequence), the upper bound value must exceed the lower bound value unless
both both bound types are INCLUSIVE, in which case the upper bound value may equal the lower
bound value. In other words, each range must encompass some non-empty set of real numbers.

e For all i from 1 to N-1, the upper bound of range i must be less than the lower bound of range
i+1, unless both bounds are of type EXCLUSIVE, in which case the upper bound of range i may
equal the lower bound of range i+1. In other words, the gap between two adjacent ranges must
encompass some non-empty set of real numbers.

Note that any ranges pointer can be brought into valid condition by passing it through the subroutine
correctRanges() (section 9.5.4).

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 60

logical(bool) function rangesAreWellFormed(ranges)
type (RangeT), intent(in) :: ranges(:)
end function rangesAreWellFormed

9.5.2 copyRanges

Copies one vector of ranges to another.

NOTE! You should deallocate the pointer outRanges() after use.

subroutine copyRanges(inRanges, outRanges)
type(RangeT), intent(in) :: inRanges(:)
type (RangeT), pointer :: outRanges(:)
end subroutine copyRanges

9.5.3 readRanges

The function of this subroutine is to return a vector containing all the ranges from all filters on the axis
‘axisName’.

NOTE! The returned pointer ranges() should be deallocated after use.

% subroutine readRa.ngests(dssPointer, axisName, ranges, dssConstraints)
subroutine readRangesDss(dssPointer, axisName, ranges)

type (DssT), intent(in) :: dssPointer
character(x), intent(in) :: axisName
type (RangeT), pointer :: ranges(:)
% type(dssConstraintType), intent(in), optional :: dssConstraints(:)

end subroutine readRangesDss

subroutine readRangesComp(dssComp, axisName, ranges)
type (DScompT), intent(in) :: dssComp
character(*), intent(in) :: axisName
type(RangeT), pointer :: ranges(:)

end subroutine readRangesComp

9.5.4 correctRanges

This takes a vector of ranges and returns them in a well-formed sequence (see section 9.5.1). Note that
the argument is a pointer because the operation may change the number of elements.

subroutine correctRanges(ranges)
type (RangeT), pointer :: ranges(:)
end subroutine correctRanges

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 61

9.5.5 integrateRanges

This is a function to perform numerical integration of y(x) (using the trapezoid rule) over a set of discrete
ranges specified via the xRanges argument.

NOTE! (i) The values in the vector x() should be in increasing order. (ii) The ranges may occur in any
order, but are otherwise assumed to be well-formed. (iii) If any upper range bound is undefined, the
upper x value is used instead for that range bound; likewise for undefined lower bounds.

¥** should change it so that the ranges are required to be well-formed. This would make the routine
less general but makes the accepted properties of ranges simpler.

interface integrateRanges
function integrateRangesScalar(x, y, xRange) result(approxIntegral)

real(single), intent(in) :: x(:), y(size(x))
type(RangeT), intent(in) :: xRange
real(single) :: approxIntegral

end function integrateRangesScalar

function integrateRangesVector(x, y, xRanges) result(approxIntegral)

real(single), intent(in) :: x(:), y(size(x))
type(RangeT), intent(in) :: xRanges(:)
real(single) :: approxIntegral

end function integrateRangesVector
end interface

9.5.6 andRangesPair

This function takes as input two sequences of ranges and returns a sequence which contains all overlaps
between the input ranges.

Points to note:

e The input range sequences must be well-formed (see section 9.5.1). The output is well-formed.

e The function returns a pointer argument. Deallocating this correctly is a little tricky, and I may
eventually turn this (and all similar functions) into a subroutine. The function should NOT be
called iteratively as in the following example:

andedRanges => andRangesPair(andedRanges, rangesB)

The memory that the pointer andedRanges pointed to before the call now has no pointer to it,
since at the moment the call is executed andedRanges is reassigned to the same memory that the
function points to, which was newly assigned during the call. The initial memory pointed to by
andedRanges therefore cannot now be deallocated. Better would be:

tempAndedRanges => andRangesPair(andedRanges, rangesB)

deallocate (andedRanges)

andedRanges => tempAndedRanges

Then later, when appropriate, deallocate(andedRanges) for the final time.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 62

% function andRangesPair(rangesA, rangesB, doChecks) result(andedRanges)
function andRangesPair(rangesA, rangesB) result(andedRanges)
type (RangeT), intent(in) :: rangesA(:), rangesB(:)
type (RangeT), pointer :: andedRanges(:)
% logical(bool), intent(in), optiomnal :: doChecks
end function andRangesPair

9.5.7 orRangesPair

This function takes as input two sequences of ranges and returns a sequence which contains the sum of the
input ranges. The returned sequence of ranges is well-formed but, in contrast to the function andRange-
sPair(), the inputs are not required to be well-formed. NOTE however that the same considerations re
pointer deallocation also apply here.

function orRangesPair(rangesA, rangesB) result(oredRanges)
type (RangeT), intent(in) :: rangesA(:), rangesB(:)
type(RangeT), pointer :: oredRanges(:)

end function orRangesPair

9.5.8 dumpRanges

Prints the ranges to standard output.

subroutine dumpRanges(ranges)
type(RangeT), intent(in) :: ranges(:)
end subroutine dumpRanges

*kxkx andIntervals

9.6 Routines which deal with DSS GTI filters

GTIs are contained in structures of type IntervalT, which is defined in the module caltypes. This is
similar to RangeT except that no type is given for the upper and lower bounds. Where I have translated
GTTIs into ranges (see for example section 9.6.3) I have taken the lower GTI bound to be INCLUSIVE
and the upper to be EXCLUSIVE. A well-formed sequence of GT1Is (of size N) should therefore obey the
following criteria:

e For each GTI in the sequence, the upper bound value must exceed the lower bound value.

e For all i from 1 to N-1, the upper bound of GTI i must be less than the lower bound of GTT i+1.

