
XMM-Newton Science Analysis System Page: 1

ssclib

April 16, 2023

Abstract

Library of Fortran 90 (and Perl) utilities needed for SAS task development.

1 Description

1.1 Introduction

This library consists of a series of Fortran 90 modules useful for the development of SAS tasks. Each
module is described in a separate section below. Each module is contained in a separate file and will be
compiled separately. The resulting object files will be combined into a single library file.

The modules divide broadly into (i) those which depend on XMM-specific libraries such as dal, cal and
errorHandling, and (ii) those which do not. The only foreign module that members of the second group
depend on is called types and is at present resident in the sas package utils. This small module just
defines data types such as int8, bool etc. If it is desired to port the non XMM-specific modules to a
non-sas environment it is recommended to also copy this types module.

At some stage in the future it may be desirable to move these two groups into separate libraries.

1.2 Angle conventions

All angular variables are assumed to be in radians, unless otherwise indicated. Variable names end in
the unit (eg arcsec, deg) if it is not radians.

1.3 Dependency relations:

*** Not yet done this figure.

1.4 Module index

• Section 2: array utils:

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 2

• Section 3: cal aux:

• Section 4: confusion:

• Section 5: constants:

• Section 6: coordinate:

• Section 7: dal aux:

• Section 8: detection stats:

• Section 9: dss aux:

• Section 10: dump:

• Section 11: ellipse:

• Section 12: epic aux:

• Section 13: exposure:

• Section 14: fftw aux:

• Section 15: geometric types:

• Section 16: histogram utils:

• Section 17: intervals aux:

• Section 18: linear:

• Section 19: math utils:

• Section 20: minimizations:

• Section 21: oal aux:

• Section 22: parse list mod:

• Section 23: polygon:

• Section 24: psf ims:

• Section 25: random aux:

• Section 26: reallocate:

• Section 27: rebinners:

• Section 28: regridders:

• Section 29: save image:

• Section 30: sort mod:

• Section 31: source cutouts:

• Section 32: splines:

• Section 33: ssc misc:

• Section 34: test utils:

• Section 35: warp utils:

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 3

• Section 36: wcs aux:

• Section 37: SSCLib (Perl):

• Section 38: Coords (Perl):

• Section 39: CelCoords (Perl):

2 General-purpose array-processing utilities

Module name: array utils

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)
Masaaki Sakano (University of Leicester, mas@star.le.ac.uk)

2.1 aryStatInfoFlagT structure definition

A set of structure definitions is provided. This consists of one of the elements in type(aryStatInfo???T)
(see Sec 2.2), and also is used as an argument in some subroutines/functions in this package. See Sec 2.2
and Table 1 for the (supposed) meaning of each element.

type, public :: aryStatInfoFlagT

integer :: status = 0 ! Normal

logical :: isValLowerUsed = .false., isValUpperUsed = .false. &

, isAreaLowerUsed = .false., isAreaUpperUsed = .false. &

, isMaskUsed = .false.

end type aryStatInfoFlagT

2.2 aryStatInfo???T structure definition

A set of structure definitions is provided. The above ‘???’ can be Double, Single, Int32, Int16 or
Int8. This gives a structure for the statistics for a given (2-d?) array. The following is the example of
aryStatInfoDoubleT.

type, public :: aryStatInfoDoubleT

real(double) :: totalsum, mean, sigma

real(double) :: realsum

integer(int32) :: totalentry, validentry

real(double) :: minval, maxval

integer(int32), dimension(:), allocatable :: minindices, maxindices

real(double) :: vallower, valupper

integer(int32), dimension(:), allocatable :: minareaindices, maxareaindices

type(aryStatInfoFlagT) :: flag

end type aryStatInfoDoubleT

This structure is meant to offer the statistical information of an array or its subset. That is, the statistical
information for the array, where the valid entry can be filtered based on given

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 4

Table 1: Elements in aryStatInfoT

Element Type1 Description
%totalsum D/S/I32 Sum (for the valid entry)
%realsum D Sum (for the valid entry)
%mean D (S for SingleT) Mean
%sigma D (S for SingleT) Standard deviation2

%totalentry I32 Total entry (size) of the array.
%validentry I32 The entry used in calculation.
%minval D/S/I32/I16/I8 Minimum value among the valid entry.
%maxval D/S/I32/I16/I8 Minimum value among the valid entry.
%minindices I32 [Array] Location (indices: x,y,...) of minval
%maxindices I32 [Array] Location (indices: x,y,...) of maxval
%vallower D (S for SingleT) Lower threshold to be a valid entry (if specified).
%valupper D (S for SingleT) Upper threshold to be a valid entry (if specified).
%minareaindices I32 [Array] Minimum indices for the area of valid entry.
%maxareaindices I32 [Array] Maximum indices for the area of valid entry.
%flag%status Integer 0 if normal.
%flag%isValLowerUsed Logical True if vallower is used.
%flag%isValUpperUsed Logical True if valupper is used.
%flag%isAreaLowerUsed Logical True if minareaindices is used.
%flag%isAreaUpperUsed Logical True if maxareaindices is used.
%flag%isMaskUsed Logical True if an external mask is used.

1: D(Double), S(Single), I32/I16/I8 (Int32/Int16/Int8)
2:

√

1

N

∑

i
(xi − x̄)2.

1. external mask file, where True entry is valid,

2. lower and/or upper thresholds for value at each cell,

3. lower and/or upper boundaries (area, if 2-dim) of the indices of the array cell.

If more than one filter condition are given, then the logical product of those conditions are considered,
namely, only the entries that satisfy all the given filter conditions are used. Note that the boundary is
inclusive for the second and third conditions. For example, if the lower thresholds for value at each cell
is given to be 2.5, then the cells of which the value is smaller than 2.5 are regarded as invalid and are not
counted as the valid entry.

Table 1 shows the (supposed) meaning of each element as well as gives the difference in types of elements
between the structures (such as, aryStatInfoDoubleT and aryStatInfoInt32T). Technically each user
could give a different meaning for them, but it is discouraged for an obvious reason.

Notes: Some of the elements of the structure can be undefined. For example, if flag%isAreaLowerUsed
is false, the array minareaindices is likely to be undefined, even its size (NOT allocated). Similarly
flag%isValLowerUsed is false, vallower is likely to be undefined, and so on. If one tries to access those
undefined values that may cause a trouble or even Fortran error, leading to abortion.

The difference between the elements of totalsum and realsum is the type; the latter is always double,
whereas the former is double/single/int32, depending on the type of the input array; n.b., it is int32
for any of the integer array. The totalsum for an integer array may overflow; in that case totalsum has
a value INTEGER NULL. Another note is that although the they type of realsum for a single-precission
float array is double, obviously it has a practical accuracy of only single-precission.

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 5

2.3 AryEdgesInfoT structure definition

Fortran arrays are by default have integer indices, starting from 1. The starting index can be specified
by users, however once it is passed to a subroutine, the information is in principle lost. And anyway they
still have to be integer each spaced by 1, which is a strong constraint.

In practice a pair of indices in an array (i, j, ...) are given a practice meaning. That information should
ideally be held as an entity of the array – objected-oriented languages may provide some convenient way,
but Fortran does not.

This Type variable is designed to hold those information, e.g., lower and upper (integer) bounds of the
array, and the physical values corresponding to those ‘edges’ of the array as follows.

type, public :: AryEdgesInfoT

integer :: aryDimension = -1

integer, allocatable :: arySize(:), lboundIndex(:)

real(double), allocatable :: lEdge(:), uEdge(:)

end type AryEdgesInfoT

Note the aryDimension gives the rank of the array. It is −1 when uninitialised.

If you want to get the upper bound of the array, use the function getUbound() (see Section 2.5.7).

To set an AryEdgesInfoT variable, the function getAryEdgesInfo() (see Section 2.8.2) offers a convenient
way. You can of course set it by yourself, but if you do it, make sure all the component values in the
variable are consistent with one another.