There are currently no routines to test or correct the format of non-well-formed sequences of GTIs.

See also section 17.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 63

9.6.1 readGtis

This subroutine extracts from the DSS the sequence of GTIs used to filter events on a specified CCD chip.
(The routine assumes that all events which occur on a given CCD chip share a common GTT selection.)

The pointer gti() should be deallocated after use.

subroutine readGtis(set, inBlock, ccdNum, gti)

type(DataSetT), intent(in) :: set
type (BlockT), intent(in) :: inBlock
integer, intent(in) :: ccdNum
type(IntervalT), pointer 1rogti(e)

end subroutine readGtis

9.6.2 getGtiFromFilter

This subroutine extracts a GTI sequence from a single DSS filter.

The pointer gti() should be deallocated after use.

subroutine getGtiFromFilter(set, filter, gti)

type(DataSetT), intent(in) :: set
type(DSfilterT), intent(in) :: filter
type(IntervalT), pointer trogti(e)

end subroutine getGtiFromFilter

9.6.3 andGtis

This function takes as input two sequences of GTIs and returns a sequence which contains all overlaps
between the input GTIs. The function makes use of the function andRangesPair() (see section 9.5.6) and
similar considerations apply.

function andGtis(gtiA, gtiB) result(andedGti)
type(IntervalT), intent(in) :: gtiA(:), gtiB(:)
type(IntervalT), pointer :: andedGti(:)

end function andGtis

9.7 Routines which deal with DSS bitmask filters

The format of DSS bit masks is a bit more complicated than it used to be. Basically a bit mask is an
integer (in SAS useage usually 32 bits in size), each bit of which is intended to be interpreted in a boolean
sense. However the dsslib call dssFilterMask() now returns two pointers, onBitMasks and offBitMasks,
each of which contains a sequence of masks.

The pointers onBitMasks and offBitMasks are supposed to always be the same size, although there is
nothing at the API level to force this to be the case. This is a little unfortunate perhaps and to correct

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 64

this I have defined in the present module a structure BitMaskT which contains an ’on’ mask and an ’off’
mask.

9.7.1 getBitMasksFromFilter

This subroutine acts as a wrapper around the dsslib routine dssFilterMask(). It retrieves the on and off
bit masks from the specified DSS filter, checks that they are the same size, and returns them in a pointer
bitMaskPtr of type BitMaskT.

subroutine getBitMasksFromFilter(filter, bitMaskPtr)
type(DSfilterT), intent(in) :: filter
type (BitMaskT), pointer :: bitMaskPtr(:)

end subroutine getBitMasksFromFilter

9.7.2 allBitsEquiv

This function tests all the values of the specified bit in the on-masks for logical equivalence and all the
values in the off-masks for equivalence and returns TRUE if the equivalence holds. Note that bitNum
starts at zero.

Examples:
Element number on-bits off-bits
1 0010010101101 | 1010110101100
2 1110101001110 | 1001010101001
3 0110010100110 | 1000110001010
4 0110111001110 | 0010010100101
5 0010000101101 | 0000111100011

Taking the right-most bit of each mask to be bit 0, bits 2, 4, 9 and 10 of the on-masks are equivalent,
whereas bits 4, 7 and 11 of the off-masks are equivalent. Hence allBitsEquiv() would return TRUE for
bitNum=4 but not otherwise.

logical(bool) function allBitsEquiv(bitMasks, bitNum)
type (BitMaskT), intent(in) :: bitMasks(:)
integer(int32), intent(in) :: bitNum

end function allBitsEquiv

10 Subroutines for dumping test output to file or STDOUT

Module name: dump

Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 65

10.1 String content

Many ASCII codes are not associated with a printable character and thus it can be hard to determine
all the characters in a string just by printing it to standard output. The present subroutine takes a
string, chops it into individual characters, and prints the ASCII code of each character plus its associated
printable character, if there is one.

subroutine dumpString(str)
character(*), intent(in) :: str
end subroutine dumpString

10.2 Dumping images to FITS array

It is sometimes convenient to dump a 2-D array to a FITS dataset, without worrying about attributes
or data type. The various overloadings of dumpImageToFits allow one to write an array of any numeric
data type supported by the dal.

interface dumplImageToFits
subroutine dumpImageToFitsSingle(image, setName)
real(single), intent(in) :: image(:,:)
character(*), intent(in) :: setName
end subroutine dumpImageToFitsSingle

subroutine dumpImageToFitsDouble(image, setName)
real(double), intent(in) :: image(:,:)
character(*), intent(in) :: setName

end subroutine dumpImageToFitsDouble

subroutine dumpImageToFitsInt8(image, setName)
integer(int8), intent(in) :: image(:,:)
character(*), intent(in) :: setName

end subroutine dumpImageToFitsInt8

subroutine dumpImageToFitsInt16(image, setName)
integer(int16), intent(in) :: image(:,:)
character(*), intent(in) :: setName

end subroutine dumpImageToFitsIntl6

subroutine dumpImageToFitsInt32(image, setName)
integer(int32), intent(in) :: image(:,:)
character(*), intent(in) :: setName

end subroutine dumpImageToFitsInt32

The output data type for the last is actually 8-bit integer:

subroutine dumpImageToFitsBool_temp(image, setName)
logical(bool), intent(in) :: image(:,:)
character(*), intent(in) :: setName
end subroutine dumpImageToFitsBool_temp
end interface dumpImageToFits

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 66

11 Routines which deal with the geometry of ellipses

Module name: ellipse
Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)

This module contains several routines for processing ellipses.

11.1 ‘Rotated’ and ‘phase’ formats

Dealing with ellipses is complicated by the fact that there are at least two convenient ways to parameterise
an ellipse, which I will call the ‘rotated” and ‘phase’ forms. In the ‘rotated’ form the ellipse is specified
by two semiaxes R, and R, and a an angle of rotation «. In these terms the ellipse is specified most
transparently by three equations:

2 2
Lo Yo

x = xq cos(a) — yp sin(a)

y = yo cos(a) + xg sin(a).

The ellipse in ‘phase’ format is specified by two amplitudes A, and A, and a phase ¢ by two parametric
equations in € as follows:

x = Ay cos() (3)
y = Ay cos(d + ¢). (4)
If an ellipse is thought of as a squashed circle, @ is the angle around the original circle.

Rotations of coordinate system are easily accommodated in the ‘rotated’ format; changes of aspect ratio
of the coordinate system are better accommodated in the ‘phase’ format.

Subroutines are given for translating between the two formats:

subroutine ellipsePhaseToAngle(xAmp, yAmp, phase&
, shortSemiAxis, longSemiAxis, rotatedAngle)

real(single), intent(in) :: xAmp, yAmp, phase
real(single), intent(out) :: longSemiAxis, shortSemiAxis, rotatedAngle
end subroutine ellipsePhaseToAngle

subroutine ellipseAngleToPhase(shortSemiAxis, longSemiAxis, rotatedAngle&
, xAmp, yAmp, phase)

real(single), intent(in) :: longSemiAxis, shortSemiAxis, rotatedAngle

real(single), intent(out) :: xAmp, yAmp, phase
end subroutine ellipseAngleToPhase

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 67

11.2 Is a given point inside a given ellipse?

Two routines are given for the two ellipse formats described above:

function pointInEllipseWithPhase(x, y, xAmp, yAmp, phase)
real(single), intent(in) :: x, y, xAmp, yAmp, phase
integer :: pointInEllipseWithPhase

end function pointInEllipseWithPhase

function pointInEllipseWithAngle(x, y, xSemiAxis, ySemiAxis, rotatedAngle)
real(single), intent(in) :: x, y, xSemiAxis, ySemiAxis, rotatedAngle
integer :: pointInEllipseWithAngle

end function pointInEllipseWithAngle

These functions return -1 if the point (x, y) lies fully within the ellipse; 0 if it is on the border; and 1 if
it is fully outside the ellipse.

11.3 Generating a set of points along an ellipse locus

subroutine calcEllipseFromAngle(xSemi, ySemi, angleDeg, xVals, yVals)
real(single), intent(in) :: xSemi, ySemi, angleDeg
real(single), intent(out) :: xVals(:), yVals(size(xVals))

end subroutine calcEllipseFromAngle

Equation 2 can be decomposed into the following pair of parametric equations in 6:

x = Ry cos(0)

y = R, sin(6).

0 here plays the same role as in equations 3 and 4. The subroutine returns points evenly distributed in 6.

The matching ‘phase’-style subroutine is

subroutine calcEllipseFromPhase(xAmp, yAmp, phase, xVals, yVals)
real(single), intent(in) :: xAmp, yAmp, phase
real(single), intent(out) :: xVals(:), yVals(size(xVals))

end subroutine calcEllipseFromPhase

Again the point coordinates returned in xVals and yVals are distributed evenly in 6.

11.4 EllipseT structure definition

A structure definition is provided:

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 68

type, public :: EllipseT
real (single) ::&
xAmp, &
yAmp, &
phase,& ! radians
shortSemiAxis,&
longSemiAxis,&
rotatedAngle ! radians
character(10) :: unit ! eg ’pixels’, ’detxy’, ’tanxy’
logical(bool) :: isCircle
end type EllipseT

An overloaded subroutine is also provided to initialize a variable of this type:

interface initializeEllipseT
subroutine initializeEllipseTScalar(ellipse)
type(EllipseT), intent(out) :: ellipse
end subroutine initializeEllipseTScalar

subroutine initializeEllipseTVector(ellipse)
type(EllipseT), intent(out) :: ellipse(:)
end subroutine initializeEllipseTVector
end interface

For scalar or vector ellipse the values set are:

ellipse’xAmp = 0.0
ellipse’,yAmp = 0.0
ellipse’,phase = 0.0
ellipsel,shortSemiAxis = 0.0
ellipsellongSemiAxis = 0.0
ellipsel;rotatedAngle = 0.0
ellipselunit = ’none’
ellipse’isCircle = .false.

12 A module containing routines to give supplementary infor-
mation about EPIC

Module name: epic_aux
Author: Masaaki Sakano (University of Leicester, mas@star.le.ac.uk)
Note that the contents of these routines should be ideally defined somewhere in the library of EPIC.