2.4 Integer (index) → scalar integers

2.4.1 Return the axes (array) for the input (i,j) for an array

interface getAxesFromIndices

function getAxesFromIndicesDouble(indices, iLbound, iUbound, lEdge, uEdge) result(axes)

real(double), intent(in) :: indices(:)

integer, intent(in) :: iLbound(size(indices)), iUbound(size(indices))

real(double), intent(in) :: lEdge(size(indices))

real(double), intent(in), optional :: uEdge(size(indices))

real(double) :: axes(size(indices)) ! result

end function getAxesFromIndicesDouble

function getAxesFromIndicesSingle(indices, iLbound, iUbound, lEdge, uEdge) result(axes)

real(single), intent(in) :: indices(:)

integer, intent(in) :: iLbound(size(indices)), iUbound(size(indices))

real(single), intent(in) :: lEdge(size(indices))

real(single), intent(in), optional :: uEdge(size(indices))

real(single) :: axes(size(indices)) ! result

end function getAxesFromIndicesSingle

function getAxesFromIndicesEdgesDouble(indices, aryEdgesInfo) result(axes)

real(double), intent(in) :: indices(:)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 6

type(AryEdgesInfoT), intent(in) :: aryEdgesInfo

real(double) :: axes(size(indices)) ! result

end function getAxesFromIndicesEdgesDouble

function getAxesFromIndicesEdgesSingle(indices, aryEdgesInfo) result(axes)

real(single), intent(in) :: indices(:)

type(AryEdgesInfoT), intent(in) :: aryEdgesInfo

real(single) :: axes(size(indices)) ! result

end function getAxesFromIndicesEdgesSingle

end interface

In the arguments, indices(:) are the coordinates in unit of the index of the array of interest. i(L|U)bound(:)
are the array of (l—u)bound of the array of interest. (l|u)Edge(:) are the array of the lower/upper
bounds in unit of physically meaningful values of the array of interest; e.g.,

lEdge=(0.5,0.5) uEdge=(256.5,256.5)

etc.

If uEdge is not given, it is assumed that the width of axes is the same as the size of the array (=
abs(iUbound-iLbound) for each axis).

The following is a few examples.

Case 1 The axes for the indices (i, j)=(3, 3) in the array (1:5, 1:5) with the edge (0.5:5.5, 0.5:5.5) is
(3.0, 3.0).

Case 2 The axes for the indices (i, j)=(3, 3) in the array (1:5, 1:5) with the edge (2.5:7.5, 2.5:7.5) is
(5.0, 5.0).

Case 3 The axes for the indices (i, j)=(3, 3) in the array (1:5, 1:5) with the edge (0.0:10, 0.0:10) is (5,
5).

Case 4 The axes for the indices (i, j)=(3, 3) in the array (1:5, 1:5) with the edge (-10:0.0, -10:0.0) is (-5,
-5).

Case 5 The axes for the indices (i, j)=(5, 5) in the array (3:7, 3:7) with the edge (0.0:10, 0.0:10) is (5,
5).

2.4.2 Return the indices (i,j) for the input axes (x,y) of an array

The inverse function of getAxesFromIndices (See Section 2.4.1).

interface getIndicesFromAxes

function getIndicesFromAxesDouble(axes, iLbound, iUbound, lEdge, uEdge) result(indices)

real(double), intent(in) :: axes(:)

integer, intent(in) :: iLbound(size(axes)), iUbound(size(axes))

real(double), intent(in) :: lEdge(size(axes))

real(double), intent(in), optional :: uEdge(size(axes))

real(double) :: indices(size(axes)) ! result

end function getIndicesFromAxesDouble

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 7

function getIndicesFromAxesSingle(axes, iLbound, iUbound, lEdge, uEdge) result(indices)

real(single), intent(in) :: axes(:)

integer, intent(in) :: iLbound(size(axes)), iUbound(size(axes))

real(single), intent(in) :: lEdge(size(axes))

real(single), intent(in), optional :: uEdge(size(axes))

real(single) :: indices(size(axes)) ! result

function getIndicesFromAxesSingle

function getIndicesFromAxesEdgesDouble(axes, aryEdgesInfo) result(indices)

real(double), intent(in) :: axes(:)

type(AryEdgesInfoT), intent(in) :: aryEdgesInfo

real(double) :: indices(size(axes)) ! result

end function getIndicesFromAxesEdgesDouble

function getIndicesFromAxesEdgesSingle(axes, aryEdgesInfo) result(indices)

real(single), intent(in) :: axes(:)

type(AryEdgesInfoT), intent(in) :: aryEdgesInfo

real(single) :: indices(size(axes)) ! result

end function getIndicesFromAxesEdgesSingle

end interface

Indices, though the returned values here may be Real, mean the index for the given array, therefore for
an array

ary(int(returned_i), int(returned_j))

will give something significant in the Fortran code. Axes are arbitrary and give the frame, which may
mean something physical.

If uEdge is not given, it is assumed that the width of axes is the same as the size of the array (=
abs(iUbound-iLbound) for each axis).

The following is a few examples.

Case 1 The indices for the axes (x,y)=(3.0, 3.0) in the array (1:5, 1:5) with the edge (0.5:5.5, 0.5:5.5) is
(3, 3).

Case 2 The indices for the axes (x,y)=(5.0, 5.0) in the array (1:5, 1:5) with the edge (2.5:7.5, 2.5:7.5) is
(3, 3).

Case 3 The indices for the axes (x,y)=(5.0, 5.0) in the array (1:5, 1:5) with the edge (0.0:10, 0.0:10) is
(3,3).

Case 4 The indices for the axes (x,y)=(-5, -5) in the array (1:5, 1:5) with the edge (-10:0.0, -10:0.0) is
(3, 3).

Case 5 The indices for the axes (x,y)=(5.0, 5.0) in the array (3:7, 3:7) with the edge (0.0:10, 0.0:10) is
(5, 5).

2.4.3 Calculate the indices(i,j) on the new frame converted from the old frame.

Particularly useful in subroutines.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 8

interface calcIndicesFromIndices

subroutine calcIndicesFromIndicesDblDbl(oldIndices, newIndices, oldLbound, newLbound)

real(double), intent(in) :: oldIndices(:)

real(double), intent(out) :: newIndices(size(oldIndices))

integer, intent(in) :: oldLbound(size(oldIndices))

integer, intent(in), optional :: newLbound(size(oldIndices))

end subroutine calcIndicesFromIndicesDblDbl

subroutine calcIndicesFromIndicesDblI32(oldIndices, newIndices, oldLbound, newLbound)

real(double), intent(in) :: oldIndices(:)

integer(int32), intent(out) :: newIndices(size(oldIndices))

integer, intent(in) :: oldLbound(size(oldIndices))

integer, intent(in), optional :: newLbound(size(oldIndices))

end subroutine calcIndicesFromIndicesDblI32

subroutine calcIndicesFromIndicesDblI16(oldIndices, newIndices, oldLbound, newLbound)

real(double), intent(in) :: oldIndices(:)

integer(int16), intent(out) :: newIndices(size(oldIndices))

integer, intent(in) :: oldLbound(size(oldIndices))

integer, intent(in), optional :: newLbound(size(oldIndices))

end subroutine calcIndicesFromIndicesDblI16

subroutine calcIndicesFromIndicesSglSgl(oldIndices, newIndices, oldLbound, newLbound)

real(single), intent(in) :: oldIndices(:)

real(single), intent(out) :: newIndices(size(oldIndices))

integer, intent(in) :: oldLbound(size(oldIndices))

integer, intent(in), optional :: newLbound(size(oldIndices))

end subroutine calcIndicesFromIndicesSglSgl

subroutine calcIndicesFromIndicesSglI32(oldIndices, newIndices, oldLbound, newLbound)

real(single), intent(in) :: oldIndices(:)

integer(int32), intent(out) :: newIndices(size(oldIndices))

integer, intent(in) :: oldLbound(size(oldIndices))

integer, intent(in), optional :: newLbound(size(oldIndices))

end subroutine calcIndicesFromIndicesSglI32

subroutine calcIndicesFromIndicesSglI16(oldIndices, newIndices, oldLbound, newLbound)

real(single), intent(in) :: oldIndices(:)

integer(int16), intent(out) :: newIndices(size(oldIndices))

integer, intent(in) :: oldLbound(size(oldIndices))

integer, intent(in), optional :: newLbound(size(oldIndices))

end subroutine calcIndicesFromIndicesSglI16

subroutine calcIndicesFromIndicesI32I32(oldIndices, newIndices, oldLbound, newLbound)

integer(int32), intent(in) :: oldIndices(:)

integer(int32), intent(out) :: newIndices(size(oldIndices))

integer, intent(in) :: oldLbound(size(oldIndices))

integer, intent(in), optional :: newLbound(size(oldIndices))

end subroutine calcIndicesFromIndicesI32I32

subroutine calcIndicesFromIndicesI16I16(oldIndices, newIndices, oldLbound, newLbound)

integer(int16), intent(in) :: oldIndices(:)

integer(int16), intent(out) :: newIndices(size(oldIndices))

integer, intent(in) :: oldLbound(size(oldIndices))

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 9

integer, intent(in), optional :: newLbound(size(oldIndices))

end subroutine calcIndicesFromIndicesI16I16

end interface

This calculates the indices (i,j) on the new frame converted from those on the old frame. The most
likely case is to get a pair of indices of an array in a subroutine/function, all the lbound-s of which must
be 1, from the old pair of indices, where the lbound-s can be arbitrary.

newLbound(:) is in default 1 (if not given).