In the EPIC event files, they use Table names for the exposure in the form of

’EXP0OSU’ //ccdNodeNum

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 69

where ccdNodeNum is a serial number for ccdNum (CCD chip number) and nodeNum (chip node number
for MOSs, of which the default is 1 in almost all the actual observations except for a very few test
observations). ccdNodeNum is defined and hard-coded in the related tasks as

ccdNodeNum = 10 x (nodeNumLocal — 1) + ccdNum. (5)
The following subroutines in this module give this relation.

function getCcdNodeNum(ccdNum, nodeNum) result(ccdNodeNum)
integer(int8), intent(in) :: ccdNum
integer(int8), intent(in), optional :: nodeNum

end function getCcdNodeNum

subroutine inverseCcdNodeNum(ccdNodeNum, ccdNum, nodeNum, instrumentId)

integer(int32), intent(in) :: ccdNodeNum
integer(int8), intent(out) :: ccdNum

integer(int8), intent(out), optional :: nodeNum
integer(int32), intent(in), optional :: instrumentId

end subroutine inverseCcdNodeNum

In the latter inverseCcdNodeNum(), if instrumentId is not given, CAL is read and is essential.

13 A module containing routines to perform calculations relat-
ing to exposure issues

Module name: exposure

Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)

14 Some utilities and definitions for applications which make
use of the FFTW library

Module name: fftw_aux
Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)

This module is meant to be used in conjunction with the Fast Fourier Transform package fftw which
comes with the sas. The module contains a header in which some useful variables are declared, as well
as the following routine:

function findNextHighest2357multiple(i) result(result)
integer, intent(in) :: i
end function findNextHighest2357multiple

This function is designed to look for the smallest integer that satisfies the following conditions: (i) it is
greater than or equal to the argument i; (ii) it is a product only of the numbers 2, 3, 5 and 7. The fftw
transform works most efficiently on arrays which have dimensions which are products of small primes.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 70

15 A module containing some useful type definitions

Module name: geometric_types
Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)

The module defines the following types:

type, public :: Point2dT
real(single) :: x, y

end type

type, public :: Point2dDbleT

real(double) :: x, y
end type

16 Routines for constructing histograms

Module name: histogram utils
Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)

This module is still fairly undeveloped so I won’t document it yet.

17 Routines to manipulate data of type IntervalT (see caltypes)

Module name: intervals_aux
Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)

The routines in this module offer ways to manipulate data structures of type IntervalT, which is defined
in caltypes. These seem to be primarily of use for handling vectors of GTTs.

17.1 intervalsAreWellFormed

logical(bool) function intervalsAreWellFormed(intervals)
type(IntervalT), intent(in) :: intervals(:)
end function intervalsAreWellFormed

Many of the other functions in the present section don’t work unless the intervals are ‘well-formed’. I
define a well-formed vector of type IntervalT as obeying two conditions: (i) for each interval, the lower
value must be j the upper; (ii) the upper value of interval i must be j the lower value of interval i+1. The
function returns FALSE if either condition is disobeyed.

See section 9.5.1 for analogous conditions on structures of RangeT type.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 71

17.2 isWithinInterval

logical(bool) function isWithinInterval(time, intervals, includeBoundary)

real(double), intent (in) :: time
type(IntervalT), intent(in) :: intervals(:)
logical(bool), intent(in), optional :: includeBoundary

end function isWithinInterval

The argument ‘time’ is tested to see if it falls within any of the intervals. If optional argument ‘in-
cludeBoundary’ is included and set to TRUE, interval boundaries are considered: that is, for example, if
time=intervals(i)

NOTE! This function requires the intervals to be well-formed (see section 17.1).

17.3 andIntervals

interface andIntervals
subroutine andIntervalsBothScalar(intervalA, intervalB, andedIntervals)
type(IntervalT), intent(in) :: intervalA, intervalB
type(IntervalT), pointer :: andedIntervals(:)
end subroutine andIntervalsBothScalar

subroutine andIntervalsOneVector(intervalA, intervalsB, andedIntervals)
type(IntervalT), intent(in) :: intervalA, intervalsB(:)
type(IntervalT), pointer :: andedIntervals(:)

end subroutine andIntervalsOneVector

subroutine andIntervalsBothVector(intervalsA, intervalsB, andedIntervals)
type(IntervalT), intent(in) :: intervalsA(:), intervalsB(:)
type(IntervalT), pointer :: andedIntervals(:)
end subroutine andIntervalsBothVector
end interface

In all cases the intervals are first converted to RangeT structures as follows:

range’,lower%type = INCLUSIVE
range’,upperstype = EXCLUSIVE
rangel,lowerj,value = intervalylower

rangej,upperjvalue = intervallupper

In this form, they can be ANDed together by use of the dss_aux call andRangesPair (see section 9.5.6)

NOTE! This function requires the intervals to be well-formed (see section 17.1).

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page:

17.4 orIntervals

interface orIntervals
subroutine orIntervalsBothScalar(intervalA, intervalB, oredIntervals)
type(IntervalT), intent(in) :: intervalA, intervalB
type(IntervalT), pointer :: oredIntervals(:)
end subroutine orIntervalsBothScalar

subroutine orIntervalsOneVector(intervalA, intervalsB, oredIntervals)
type(IntervalT), intent(in) :: intervalA, intervalsB(:)
type(IntervalT), pointer :: oredIntervals(:)

end subroutine orIntervalsOneVector

subroutine orIntervalsBothVector(intervalsA, intervalsB, oredIntervals)
type(IntervalT), intent(in) :: intervalsA(:), intervalsB(:)
type(IntervalT), pointer :: oredIntervals(:)
end subroutine orIntervalsBothVector
end interface

In all cases the intervals are first converted to RangeT structures as follows:

range’,lower%type = INCLUSIVE
range’,upperstype = EXCLUSIVE
range’,lower’,value = intervalylower

rangej,upperjvalue = intervallupper

In this form, they can be ORed together by use of the dss_aux call orRangesPair (see section 9.5.7)

NOTE! This function requires the intervals to be well-formed (see section 17.1).