The following is an example for a 1-dimension array.

integer :: ary(5:8)

ary(7) = -99 ! i=7 is the 3rd element in the array.

call aSub(iPoints=(/7/), lbounds=lbound(ary))

subroutine aSub(iPoints, lbounds)

integer, intent(in) :: iPoints(:), lbounds(:)

integer :: outAry(size(iPoints))

call getIndicesFromIndices(iPoints, outAry, lbounds)

print *, outAry ! => 3

! nb., the old index=7 corresponds to index=3 in the current context.

end subroutine aSub

2.5 Array or vector → scalar integers

2.5.1 Return largest true index of a logical vector

integer function largestTrueIndex(maskVector)

logical(bool), intent(in) :: maskVector(:)

end function

Examples:

largestTrueIndex(((/0, 1, 1/) > 0)) ! returns 3

largestTrueIndex(((/0, 1, 0/) > 0)) ! returns 2

largestTrueIndex(((/0, 0, 0/) > 0)) ! returns 0, ie 1 below vector limit.

0 is also returned if the vector is of zero size.

2.5.2 Return smallest true index of a logical vector

integer function smallestTrueIndex(maskVector)

logical(bool), intent(in) :: maskVector(:)

end function

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 10

Examples:

smallestTrueIndex(((/0, 1, 1/) > 0)) ! returns 2

smallestTrueIndex(((/1, 1, 1/) > 0)) ! returns 1

smallestTrueIndex(((/0, 0, 0/) > 0)) ! returns 4, ie 1 above vector limit.

size(maskVector)+1 is also returned if the vector is of zero size.

2.5.3 Rectangular bounds of the true area of a logical array

subroutine maskArrayLimits(mask, minXi, maxXi, minYi, maxYi)

logical(bool), intent(in) :: mask(:,:)

integer(int16), intent(out) :: minXi, maxXi, minYi, maxYi

end subroutine

!*** erase the status variable from the actual routine!

Example:

logical(bool) :: mask(4,5)

mask(1,:) = ((/0, 0, 0, 0, 0/) > 0)

mask(2,:) = ((/0, 1, 1, 0, 0/) > 0)

mask(3,:) = ((/1, 1, 0, 1, 0/) > 0)

mask(4,:) = ((/1, 0, 0, 0, 0/) > 0)

call maskArrayLimits(mask, minXi, maxXi, minYi, maxYi)

! returns minXi=1, maxXi=4, minYi=2, maxYi=4

mask = .false.

call maskArrayLimits(mask, minXi, maxXi, minYi, maxYi)

! returns minXi=6, maxXi=0, minYi=5, maxYi=0 (ie, nonsense)

The same nonsense return occurs if mask is of zero size in either direction. It is up to the user to check
that the mask is neither empty nor of zero size before calling maskArrayLimits.

2.5.4 Allocate real to a bin

function getBinNumber(xBinEdges, x) result(binNum)

real(single), intent(in) :: xBinEdges(:), x

integer(int32) :: binNum

end function

In a commonly encountered situation, one has a set of bins defined by a vector of bin edges xBinEdges,
plus a real number x, and it is desired to know into which bin x falls. The present function accomplishes

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 11

this calculation and returns the index of the bin. The bin edges should occur in increasing order, with
no two values the same, but they don’t have to be equidistant. The returned value obeys in general the
rule

xBinEdges(i) ≤ x < xBinEdges(i+ 1) ⇒ binNum = i

However note the following limiting or pathological cases:

• x < xBinEdges(1) ⇒ binNum = 0, ie 1 under the lower limit, is returned. It is up to the calling
routine to catch these instances if it is necessary to prevent this return value from occurring.

• If x = xBinEdges(size(xBinEdges)) it is judged to fall within the last bin and binNum =
size(xBinEdges)− 1 is returned.

• x > xBinEdges(size(xBinEdges)) ⇒ binNum = size(xBinEdges), ie 1 over the upper limit, is
returned. It is up to the calling routine to catch these instances if it is necessary to prevent this
return value from occurring.

2.5.5 Simpler maxloc

The fortran routine maxloc(array) returns the indices at which the maximum value in array occurs.
However the return must be a vector quantity of the same size as the array has dimensions. This can be
slightly clunky if array is of dimension 1 - ie, a 1-dimensional vector. The function maxLoc1d allows one
to obtain the index of the maximum value of the 1-D argument in a scalar return value. This can save
some lines of code.

interface maxLoc1d

function maxLoc1dSingle(vector, mask)

real(single), intent(in) :: vector(:)

logical(bool), intent(in), optional :: mask(:)

integer :: maxLoc1dSingle

end function

function maxLoc1dDouble(vector, mask)

real(double), intent(in) :: vector(:)

logical(bool), intent(in), optional :: mask(:)

integer :: maxLoc1dSingle

end function

end interface

2.5.6 Simpler minloc

The fortran routine minloc(array) returns the indices at which the minimum value in array occurs.
However the return must be a vector quantity of the same size as the array has dimensions. This can be
slightly clunky if array is of dimension 1 - ie, a 1-dimensional vector. The function minLoc1d allows one
to obtain the index of the minimum value of the 1-D argument in a scalar return value. This can save
some lines of code.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 12

interface minLoc1d

function minLoc1dSingle(vector, mask)

real(single), intent(in) :: vector(:)

logical(bool), intent(in), optional :: mask(:)

integer :: minLoc1dSingle

end function

function minLoc1dDouble(vector, mask)

real(double), intent(in) :: vector(:)

logical(bool), intent(in), optional :: mask(:)

integer :: minLoc1dSingle

end function

end interface

2.5.7 Get ubound

This returns ubound() for either a given aryEdgesInfoT variable (See Section 2.3) or pair of lbound and
size.

interface getUbound

function getUboundFromEdgesInfo(aryEdgesInfo) result(outUbound)

type(AryEdgesInfoT), intent(in) :: aryEdgesInfo

integer :: outUbound(aryEdgesInfo\%aryDimension) ! return

end function getUboundFromEdgesInfo

function getUboundFromScalars(inLbound, arySize) result(outUbound)

integer, intent(in) :: inLbound(:), arySize(size(inLbound))

integer :: outUbound(size(inLbound)) ! return

end function getUboundFromScalars

end interface

2.6 Array or vector → scalar reals

2.6.1 1-D interpolation

Given a set of piecewise-continuous line segments defined by set of x values (these must be monotonically
increasing) and a corresponding set of y values, and given also a single xSample value, this subroutine
performs a linear interpolation to return the associated ySample value. If xSample is outside the range
of x values, or in other pathological cases, 0 is returned.

function linearInterpolate(x, y, xSample) result(ySample)

real(single), intent(in) :: x(:), y(size(x)), xSample

real(single) :: ySample

end function linearInterpolate

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 13

2.6.2 Trapezoid-rule, 1-D, numerical integral

Given two vectors x and y containing samples of a function F , this subroutine returns the ‘trapezoidal-
rule’ estimate of the integral of F . In other words, F is replaced by the set of piecewise-continuous line
segments defined by x and y. Note that x is assumed to be monotonically increasing - if it isn’t, you’ll
get strange results.

interface trapezoidSum

function trapezoidSumSingle(x, y) result(summ)

real(single), intent(in) :: x(:), y(size(x))

real(single) :: summ

end function trapezoidSumSingle

function trapezoidSumDouble(x, y) result(summ)

real(double), intent(in) :: x(:), y(size(x))

real(double) :: summ

end function trapezoidSumDouble

end interface

2.6.3 Median

This function calculates the median value of the supplied 1- or 2-d array. The function sorts the array
values: if the number of elements is odd, the central element of the sorted list is returned; if even, the
element in the lower of the two central elements is returned.

interface median

real(single) function medianVector(array)

real(single), intent(in) :: vector(:)

end function medianVector

real(single) function medianArray(array)

real(single), intent(in) :: array(:,:)

end function medianArray

end interface

2.6.4 Value at histogram fraction

For binFraction = 0.5 this gives the same result as median(). The algorithm is as follows: the values
in vector or array are sorted; that element index is identified which, expressed as a fraction of the total
number of elements, comes nearest to binFraction; finally, the element which occurs at that index of the
sorted list is returned.

If binFraction is outside the range 0 to 1, the smallest or largest element, whichever is appropriate, is
returned.

interface valueAtHistoFraction

real(single) function valueAtHistoFractionVector(vector, binFraction&

, maskVector)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 14

real(single), intent(in) :: vector(:), binFraction

logical(bool), intent(in), optional :: maskVector(:)

end function valueAtHistoFractionVector

real(single) function valueAtHistoFractionArray(array, binFraction&

, maskArray)

real(single), intent(in) :: array(:,:), binFraction

logical(bool), intent(in), optional :: maskArray(:,:)

end function valueAtHistoFractionArray

end interface

2.6.5 sumInt32Dbl

The Fortran90 builtin function sum() returns the value in as the same type as its argument (at least in
NAG Fortran specification). For example, when aryInt8 is an array of Integer(int8), the returned value
of sum(aryInt8) is also Integer(int8) — which is practically not very useful, as the total sum of aryInt8
is very likely to exceed the maximum (or minimum if negative) possible number of Integer(int8) (which
can be obtained with huge() function).

This subroutine is developed to avoid that problem; it still returns the total sum of the array as sum()
does, but always returns the type Integer(int32) and/or Real(double) if requested, whether the type of
the argument is int8/16/32. In addition if an overflow happens during the calculation, that is, if the
absolute value of the total sum is larger than huge(int32 variable), the returned Integer(int32) are
INTEGER NULL, which is defined in DAL. Also if the size of the given array is zero, the returned values are
INTEGER NULL and REAL NULL.

sumInt32Dbl() can accept up to 4-dimensional arrays at the time of writing.

See also Section 2.6.6 for the handier, function version of this routine sumInt32().

interface sumInt32Dbl

subroutine sumInt32DblInt81d(ary, sumInInt32, sumInDbl)

integer(int8), intent(in) :: ary(:)

integer(int32), intent(out), optional :: sumInInt32

real(double), intent(out), optional :: sumInDbl

end subroutine sumInt32DblInt81d

subroutine sumInt32DblInt161d(ary, sumInInt32, sumInDbl)

integer(int16), intent(in) :: ary(:)

integer(int32), intent(out), optional :: sumInInt32

real(double), intent(out), optional :: sumInDbl

end subroutine sumInt32DblInt161d

subroutine sumInt32DblInt321d(ary, sumInInt32, sumInDbl)

integer(int32), intent(in) :: ary(:)

integer(int32), intent(out), optional :: sumInInt32

real(double), intent(out), optional :: sumInDbl

end subroutine sumInt32DblInt321d

subroutine sumInt32DblInt82d(ary, sumInInt32, sumInDbl)

integer(int8), intent(in) :: ary(:,:)

integer(int32), intent(out), optional :: sumInInt32

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 15

end subroutine sumInt32DblInt82d

subroutine sumInt32DblInt162d(ary, sumInInt32, sumInDbl)

integer(int16), intent(in) :: ary(:,:)

integer(int32), intent(out), optional :: sumInInt32

real(double), intent(out), optional :: sumInDbl

end subroutine sumInt32DblInt162d

subroutine sumInt32DblInt322d(ary, sumInInt32, sumInDbl)

integer(int32), intent(in) :: ary(:,:)

integer(int32), intent(out), optional :: sumInInt32

real(double), intent(out), optional :: sumInDbl

end subroutine sumInt32DblInt322d

subroutine sumInt32DblInt83d(ary, sumInInt32, sumInDbl)

integer(int8), intent(in) :: ary(:,:,:)

integer(int32), intent(out), optional :: sumInInt32

real(double), intent(out), optional :: sumInDbl

end subroutine sumInt32DblInt83d

subroutine sumInt32DblInt163d(ary, sumInInt32, sumInDbl)

integer(int16), intent(in) :: ary(:,:,:)

integer(int32), intent(out), optional :: sumInInt32

real(double), intent(out), optional :: sumInDbl

end subroutine sumInt32DblInt163d

subroutine sumInt32DblInt323d(ary, sumInInt32, sumInDbl)

integer(int32), intent(in) :: ary(:,:,:)

integer(int32), intent(out), optional :: sumInInt32

real(double), intent(out), optional :: sumInDbl

end subroutine sumInt32DblInt323d

subroutine sumInt32DblInt84d(ary, sumInInt32, sumInDbl)

integer(int8), intent(in) :: ary(:,:,:,:)

integer(int32), intent(out), optional :: sumInInt32

real(double), intent(out), optional :: sumInDbl

end subroutine sumInt32DblInt84d

subroutine sumInt32DblInt164d(ary, sumInInt32, sumInDbl)

integer(int16), intent(in) :: ary(:,:,:,:)

integer(int32), intent(out), optional :: sumInInt32

real(double), intent(out), optional :: sumInDbl

end subroutine sumInt32DblInt164d

subroutine sumInt32DblInt324d(ary, sumInInt32, sumInDbl)

integer(int32), intent(in) :: ary(:,:,:,:)

integer(int32), intent(out), optional :: sumInInt32

real(double), intent(out), optional :: sumInDbl

end subroutine sumInt32DblInt324d

end interface

2.6.6 sumInt32

See Section 2.6.5 (sumInt32Dbl) for detail. This routine is the front-end of that, namely the function
version, just like the Fortran90 builtin function sum() but returns always Integer(int32).

Note that if the returned value is INTEGER NULL, the caller side then can execute sum(real(ary, double))

in order to get the total sum, in the double-precission float number this time.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 16

interface sumInt32

integer(int32) function sumInt32Int81d(ary)

integer(int8), intent(in) :: ary(:)

end function sumInt32Int81d

integer(int32) function sumInt32Int82d(ary)

integer(int8), intent(in) :: ary(:,:)

end function sumInt32Int82d

integer(int32) function sumInt32Int83d(ary)

integer(int8), intent(in) :: ary(:,:,:)

end function sumInt32Int83d

integer(int32) function sumInt32Int84d(ary)

integer(int8), intent(in) :: ary(:,:,:,:)

end function sumInt32Int84d

integer(int32) function sumInt32Int161d(ary)

integer(int16), intent(in) :: ary(:)

end function sumInt32Int161d

integer(int32) function sumInt32Int162d(ary)

integer(int16), intent(in) :: ary(:,:)

end function sumInt32Int162d

integer(int32) function sumInt32Int163d(ary)

integer(int16), intent(in) :: ary(:,:,:)

end function sumInt32Int163d

integer(int32) function sumInt32Int164d(ary)

integer(int16), intent(in) :: ary(:,:,:,:)

end function sumInt32Int164d

integer(int32) function sumInt32Int321d(ary)

integer(int32), intent(in) :: ary(:)

end function sumInt32Int321d

integer(int32) function sumInt32Int322d(ary)

integer(int32), intent(in) :: ary(:,:)

end function sumInt32Int322d

integer(int32) function sumInt32Int323d(ary)

integer(int32), intent(in) :: ary(:,:,:)

end function sumInt32Int323d

integer(int32) function sumInt32Int324d(ary)

integer(int32), intent(in) :: ary(:,:,:,:)

end function sumInt32Int324d

end interface

2.7 Array or vector → array or vector

2.7.1 vectorCross

Performs a vector cross product.

interface vectorCross

function vectorCrossSingle(vectorA, vectorB)

real(single), intent(in) :: vectorA(3), vectorB(3)

real(single) :: vectorCrossSingle(3)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 17

end function vectorCrossSingle

function vectorCrossDouble(vectorA, vectorB)

real(double), intent(in) :: vectorA(3), vectorB(3)

real(double) :: vectorCrossDouble(3)

end function vectorCrossDouble

end interface

2.7.2 normalizeVector

Given argument v̄ returns v̂.

interface normalizeVector

function normalizeVectorSingle(argument)

real(single), intent(in) :: argument(:)

real(single) :: normalizeVectorSingle(size(argument))

end function normalizeVectorSingle

function normalizeVectorDouble(argument)

real(double), intent(in) :: argument(:)

real(double) :: normalizeVectorDouble(size(argument))

end function normalizeVectorDouble

end interface

2.7.3 findEdges

subroutine findEdges(mask, figureEdges, groundEdges)

logical(bool), intent(in) :: mask(:,:)

logical(bool), intent(out), optional ::&

figureEdges(size(mask, 1),size(mask, 2)),&

groundEdges(size(mask, 1),size(mask, 2))

end subroutine findEdges

Given an input logical array mask, this subroutine returns (optionally) an array figureEdges which
is true at all true-valued pixels in mask which have at least 1 false-valued pixel among their 8 nearest
neighbours. (For pixels at the edges of the input array, the number of nearest neighbours is of course
reduced to 5 or 3 as appropriate.)

I give an example as follows, in which false pixels are represented by 0 and true by 1. For an input mask

11110000111

11111000011

11111100011

11111100001

00000000000

11111110000

11101111100

the returned figureEdges should be

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 18

00010000110

00011000010

00001100011

11111100001

00000000000

11111110000

00101011100

A second array groundEdges is also optionally returned, which is equivalent to figureEdges calculated
for .not.mask.