18 Least-squares fitting routines

Module name: linear
Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)

Contains some routines to do with least-squares estimation and solution of linear equations.

18.1 stdDev

function stdDev(vector)
real(single), intent(in) :: vector(:)
real (single) :: stdDev
end function stdDev

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System

Page: 73

This find the average < v > of the input values v;, then estimates the scatter or standard deviation o of

these values from

18.2 fitLine

subroutine fitLine(x, y, intercept,
real(single), intent(in)
real(single), intent(out) :
real(single), intent(out), optional ::

slope

, variance, covar, status)

s x(:), y(size(x))
:: intercept, slope

variance, covar(2, 2)

integer, intent (out), optional :: status

end subroutine fitLine

This fits a straight line to the set of points defined by x and y. The solution method is the standard one
which assumes uncertainty in the y values only and solves the normal equations to arrive at a solution
which minimizes the sum of the squares of the y-separation between the resulting line and each point.

18.3 fitPolynomial

subroutine fitPolynomial(x, y, coeffs, yVar, pinMask, chi2, errMatrix, status)

real(single), intent(in) i x(:),&

y(size(x))
real(single), intent(inout) : coeffs(:)
real(single), intent(in), optional :: yVar(size(x))
logical(bool), intent(in), optional :: pinMask(size(coeffs))
real(single), intent(out), optional :: chi2,&

errMatrix(size(coeffs) ,&
size(coeffs))
integer, intent(out), optional :: status

end subroutine fitPolynomial

This subroutine fits a polynomial to the set of points defined by x and y. The order of the polynomial is
given by the size of the vector ‘coeffs’. As per usual, only the y values are assumed to have significant
uncertainties. The subroutine solves normal equations to arrive at a solution which minimizes x? between
the data and the fitted polynomial.

Some or all of the coefficients can be 'pinned’ or not fitted. These values should be supplied in the vector
‘coefl’” (note that this is of intent ‘inout’ as required). The appropriate members of ‘pinMask’ should
be set to TRUE; all other members of ‘pinMask’ should of course be FALSE. For example, suppose it
was desired to fit to the data a function of the form y(z) = a + caz®. This is equivalent to fitting a full
quadratic function to the data, but with the linear coefficient pinned at 0. To achieve this result, ‘coeff’
and ‘pinMask’ should be of size 3, with the following values set:

coeff(2) = 0.0

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 74

pinMask = /(.false. .true. .false.)/

The general form of the normal equations in the event of pinning is perhaps best illustrated by using the
above example. In this case the equations are

Note that the matrix of uncertainties in the fitted coefficients as well as the x? value at the optimum are
also returned.

18.4 solveLinearTriDiag

18.5 solveLinearEquations

18.6 invertPosDefMatrix

19 Miscellaneous mathematical utilities

Module name: math_utils

Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)

20 Function minimization routines

Module name: minimizations

Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)

21 Helper subroutines for handling ODF (OAL)

Module name: oal_aux
Author: Masaaki Sakano (University of Leicester, mas@star.le.ac.uk)

In any of the following task, the environmental variable SAS_ODF should be properly set before the call.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 75

21.1 printODFProposal

Dumps the proposal information derived from the ODF.

interface printODFProposal
subroutine printODFProposal(proposallnfo, printHeader)
type (ProposalInfoType), intent(in) :: proposallnfo
logical, intent(in), optional :: printHeader
end subroutine printODFProposal
end interface

The optional parameter printHeader specifies whether the header is also printed to STDOUT (T) or
not (F). The default is True.

Note that proposalInfo is obtained via

call OAL_proposalInfo(proposalInfo)

22 List Parsing

Module name: parse_list_mod
Author: Dean Hinshaw (NASA/GFSC, dah@milkyway.gsfc.nasa.gov)

This subroutine parses a string containing a delimited list into an array of strings, one element for each
member of the list. The calling sequence is:

SUBROUTINE parse_list(in_str, out_array, in_delim)
CHARACTER(LEN=%) , DIMENSION(:), POINTER :: out_array

CHARACTER (LEN=x) , i1 in_str
CHARACTER(LEN=1) , OPTIONAL, INTENT(IN) :: in_delim

where in_str is the string to be parsed, out_array is returned array of strings, and in_delim is the
delimeter seperating the list items. in_delim is an optional parameter, and if not given defaults to a
space. Note that in any case list items may not contain spaces. The user also must take care that the
pointer passed as out_array has sufficient length to hold the parsed strings.

Additional, if in_str begins with an “@Q”, then the string is taken as a filename the list items, one item
for each line of the file.

23 A tool to regrid data from one 2D pixel grid to another

Module name: polygon

Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 76

24 Contains an analytic approximation to the off-axis PSF, and
routines to sample it.

Module name: psf_ims

Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)

25 Routines to return random numbers in various distributions

Module name: random_aux

Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)

26 Array Reallocation

Module name: reallocate
Author: Dean Hinshaw (NASA/GFSC, dah@milkyway.gsfc.nasa.gov)

This subroutine can be used to reallocate memory space for a pointer to an array, retaining any data
already stored in the array. The calling sequence is:

SUBROUTINE realloc_real32(p, n)

INTEGER, INTENT(in) :: n
where p can have any of the possible specifications:

REAL (KIND=single), POINTER, DIMENSION(:
REAL (KIND=double), POINTER, DIMENSION(:
INTEGER (KIND=int8), POINTER, DIMENSION(:
INTEGER (KIND=int16), POINTER, DIMENSION(:
INTEGER (KIND=int32), POINTER, DIMENSION(:
LOGICAL(KIND=bool), POINTER, DIMENSION(:
CHARACTER (LEN=x) , POINTER, DIMENSION(:

(NN N NN
holioliso o liioNRso N o]

and n is the size of the reallocated array. The lower bound value of the old array is retained.
If n is greater than the original array size, then the all data from the old array is retained, and the array

values greater then the original array size are undefined. If n is less than the original array size, then the
first n data elements from the old array are retained.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 77

27 Utilities to rebin 1D or 2D data between parallel pixel grids

Module name: rebinners

Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)

28 Utilities to regrid 1D or 2D data between parallel pixel grids

Module name: regridders

Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)
Masaaki Sakano (University of Leicester, mas@star.le.ac.uk)

28.1 Calculates OldPixelCorners via an Affine transform

interface calcOldPixelCornersAffine
subroutine calc0ldPixelCornersAffineDouble(oldPixelCorners &
, 0ldAryEdgesInfo, newAryEdgesInfo, mtrxLinTrans, vecTranslate)

type(Point2dT), intent(out) :: oldPixelCormers(:,:)
type (AryEdgesInfoT), intent(in) :: oldAryEdgesInfo, newAryEdgesInfo
real (double), intent(in) :: mtrxLinTrans(2,2), vecTranslate(2)

end subroutine calc0ldPixelCornersAffineDouble

subroutine calc0ldPixelCornersAffineSingle(oldPixelCorners &
, 0ldAryEdgesInfo, newAryEdgesInfo, mtrxLinTrans, vecTranslate)

type(Point2dT), intent(out) :: oldPixelCormers(:,:)
type (AryEdgesInfoT), intent(in) :: oldAryEdgesInfo, newAryEdgesInfo
real(single), intent(in) :: mtrxLinTrans(2,2), vecTranslate(2)

end subroutine calcOldPixelCornersAffineSingle
end interface

This subroutine gives an array oldPixelCorners as an argument to pass to regridCartesian(), when
an Affine transformation (A and B) as given below is the coordinate transformation used in regridding,

(x_new) (x_old)
= A x () + B
(y_new) (y_old)
(a b) (x_old) (e)
= ()) +)
(c d) (y_old) (£)

where the matrix A (=mtrxLinTrans) is a component for the linear transformation and B (=vecTranslate)
is for the translation (a.k.a. parallel move). Note

(a b)) (mtrxLinTrans(1,1) mtrxLinTrans(1,2))
() = ()
(c ada) (mtrxLinTrans(2,1) mtrxLinTrans(2,2))

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 78

The returned oldPixelCorners can be directly passed to regridCartesian().

Note oldPixelCorners can contain the values which are out of the boundary of newAryEdgesInfo, such
as zero or negative values.

Among the input arguments, the size of 01ldPixelCorners has to be larger by 1 than those specified in
oldAryEdgesInfofarySize.

type (Point2dT) is defined in geometric_types. type (AryEdgesInfoT) is defined in oldAryEdgesInfo
and newAryEdgesInfo is defined in array utils.

As examples,
(A) When oldAry(1:5,1:5), newAry(1:5,1:5), identical transformation.

oldPixelCorners(1,1)\%x,y == (0.5, 0.5)
oldPixelCorners(6,6)\%x,y ==

Il

|
~
(o)
o
(o)
(62
N2

(B) When oldAry(1:5,1:5), newAry(-1:6,0:8), identical transformation.

oldPixelCorners(1l,1)\%x,y == (2.5, 1.5)
oldPixelCorners(3,1)\%x,y == (4.5, 1.5)

because the respective indices of 3rd and 2nd for X and Y in newAry correspond to (1,1) in oldAry.

28.2 Regrids in the Cartesian coordinates

interface regridCartesian
subroutine regridScalar(oldPixelCorners, oldImage, newlImage, status&
, testFlagArg, averagingStyle)

real(single), intent(in) :: oldImage(:,:)

type (Point2dT), intent(in) :: oldPixelCorners(size(oldImage,1)+1&
,size(oldImage,2)+1)

real(single), intent (out) :: newImage(:,:)

integer, intent(out), optional :: status

logical(bool), intent(in), optional :: testFlagArg

character(*), intent(in), optional :: averagingStyle

end subroutine regridScalar

subroutine regridScalarDouble(oldPixelCorners, oldImage, newlmage, status&
, testFlagArg, averagingStyle)
real(single), intent (in) :: oldImage(:,:)
type (Point2dDbleT), intent(in) :: oldPixelCorners(&
size(oldImage,1)+1,&
size(oldImage,2)+1)

real(single), intent (out) :: newImage(:,:)
integer, intent(out), optional :: status
logical(bool), intent(in), optional :: testFlagArg
character (%), intent(in), optional :: averagingStyle

end subroutine regridScalarDouble

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 79

subroutine regridVector(oldPixelCorners, oldImages, newlmages, status&
, testFlagArg, averagingStyle)

real(single), intent (in) :: oldImages(:,:,:)

type(Point2dT), intent(in) :: oldPixelCorners(&
size(oldImages,2)+1,&
size(oldImages,3)+1&

)

real(single), intent (out) :: newlImages(:,:,:)

integer, intent(out), optional :: status

logical(bool), intent(in), optional :: testFlagArg

character(*), intent(in), optional :: averagingStyle

end subroutine regridVector
end interface

This subroutine is intended to allow rebinning of an image from one cartesian coordinate system to
another. Now, we define here an image as a two-dimensional array of uniform rectangular pixels. If we
change the coordinate system, this image becomes distorted. It is nice to be able to convert it once again
to an array of rectangular pixels, but this time in the new coordinate system. This involves taking each
of the old, distorted pixels and dividing its contents up among the new pixels. It is assumed here that (i)
the distorted pixel still has straight ’sides’, ie it is a quadrilateral (a polygon for generality); (ii) that the
value within the old pixel is evenly distributed through the pixel (this assumption MAY BE INVALID
for extremely nonlinear distortions); (iii) that the distorted pixel is not folded over — ie that no two of its
sides cross; (iv) that the old pixels are not greatly larger than the new - the present algorithm still works
ok in such a regime, but the result will look ‘steppy.” In this case an interpolation algorithm would yield
smoother-looking results.