2.7.4 invertMask

This subroutine inverts the 2-d or 3-d input mask array, which is either Logical, Logical(bool) or Inte-
ger(int8), where .true. and .false. are 1 and 0, respectively.

interface invertMask

subroutine invertMask2dLogical(mask)

logical, intent(inout) :: mask(:,:)

end subroutine invertMask2dLogical

subroutine invertMask2dBool(mask)

logical(bool), intent(inout) :: mask(:,:)

end subroutine invertMask2dBool

subroutine invertMask2dInt8(mask)

integer(int8), intent(inout) :: mask(:,:)

end subroutine invertMask2dInt8

subroutine invertMask3dLogical(mask)

logical, intent(inout) :: mask(:,:,:)

end subroutine invertMask3dLogical

subroutine invertMask3dBool(mask)

logical(bool), intent(inout) :: mask(:,:,:)

end subroutine invertMask3dBool

subroutine invertMask3dInt8(mask)

integer(int8), intent(inout) :: mask(:,:,:)

end subroutine invertMask3dInt8

end interface

2.8 Array or vector → other

2.8.1 printAryEdgesInfo

This prints to STDOUT the debug information of a given AryEdgesInfoT (see Section 2.3).

subroutine printAryEdgesInfo(aryEdgesInfo, varName)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 19

type(AryEdgesInfoT), intent(in) :: aryEdgesInfo

character(*), intent(in), optional :: varName

end subroutine printAryEdgesInfo

2.8.2 getAryEdgesInfo

This returns a AryEdgesInfoT (see Section 2.3).

interface getAryEdgesInfo

function getAryEdgesInfoDbl1d(ary, lEdge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 1

real(double), intent(in) :: ary(:)

real(double), intent(in), optional :: lEdge(rankArin), uEdge(rankArin)

integer, intent(in), optional :: lboundIndex(rankArin)

character(*), intent(in), optional :: style

type(AryEdgesInfoT) :: aryEdgesInfo ! return

end function getAryEdgesInfoDbl1d

function getAryEdgesInfoDbl2d(ary, lEdge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 2

real(double), intent(in) :: ary(:,:)

real(double), intent(in), optional :: lEdge(rankArin), uEdge(rankArin)

integer, intent(in), optional :: lboundIndex(rankArin)

character(*), intent(in), optional :: style

type(AryEdgesInfoT) :: aryEdgesInfo ! return

end function getAryEdgesInfoDbl2d

function getAryEdgesInfoDbl3d(ary, lEdge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 3

real(double), intent(in) :: ary(:,:,:)

real(double), intent(in), optional :: lEdge(rankArin), uEdge(rankArin)

integer, intent(in), optional :: lboundIndex(rankArin)

character(*), intent(in), optional :: style

type(AryEdgesInfoT) :: aryEdgesInfo ! return

end function getAryEdgesInfoDbl3d

function getAryEdgesInfoSgl1d(ary, lEdge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 1

real(single), intent(in) :: ary(:)

real(single), intent(in), optional :: lEdge(rankArin), uEdge(rankArin)

integer, intent(in), optional :: lboundIndex(rankArin)

character(*), intent(in), optional :: style

type(AryEdgesInfoT) :: aryEdgesInfo ! Start

end function getAryEdgesInfoSgl1d

function getAryEdgesInfoSgl2d(ary, lEdge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 2

real(single), intent(in) :: ary(:,:)

real(single), intent(in), optional :: lEdge(rankArin), uEdge(rankArin)

integer, intent(in), optional :: lboundIndex(rankArin)

character(*), intent(in), optional :: style

type(AryEdgesInfoT) :: aryEdgesInfo ! return

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 20

end function getAryEdgesInfoSgl2d

function getAryEdgesInfoSgl3d(ary, lEdge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 3

real(single), intent(in) :: ary(:,:,:)

real(single), intent(in), optional :: lEdge(rankArin), uEdge(rankArin)

integer, intent(in), optional :: lboundIndex(rankArin)

character(*), intent(in), optional :: style

type(AryEdgesInfoT) :: aryEdgesInfo ! return

end function getAryEdgesInfoSgl3d

function getAryEdgesInfoInt321d(ary, lEdge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 1

integer(int32), intent(in) :: ary(:)

real(single), intent(in), optional :: lEdge(rankArin), uEdge(rankArin)

integer, intent(in), optional :: lboundIndex(rankArin)

character(*), intent(in), optional :: style

type(AryEdgesInfoT) :: aryEdgesInfo ! return

end function getAryEdgesInfoInt321d

function getAryEdgesInfoInt322d(ary, lEdge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 2

integer(int32), intent(in) :: ary(:,:)

real(single), intent(in), optional :: lEdge(rankArin), uEdge(rankArin)

integer, intent(in), optional :: lboundIndex(rankArin)

character(*), intent(in), optional :: style

type(AryEdgesInfoT) :: aryEdgesInfo ! return

end function getAryEdgesInfoInt322d

function getAryEdgesInfoInt323d(ary, lEdge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 3

integer(int32), intent(in) :: ary(:,:,:)

real(single), intent(in), optional :: lEdge(rankArin), uEdge(rankArin)

integer, intent(in), optional :: lboundIndex(rankArin)

character(*), intent(in), optional :: style

type(AryEdgesInfoT) :: aryEdgesInfo ! return

end function getAryEdgesInfoInt323d

function getAryEdgesInfoInt161d(ary, lEdge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 1

integer(int16), intent(in) :: ary(:)

real(single), intent(in), optional :: lEdge(rankArin), uEdge(rankArin)

integer, intent(in), optional :: lboundIndex(rankArin)

character(*), intent(in), optional :: style

type(AryEdgesInfoT) :: aryEdgesInfo ! return

end function getAryEdgesInfoInt161d

function getAryEdgesInfoInt162d(ary, lEdge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 2

integer(int16), intent(in) :: ary(:,:)

real(single), intent(in), optional :: lEdge(rankArin), uEdge(rankArin)

integer, intent(in), optional :: lboundIndex(rankArin)

character(*), intent(in), optional :: style

type(AryEdgesInfoT) :: aryEdgesInfo ! return

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 21

end function getAryEdgesInfoInt162d

function getAryEdgesInfoInt163d(ary, lEdge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 3

integer(int16), intent(in) :: ary(:,:,:)

real(single), intent(in), optional :: lEdge(rankArin), uEdge(rankArin)

integer, intent(in), optional :: lboundIndex(rankArin)

character(*), intent(in), optional :: style

type(AryEdgesInfoT) :: aryEdgesInfo ! return

end function getAryEdgesInfoInt163d

function getAryEdgesInfoInt81d(ary, lEdge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 1

integer(int8), intent(in) :: ary(:)

real(single), intent(in), optional :: lEdge(rankArin), uEdge(rankArin)

integer, intent(in), optional :: lboundIndex(rankArin)

character(*), intent(in), optional :: style

type(AryEdgesInfoT) :: aryEdgesInfo ! return

end function getAryEdgesInfoInt81d

function getAryEdgesInfoInt82d(ary, lEdge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 2

integer(int8), intent(in) :: ary(:,:)

real(single), intent(in), optional :: lEdge(rankArin), uEdge(rankArin)

integer, intent(in), optional :: lboundIndex(rankArin)

character(*), intent(in), optional :: style

type(AryEdgesInfoT) :: aryEdgesInfo ! return

end function getAryEdgesInfoInt82d

function getAryEdgesInfoInt83d(ary, lEdge, uEdge, lboundIndex, style) result(aryEdgesInfo)

integer, parameter :: rankArin = 3

integer(int8), intent(in) :: ary(:,:,:)

real(single), intent(in), optional :: lEdge(rankArin), uEdge(rankArin)

integer, intent(in), optional :: lboundIndex(rankArin)

character(*), intent(in), optional :: style

type(AryEdgesInfoT) :: aryEdgesInfo ! return

end function getAryEdgesInfoInt83d

end interface

Among the input arguments, lboundIndex is lbound(ary) (in the caller); or 1 if unspecified. If
style==’wcs’, then it is allowed neither lEdge nor uEdge are given (nb., if you for some reason choose to
give one, please give the both); in that case lEdge is lboundIndex-0.5 and uEdge is accordingly defined.
Otherwise lEdge and uEdge MUST be given.

2.8.3 getAryStatInfo

This function returns the structure aryStatInfo???T (See Section 2.2), which contains the statistical
information of the array. This function offers an interface for five (numerical) types of input Array and
the type of the returned value (aryStatInfo???T) varies accordingly.

At the time of writing (ssclib-4.6), it accepts the 1- and 2-dimensional arrays. In the future it is planned
to accept 3-dimensional arrays as well.

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 22

The following is an example interface for the Double-type one. In other types, only the difference is the
type of the input Array, arin (and the returned type, accordingly – see Section 2.2 for detail).

interface getAryStatInfo

function getAryStatInfoDouble1d(arin, arMaskIn &

, minAreaIndices, maxAreaIndices, valLower, valUpper, flagInfo) result(retInfo)

integer, parameter :: rankArin = 1

type(aryStatInfoDoubleT) :: retInfo

real(double), intent(in) :: arin(:)

logical, intent(in), optional :: arMaskIn(:)

integer(int32), intent(in), optional :: minAreaIndices(rankArin), maxAreaIndices(rankArin)

real(double), intent(in), optional :: valLower, valUpper

type(aryStatInfoFlagT), intent(in), optional :: flagInfo

end function getAryStatInfoDouble1d

function getAryStatInfoDouble2d(arin, arMaskIn &

, minAreaIndices, maxAreaIndices, valLower, valUpper, flagInfo) result(retInfo)

integer, parameter :: rankArin = 2

type(aryStatInfoDoubleT) :: retInfo

real(double), intent(in) :: arin(:,:) ! Input data Array

logical, intent(in), optional :: arMaskIn(:,:)

integer(int32), intent(in), optional :: minAreaIndices(rankArin), maxAreaIndices(rankArin)

real(double), intent(in), optional :: valLower, valUpper

type(aryStatInfoFlagT), intent(in), optional :: flagInfo

end function getAryStatInfoDouble2d

end interface

Note that the ranks of arin and arMaskIn (if specified) have to be identical.