The relation between the old and new coordinate systems is here entirely contained within the input
array oldPixelCorners. This gives the coordinates of each pixel in the array oldlmage, expressed in the
wes ‘pixel’” system of newlmage. What does ‘wcs pixel system’ mean? It means that the width and height
of pixels in newlmage are both equal to 1.0 and the centre of the pixel newImage(1,1) is at (1.0, 1.0).
NOTE newImages is NOT defined if any error is detected before processing.

Note type (Point2dT) is defined in geometric_types.

29 Short cuts to saving (or overwriting) output images
Module name: save_image
Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)

Masaaki Sakano (University of Leicester, mas@star.le.ac.uk)

The subroutines/functions in this module provide functions/subroutines to save a Fortran array as a
FITS image.

29.1 saveDetlmage(): Save DETX/DETY images

Subroutine to save a DETX/DETY image from a given 2-dimensional array.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 80

interface savelmage
subroutine saveDetImageDouble(detImage, detImageSetName \&
, detImageEdgesInfo, templateFitsSetName, wcsExtended, detWcs \&
, strTelescop, strInstrum)

real (double), intent(in) :: detImage(:,:)

character (), intent(in) :: detImageSetName

type(aryEdgesInfoT), intent(in), optional :: detImageEdgesInfo

character(*), intent(in), optional :: templateFitsSetName, strTelescop, strInstrum
type (WcsAxesExtendedT), intent(in), optional :: wcsExtended

type(WcsT), intent(in), optional :: detWcs

end subroutine saveDetImageDouble

subroutine saveDetImageSingle()
real(single), intent(in) :: detImage(:,:)

end subroutine saveDetImageSingle

subroutine saveDetImageInt32()

end subroutine saveDetImageInt32

subroutine saveDetImageInt16()

end subroutine saveDetImagelIntl6

subroutine saveDetImageInt8()

end subroutine saveDetImageInt8

end interface

As for the input array (detImage), all the Real and Integer types are allowed, and that is the only
difference in the interface.

detImageSetName is the output FITS filename. clobber is taken into account.

detImageEdgesInfo (optional) is the frame information of the input array. (The type is defined in
array-utils). If not given, it is calculated via getDetImageEdgesInfo().

wcsExtended can be given instead of, or in addition to, detImageEdgesInfo in order to directly control

the coordinate information in the output header attributes. In that case, make sure
wcsExtended)withPhysical == .true.

if you want to add the PHYSICAL coordinates information in the output file. If both wcsExtended and

detWcs are given, the WCS information is overwritten, where possible, according to detWcs at the end.

Obviously detWcs can not include any PHYSICAL coordinate information.

If templateFitsSetName is given, all the primary header attributes except for those for DSS and WCS
are copied to the output file.

TELESCOP attribute can be directly specified via strTelescop; otherwise, unless templateFitsSetName
is given and has the attribute, the default ‘XMM’ is written in the output file.

INSTRUME attribute can be directly specified via strInstrum (string), such as (EMOS1—EMOS1—EPN);
in default this routine does nothing about it.

29.1.1 Examples

call saveDetImage(detImage, ’outimage.ds’)
call saveDetImage(detImage, ’outimage.ds’, templateFitsSetName=’event.FIT’)
call saveDetImage(detImage, ’outimage.ds’, strInstrum=’EM0S1’)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 81

29.2 getDetlmageEdgesInfo(): Get a default frame information for a DET
image

interface getDetImageEdgesInfo
subroutine getDetImageEdgesInfoDouble(detImage, outBinSizeXY, outOffsetXY)
real(double), intent(in) :: detImage(:,:)
real(single), intent(in), dimension(2), optional :: outBinSizeXY, outOffsetXY

type (aryEdgesInfoT) :: getDetImageEdgesInfo
end subroutine getDetImageEdgesInfoDouble

subroutine getDetImageEdgesInfoSingle()
end subroutine getDetImageEdgesInfoSingle
subroutine getDetImageEdgesInfoInt32()
end subroutine getDetImageEdgesInfoInt32
subroutine getDetImageEdgesInfoIntl6()
end subroutine getDetImageEdgesInfolntl6
subroutine getDetImageEdgesInfoInt8()

end subroutine getDetImageEdgesInfoInt8
end interface

As for the input array (detImage), all the Real and Integer types are allowed, and that is the only
difference in the interface.

outBinSizeXY (optional) is a 1-dimensional array with the size of 2. The default is (/ 80.0, 80.0 /).

outDffsetXY (optional) is a 1-dimensional array with the size of 2; if outOffsetXY=(/a, b/) is given,
the (a,b) in PHYSICAL coordinates is located at the centre of the array. In default, (a, b)==(0.0, 0.0).

This function returns type (aryEdgesInfoT) (defined in array_ utils).

30 Quick Sorting

Module name: sort_mod

Author: Clive Page (University of Leicester, cgp@star.le.ac.uk)

This module contains subroutines to sort a data array into ascending order using Hoare’s quick-sort
algorithm. There is a generic interface which supports data types INTEGER, REAL, DOUBLE PRECISION,
and CHARACTER (any length).

The simplest call is:
CALL quick_sort(array)

The array argument has INTENT (INOUT) and returns the data sorted into ascending order.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 82

In some cases it is desirable to know the original order of the data points, for example to sort another
array in the same way. In this case an optional second argument may be given; it returns an integer array
of the same size containing numbers in the range 1 to size(array) which tell you the original position of
each element returned sorted. For example if you do:

unsorted_array = array
call quick_sort(array, index)

then unsorted_array(index(i)) = array(i) for all i in [Ibound(array), ubound(array)]. Note that array is
always returned sorted, whether index is supplied or not. This can be something to be careful of. Suppose
you have a data structure array which you want to sort in order of one of its constituents, for example a
structure that stores gtis:

type :: gtiType
real(kind(0d0)) :: time
logical :: isStart

end type gtiType

type(gtiType) :: gtiArray(100)

! Fill gtiArray
In this case to sort the logicals as well you will need to do something like the following:

type(gtiType) :: temp_gtiArray(size(gtiArray))

temp_gtiArray)time = gtiArrayltime
call quick_sort(temp_gtiArray),time, index)
do i = 1, size(gtiArray)
temp_gtiArray(i)%isStart = gtiArray(index(i))%isStart
! NOT temp_gtiArray(i) = gtiArray(index(i))!! The times are already sorted.
end do
gtiArray = temp_gtiArray

Note that the quick-sort algorithm is on average about twice as fast as heap-sort but becomes much
slower for special cases. This quick-sort algorithm was designed to cope with nearly-sorted data as well
as random data without any significant degradation in speed. Note that it is not a stable sort, i.e. equal
values will not necessarily remain in the same relative order.

31 A routine which returns circles or ellipses to mark source
locations

Module name: source_cutouts

Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 83

32 1D and 2D cubic-spline routines
Module name: splines

Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)
33 Miscellaneous utilities

Module name: ssc_misc

Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk) (except for getFreeloUnit)

33.1 Find a Free I/O Unit

Author: Clive Page (University of Leicester, cgp@star.le.ac.uk)

This subroutine returns a number of a free I/O unit, i.e. one that is not currently allocated to and file.
The calling sequence is:

33.2 stripStr()

subroutine stripStr(inStr, outStr, isPreceedingOnly)

character(*x), intent(in) :: inStr
character(*), intent(out) :: outStr
logical, intent(in), optional :: isPreceedingOnly ! .false. in default.

end subroutine stripStr

This “strips” the input string, namely removes the preceeding and trailing spaces, tabs, line-feeds,
carriage-returns. If isPreceedingOnly is given and TRUE, no trailing space is deleted.

33.3 splitStr()

subroutine splitStr(inStr, outStrAry)

character(*), intent(in) :: inStr

character(*), pointer :: outStrAry(:) ! intent(out)
end subroutine splitStr

This “splits” the given string with the delimeter of consecutive spaces into an array, and returns it as the
pointer character array.

outStrAry should not be initialised before the call. NOTE make sure to deallocate outStrAry(:) after
the call.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 84

34 Some functions for testing/debugging

Module name: test_utils
Author: Masaaki Sakano (University of Leicester, mas@star.le.ac.uk)

The subroutines/functions in this module provide functions that are useful in testing (and possibly
debugging).

34.1 isNearlyEqual(): Comparing numbers with a given precision

This function returns .true. if the given pair of values agree with each other in the given precision
(order), or .false. otherwise.

LOGICAL(bool) FUNCTION isNearlyEqual(cmp, compared, precision)
REAL, intent(in) :: cmp, compared ! or INTEGER
INTEGER, intent(in) :: precision

END FUNCTION isNearlyEqual

For the pair of the first two arguments, any combination of int8, int16, int32, single and double is
allowed.

34.1.1 Examples

isNearlyEqual(1110, 1112, 3) returns .true.
isNearlyEqual(1.2, 1.0, 3) returns .false.
isNearlyEqual(1.234, 1.231, 3) returns .true.
isNearlyEqual(1.2349, 1.2351, 3) returns .true.

35 Routines to perform hyperbolic distortion of values in the
interval [0:1]

Module name: warp_utils

Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)

36 Utilities to assist in the reading and manipulation of WCS
keywords

Module name: wcs_aux

Author: Tan Stewart (University of Leicester, ims@star.le.ac.uk)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 85

37 Utilities to assist development in Perl

Module name: SSCLib
Author: Masaaki Sakano (University of Leicester, mas@star.le.ac.uk)

See the header of the library code for detail. You may want to read it by, for example, cd /YOUR/DIR;
pod2man SSCLib.pm | tbl | neqn | nroff -h -man | less

38 General coordinates class in Perl

Module name: Coords
Author: Masaaki Sakano (University of Leicester, mas@star.le.ac.uk)

See the header of the library code for detail. You may want to read it by, for example, cd /YOUR/DIR;
pod2man Coords.pm | tbl | neqn | nroff -h -man | less

39 Celestial coordinates utilities in Perl

Module name: CelCoords
Author: Masaaki Sakano (University of Leicester, mas@star.le.ac.uk)

See the header of the library code for detail. You may want to read it by, for example, cd /YOUR/DIR;
pod2man CelCoords.pm | tbl | neqn | nroff -h -man | less

References

xmmsas_20230412_1735-21.0.0