2.8.4 calcAryStatInfoMask

This subroutine is the core routine for the function getAryStatInfo (Section 2.8.3). The difference is
that this function returns, as well as (aryStatInfo???T), the final mask file, which is used to determine
the valid entry to calculate the statistical information of the array. If that is what you want, you can call
this subroutine directly.

The following is an example interface for the Double-type one. Again, in other types, only the difference
is the type of the input Array, arin (and the returned type, accordingly – see Section 2.2 for detail).

interface calcAryStatInfoMask

subroutine calcAryStatInfoMaskDouble1d(arin, retInfo, arMaskOut, arMaskIn &

, minAreaIndices, maxAreaIndices, valLower, valUpper, flagInfo)

integer, parameter :: rankArin = 1

real(double), intent(in) :: arin(:) ! Input data Array

type(aryStatInfoDoubleT), intent(out) :: retInfo

logical, intent(out) :: arMaskOut(:) ! Must be predefined.

logical, intent(in), optional :: arMaskIn(:)

integer(int32), intent(in), optional :: minAreaIndices(rankArin), maxAreaIndices(rankArin)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 23

real(double), intent(in), optional :: valLower, valUpper

type(aryStatInfoFlagT), intent(in), optional :: flagInfo

end subroutine calcAryStatInfoMaskDouble1d

subroutine calcAryStatInfoMaskDouble2d(arin, retInfo, arMaskOut, arMaskIn &

, minAreaIndices, maxAreaIndices, valLower, valUpper, flagInfo)

integer, parameter :: rankArin = 2

real(double), intent(in) :: arin(:,:) ! Input data Array

type(aryStatInfoDoubleT), intent(out) :: retInfo

logical, intent(out) :: arMaskOut(:,:) ! Must be predefined.

logical, intent(in), optional :: arMaskIn(:,:)

integer(int32), intent(in), optional :: minAreaIndices(rankArin), maxAreaIndices(rankArin)

real(double), intent(in), optional :: valLower, valUpper

type(aryStatInfoFlagT), intent(in), optional :: flagInfo

end subroutine calcAryStatInfoMaskDouble2d

end interface

Note that the ranks of arin and arMaskIn (if specified) and arMaskOut have to be identical. And (the
rank of) arMaskOut has to be defined in the caller side before the call.

2.8.5 printAryStatInfo

Print the contents of aryStatInfo???T structure variable to STDOUT. Note that some of the values are
not printed if undefined. This returns nothing.

interface printAryStatInfo

subroutine printAryStatInfoDouble(aryInfo)

type(aryStatInfo???T), intent(in) :: aryInfo

end subroutine printAryStatInfoDouble

end interface

2.8.6 getAnnularMaskAry

Return a Logical 2-dimensional mask array for a given size, where the area of the pixels at (rInner <=
radius < rOuter) are True.

Note: Make sure to deallocate the returned array after use.

interface getAnnularMaskAry

function getAnnularMaskAry(sizeX, sizeY, centX, centY &

, rOuter, rInner) result(arMask)

logical, allocatable :: arMask(:,:)

integer(int32), intent(in) :: sizeX, sizeY

real(double), intent(in) :: centX, centY, rOuter

real(double), intent(in), optional :: rInner ! 0 in default.

end function getAnnularMaskAry

end interface

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 24

3 Subroutine shortcuts for manipulating information used for
setting the CAL state

Module name: cal aux

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)

3.1 Extract information about the instrument, exposure start time and space-
craft and instrument attitude from a dataset header.

interface getCalInfo

subroutine getCalInfoName(setName, instrumentId, expStartTimeStamp&

, scAttitude, instrumAttitude)

character(*), intent(in) :: setName

integer(int32), intent(out) :: instrumentId

real(double), intent(out) :: expStartTimeStamp

type(SpacecraftAttitudeType), intent(out) :: scAttitude, instrumAttitude

end subroutine getCalInfoName

subroutine getCalInfoSet(set, instrumentId, expStartTimeStamp, scAttitude&

, instrumAttitude)

type(DataSetT), intent(in) :: set

integer(int32), intent(out) :: instrumentId

real(double), intent(out) :: expStartTimeStamp

type(SpacecraftAttitudeType), intent(out) :: scAttitude, instrumAttitude

end subroutine getCalInfoSet

end interface

NOTE that this call also sets the state of the cal to the returned instrument.

The instrumentId and expStartT imeStamp are obtained from respectively from the INSTRUME and
DATE-OBS keywords of the dataset header. The scAttitude is read from the RA PNT, DEC PNT and PA PNT

keywords (this is actually wrong, since the instrument attitude is what should be stored in these, not the
spacecraft attitude). The boresight is then obtained for the exposure start time, and instrumAttitude
calculated by applying the boresight rotation to scAttitude.

3.2 Spacecraft → instrument attitude

function getInstrumentAttitude(scAttitude, timeStamp) result(instrumAttitude)

real(double), intent(in) :: timeStamp

type(SpacecraftAttitudeType), intent(in) :: scAttitude

type(SpacecraftAttitudeType) :: instrumAttitude

end function getInstrumentAttitude

NOTE this function requires the cal to have been set to the correct instrument before the call.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 25

3.3 Instrument → spacecraft attitude

function getScAttitude(instrumAttitude, timeStamp) result(scAttitude)

real(double), intent(in) :: timeStamp

type(SpacecraftAttitudeType), intent(in) :: instrumAttitude

type(SpacecraftAttitudeType) :: scAttitude

end function getScAttitude

NOTE this function requires the cal to have been set to the correct instrument before the call.

4 Routines to calculate source confusion

Module name: confusion

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)

subroutine findConfusedSets(srcX, srcY, srcRadius, confSetNum)

real(double), intent(in) :: srcX(:), srcY(size(srcX))

real(double), intent(in) :: srcRadius(size(srcX))

integer(int16), intent(out) :: confSetNum(size(srcX))

end subroutine findConfusedSets

This subroutine takes as inputs a list of source positions $srcX$ and $srcY$ and nominal radii $srcRadius$

There are no gaps in the returned sequence of confusion indices. Ie for all valid confusion indices

5 A module which contains various mathematical and physical
constants

Module name: constants

Authors: Richard West (University of Leicester, rgw@star.le.ac.uk), Ian Stewart (University of Leicester,
ims@star.le.ac.uk).

5.1 Constants

The constants module defines a set of widely used mathematical and physical constants. The constants
are defined as “double precision” (real (kind=double)).

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 26

5.1.1 Pi-related constants

Name Value Description
Pi 3.1415926535897931 π
TwoPi 2.0*Pi 2π
FourPi 4.0*Pi 4π
PiOverTwo 0.5*Pi π/2
PiOn2 0.5*Pi π/2
OneOverPi 1.0/Pi 1/π
OneOverTwoPi 0.5/Pi 1/2π

5.1.2 Angle conversion factors

Name Value Description
DegToRad TwoPi/360.0 Degrees to radians
RadToDeg 360.0/TwoPi Radians to degrees
Deg2Rad TwoPi/360.0 Degrees to radians
PiOn180 TwoPi/360.0 Degrees to radians
ArcminToRad DegToRad/60.0 Arcminutes to radians
RadToArcmin RadToDeg*60.0 Radians to arcminutes
ArcsecToRad DegToRad/3600.0 Arcseconds to radians
RadToArcsec RadToDeg*3600.0 Radians to arcseconds

5.1.3 Solid angle conversion factors

Name Value Description
SqDegToSterad DegToRad2 Square degrees to steradian
SqArcminToSterad SqDegToSterad/3600.0 Square arcminutes to steradians
SqArcsecToSterad SqDegToSterad/1.296× 107 Square arcseconds to steradian
SteradToSqDeg RadToDeg2 Steradian to square degrees
SteradToSqArcmin SteradToSqDeg*3600.0 Steradian to square arcminutes
SteradToSqArcsec SteradToSqDeg*1.296× 107 Steradian to square arcseconds

5.1.4 Square roots

Name Value Description

RootTwo 1.4142135623730951
√
2

RootThree 1.7320508075688772
√
3

RootTen 3.1622776601683795
√
10

RootPi 1.7724538509055159
√
π

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 27

5.1.5 Natural log-related

Name Value Description
NapierE 2.7182818284590455 e
lnTwo 0.6931471805599453 ln 2
lnThree 1.0986122886681098 ln 3
lnFive 1.6094379124341003 ln 5
lnSeven 1.9459101490553132 ln 7
lnTen 2.3025850929940459 ln 10
lnPi 1.1447298858494002 lnπ

5.1.6 Fundamental physical constants

Name Value Description
SpeedOfLight 299792458.0 c (m s−1)
PlanckH 6.62606876× 10−34 h (J s)
NewtonG 6.673× 10−11 G (m3 kg−1 s−2)
ElectronQ 1.602176462× 10−19 e (C)
Boltzmann 1.3806503× 10−23 k (J K−1)
StefanBoltzmann 5.670400× 10−8 σ (W m−2 K−4)
Avogadro 6.02214199× 1023 NA (mol−1)

5.1.7 Energy conversion factors

Name Value Description
ErgToeV 1.0d-7 / ElectronQ erg to eV
ErgTokeV ErgToeV/1000.0 erg to keV
eVToErg 1.0/ErgToev eV to ergs
keVToErg 1000.0/ErgToev keV to ergs

5.1.8 Solar system constants

Name Value Description
EarthRadius 6378.14 km

5.2 Unit conversion routines

function angstroms2eV(angstroms) result(EeV)

real(double), intent(in) :: angstroms

real(double) :: EeV

end function angstroms2eV

function eV2angstroms(EeV) result(angstroms)

real(double), intent(in) :: EeV

real(double) :: angstroms

end function eV2angstroms

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 28

5.3 Black Body routines

These subroutines calculate the power (in watts) radiated per unit surface area (m2̂) per unit solid angle
(sr) by a black body at temperature=’kelvin’. The power can be calculated either per unit frequency, at
a given frequency (both in hertz), or per unit wavelength (in metres) at a given supplied wavelength (in
angstroms).

The subroutines are designed to be portable and as fast yet as accurate as possible.

5.3.1 Per unit frequency

The precision at low frequencies f is limited by the calculation of exp(x)-1, where x = hfk/T. At low
values of x, exp(x) is close to 1 and thus the difference between exp(x) and 1 is a number of low precision.
Thus for x values less than 0.1, a series expansion of (exp(x)-1)/x is used instead. The minimum precision
occurs at x = 0.1 and is approximately equal to precision(1d0)-1.

subroutine getBBfluxPerHertz(hertzValues, kelvin, powerValues)

real(double), intent(in) :: hertzValues(:), kelvin

real(double), intent(out) :: powerValues(size(hertzValues))

end subroutine getBBfluxPerHertz

function bbFluxPerHertz(hertz, kelvin) result(power)

real(double), intent(in) :: hertz, kelvin

real(double) :: power

end function bbFluxPerHertz

5.3.2 Per unit wavelength

The precision at long wavelengths L is limited by the calculation of exp(x)-1, where x = hk/TL. At low
values of x, exp(x) is close to 1 and thus the difference between exp(x) and 1 is a number of low precision.
Thus for x values less than 0.1, a series expansion of (exp(x)-1)/x is used instead. The minimum precision
occurs at x = 0.1 and is approximately equal to precision(1d0)-1.

subroutine getBBfluxPerMetre(angstromValues, kelvin, powerValues)

real(double), intent(in) :: angstromValues(:), kelvin

real(double), intent(out) :: powerValues(size(angstromValues))

end subroutine getBBfluxPerMetre

function bbFluxPerMetre(angstroms, kelvin) result(power)

real(double), intent(in) :: angstroms, kelvin

real(double) :: power

end function bbFluxPerMetre

6 Routines for performing coordinate transforms

**** include changes in version 3.6.5 etc

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 29

Module name: coordinate

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)

This module contains subroutines to perform a variety of coordinate transformations. Where possible
the cal coordinate-transformation routines are used. The present subroutines have been designed to act
as wrappers-of-convenience for one or more of the cal routines rather than to supplant them.

6.1 getPsfImagePixelCorners

subroutine getPsfImagePixelCorners(psfThetaArcsec, psfPhi, psfPixelSizeMm&

, psfImage, wcs, wcsType, instrumentId, timeStamp, scAttitude&

, psfImagePixelCorners, psfCentrePixels)

real(double), intent(in) :: psfThetaArcsec, psfPhi

type(PsfBinSizeT), intent(in) :: psfPixelSizeMm

real(single), intent(in) :: psfImage(:,:)

type(WcsT), intent(in) :: wcs

character(*), intent(in) :: wcsType

integer(int32), intent(in) :: instrumentId

real(double), intent(in) :: timeStamp

type(SpacecraftAttitudeType), intent(in) :: scAttitude

type(Point2dT), intent(out) :: psfImagePixelCorners(&

size(psfImage,1)+1&

,size(psfImage,2)+1)

type(Point2dT), intent(out) :: psfCentrePixels

end subroutine getPsfImagePixelCorners

This subroutine takes an image of the Point Spread Function (PSF) returned by the cal call CAL getPsfImage
for a given instrument and returns an array of x and y coordinates, in the sky image coordinate system
defined by the wcs structure wcs, of the intersections of the pixel edge grid of this image. This grid
intersections array is necessary as input to the routine regrid (see section ??), the purpose of which is to
rebin the PSF image to sky coordinates.

NOTE this subroutine requires the cal to have been set to the correct instrument before the call.

6.2 raDecToInst

interface raDecToInst

subroutine raDecToInstScalar(raDeg, decDeg, scAttitude&

, timeStamp, detX, detY, thetaArcsec, phi)

real(double), intent(in) :: raDeg,&

decDeg

type(SpacecraftAttitudeType), intent(in) :: scAttitude

real(double), intent(in) :: timeStamp

real(single) , optional, intent(out) :: detX,&

detY

real(double) , optional, intent(out) :: thetaArcsec,&

phi

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 30

end subroutine raDecToInstScalar

subroutine raDecToInstVector(raDeg, decDeg, scAttitude&

, timeStamp, detX, detY, thetaArcsec, phi)

real(double), intent(in) :: raDeg(:),&

decDeg(size(raDeg))

type(SpacecraftAttitudeType), intent(in) :: scAttitude

real(double), intent(in) :: timeStamp

real(single) , optional, intent(out) :: detX(size(raDeg)),&

detY(size(raDeg))

real(double) , optional, intent(out) :: thetaArcsec(size(raDeg)),&

phi(size(raDeg))

end subroutine raDecToInstVector

end interface

This subroutine converts from celestial coordinates to instrument-centric coordinates, in either the
DETX/Y (the same, up to a scalar multiple, as the CAMCOORD2 system) or TELCOORD systems,
depending on which of the optional variables detX, detY , thetaArcsec and phi the caller has supplied.

NOTE this subroutine requires the cal to have been set to the correct instrument before the call.

6.3 instToRaDec

*** There is no subroutine with this name???

interface instToRaDec

subroutine instToRaDecScalar(raDeg, decDeg, scAttitude&

, timeStamp, detX, detY, thetaArcsec, phi)

real(double), intent(out) :: raDeg,&

decDeg

type(SpacecraftAttitudeType), intent(in) :: scAttitude

real(double), intent(in) :: timeStamp

real(single), optional, intent(in) :: detX,&

detY

real(double), optional, intent(in) :: thetaArcsec,&

phi

end subroutine instToRaDecScalar

subroutine instToRaDecVector(raDeg, decDeg, scAttitude&

, timeStamp, detX, detY, thetaArcsec, phi)

real(double), intent(out) :: raDeg(:),&

decDeg(size(raDeg))

type(SpacecraftAttitudeType), intent(in) :: scAttitude

real(double), intent(in) :: timeStamp

real(single), optional, intent(in) :: detX(size(raDeg)),&

detY(size(raDeg))

real(double), optional, intent(in) :: thetaArcsec(size(raDeg)),&

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 31

phi(size(raDeg))

end subroutine instToRaDecVector

! instToRaDecArray not yet done

end interface

This subroutine converts to celestial coordinates from instrument-centric coordinates, in either the
DETX/Y (the same, up to a scalar multiple, as the CAMCOORD2 system) or TELCOORD systems,
depending on which of the optional variables detX, detY , thetaArcsec and phi the caller has supplied.

NOTE this function requires the cal to have been set to the correct instrument before the call.

6.4 raDecToPixels

interface raDecToPixels

subroutine raDecToPixelsScalar(ra, dec, wcs, xPixel, yPixel)

real(double), intent(in) :: ra,&

dec

type(WcsT), intent(in) :: wcs ! defined in ssclib/wcs_aux

real(single), intent(out) :: xPixel,&

yPixel

end subroutine raDecToPixelsScalar

subroutine raDecToPixelsVector(ra, dec, wcs, xPixel, yPixel)

real(double), intent(in) :: ra(:),&

dec(size(ra))

type(WcsT), intent(in) :: wcs ! defined in ssclib/wcs_aux

real(single), intent(out) :: xPixel(size(ra)),&

yPixel(size(ra))

end subroutine raDecToPixelsVector

subroutine raDecToPixelsArray(ra, dec, wcs, xPixel, yPixel)

real(double), intent(in) :: ra(:,:),&

dec(size(ra,1),size(ra,2))

type(WcsT), intent(in) :: wcs ! defined in ssclib/wcs_aux

real(single), intent(out) :: xPixel(size(ra,1),size(ra,2)),&

yPixel(size(ra,1),size(ra,2))

end subroutine raDecToPixelsArray

end interface

This subroutins returns the pixel coordinates for the given set of the celestial coordinates in degree.

6.5 pixelsToRaDec

interface pixelsToRaDec

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 32

subroutine pixelsToRaDecScalar(xPixel, yPixel, wcs, ra, dec)

real(single), intent(in) :: xPixel,&

yPixel

type(WcsT), intent(in) :: wcs ! defined in ssclib/wcs_aux

real(double), intent(out) :: ra,&

dec

end subroutine pixelsToRaDecScalar

subroutine pixelsToRaDecVector(xPixel, yPixel, wcs, ra, dec)

real(single), intent(in) :: xPixel(:),&

yPixel(size(xPixel))

type(WcsT), intent(in) :: wcs ! defined in ssclib/wcs_aux

real(double), intent(out) :: ra(size(xPixel)),&

dec(size(xPixel))

end subroutine pixelsToRaDecVector

subroutine pixelsToRaDecArray(xPixel, yPixel, wcs, ra, dec)

real(single), intent(in) :: xPixel(:,:),&

yPixel(size(xPixel,1),size(xPixel,2))

type(WcsT), intent(in) :: wcs ! defined in ssclib/wcs_aux

real(double), intent(out) :: ra(size(xPixel,1),size(xPixel,2)),&

dec(size(xPixel,1),size(xPixel,2))

end subroutine pixelsToRaDecArray(xPixel, yPixel, wcs, ra, dec)

end interface

The inverse subroutine of raDecToPixels(). This retuns the celestial coordinates (in J2000) in degrees
for the given pair of the sky pixel coordinates.

6.6 raDecToTan

interface raDecToTan

subroutine raDecToTanScalar(refRaDeg, refDecDeg, raDeg, decDeg, tanX, tanY)

real(double), intent(in) :: refRaDeg,&

refDecDeg,&

raDeg,&

decDeg

real(double), intent(out) :: tanX,&

tanY

end subroutine raDecToTanScalar

subroutine raDecToTanVector(refRaDeg, refDecDeg, raDeg, decDeg, tanX, tanY)

real(double), intent(in) :: refRaDeg,&

refDecDeg,&

raDeg(:),&

decDeg(size(raDeg))

real(double), intent(out) :: tanX(size(raDeg)),&

tanY(size(raDeg))

end subroutine raDecToTanVector

subroutine raDecToTanArray(ra, dec, refRa, refDec, xTan, yTan)

real(double), intent(in) :: refRa,&

refDec,&

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 33

ra(:,:),&

dec(size(ra,1),size(ra,2))

real(double), intent(out) :: xTan(size(ra,1),size(ra,2)),&

yTan(size(ra,1),size(ra,2))

end subroutine raDecToTanArray

subroutine raDecToTanScalarWcs(ra, dec, wcs, xTan, yTan)

real(double), intent(in) :: ra, dec

type(WcsT), intent(in) :: wcs

real(double), intent(out) :: xTan, yTan

end subroutine raDecToTanScalarWcs

subroutine raDecToTanVectorWcs(ra, dec, wcs, xTan, yTan)

real(double), intent(in) :: ra(:),&

dec(size(ra))

type(WcsT), intent(in) :: wcs

real(double), intent(out) :: xTan(size(ra)),&

yTan(size(ra))

end subroutine raDecToTanVectorWcs

subroutine raDecToTanArrayWcs(ra, dec, wcs, xTan, yTan)

real(double), intent(in) :: ra(:,:),&

dec(size(ra,1),size(ra,2))

type(WcsT), intent(in) :: wcs

real(double), intent(out) :: xTan(size(ra,1),size(ra,2)),&

yTan(size(ra,1),size(ra,2))

end subroutine raDecToTanArrayWcs

end interface

This transform is a projection from celestial coordinates to that tangent plane normal to the direction
defined by refRaDeg and refDecDeg. The signs of the returned values are such that tanX increases in
the direction of decreasing ra and tanY increases in the direction of increasing dec. If the tangent plane
were viewed from the centre of the celestial sphere, with the celestial north pole at the zenith, tanX would
increase to rightwards and tanY upwards.

6.7 tanToRaDec

interface tanToRaDec

subroutine tanToRaDecScalar(refRaDeg, refDecDeg, tanX, tanY, raDeg, decDeg)

real(double), intent(in) :: refRaDeg,&

refDecDeg,&

tanX,&

tanY

real(double), intent(out) :: raDeg,&

decDeg

end subroutine tanToRaDecScalar

subroutine tanToRaDecVector(refRaDeg, refDecDeg, tanX, tanY, raDeg, decDeg)

real(double), intent(in) :: refRaDeg,&

refDecDeg,&

tanX(:),&

tanY(size(tanX))

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 34

real(double), intent(out) :: raDeg(size(tanX)),&

decDeg(size(tanX))

end interface

! tanToRaDecArray not yet done

This transform is a projection to celestial coordinates from that tangent plane normal to the direction
defined by refRaDeg and refDecDeg. The signs of the the returned values are such that tanX increases
in the direction of decreasing ra and tanY increases in the direction of increasing dec. If the tangent
plane were viewed from the centre of the celestial sphere, with the celestial north pole at the zenith, tanX
would increase to rightwards and tanY upwards.

6.8 polarsToRaDec

interface polarsToRaDec

subroutine polarsToRaDecVector(refRaDeg, refDecDeg, theta, phi, raDeg&

, decDeg)

real(double), intent(in) :: refRaDeg,&

refDecDeg,&

theta(:),&

phi(size(theta))

real(double), intent(out) :: raDeg(size(theta)),&

decDeg(size(theta))

end subroutine polarsToRaDecVector

end interface

! tanToRaDecScalar, tanToRaDecArray not yet done

The same as tanToRaDec (section ??), except the coordinates on the tangent plane are now given in
polar coordinates theta and phi instead of cartesian tanX and tanY . The relationship between the two
sets is as follows:

tanX = tan(theta) cos(phi)tanY = tan(theta) sin(phi)

6.9 instToTan

interface instToTan

subroutine instToTanScalar(tanX, tanY, refRaDeg, refDecDeg, scAttitude&

, timeStamp, detX, detY, thetaArcsec, phi)

real(double), intent(out) :: tanX,&

tanY

real(double), intent(in) :: refRaDeg,&

refDecDeg

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 35

type(SpacecraftAttitudeType), intent(in) :: scAttitude

real(double), intent(in) :: timeStamp

real(single), optional, intent(in) :: detX,&

detY

real(double), optional, intent(in) :: thetaArcsec,&

phi

end subroutine instToTanScalar

subroutine instToTanVector(tanX, tanY, refRaDeg, refDecDeg, scAttitude&

, timeStamp, detX, detY, thetaArcsec, phi)

real(double), intent(out) :: tanX(:),&

tanY(size(tanX))

real(double), intent(in) :: refRaDeg,&

refDecDeg

type(SpacecraftAttitudeType), intent(in) :: scAttitude

real(double), intent(in) :: timeStamp

real(single), optional, intent(in) :: detX(size(tanX)),&

detY(size(tanX))

real(double), optional, intent(in) :: thetaArcsec(size(tanX)),&

phi(size(tanX))

end subroutine instToTanVector

subroutine instToTanArray(tanX, tanY, refRaDeg, refDecDeg, scAttitude&

, timeStamp, detX, detY, thetaArcsec, phi)

real(double), intent(out) :: tanX(:,:),&

tanY(size(tanX,1),&

size(tanX,2))

real(double), intent(in) :: refRaDeg,&

refDecDeg

type(SpacecraftAttitudeType), intent(in) :: scAttitude

real(double), intent(in) :: timeStamp

real(single), optional, intent(in) :: detX(size(tanX,1),&

size(tanX,2)),&

detY(size(tanX,1),&

size(tanX,2))

real(double), optional, intent(in) :: thetaArcsec(size(tanX,1),&

size(tanX,2)),&

phi(size(tanX,1),&

size(tanX,2))

end subroutine instToTanArray

end interface

Effectively this is just instToRaDec (section ??) followed by raDecToTan (section ??).

NOTE this function requires the cal to have been set to the correct instrument before the call.

6.10 tanToInst

interface tanToInst

subroutine tanToInstScalar(tanX, tanY, refRaDeg, refDecDeg, scAttitude&

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 36

, timeStamp, detX, detY, thetaArcsec, phi)

real(double), intent(in) :: refRaDeg,&

refDecDeg,&

tanX,&

tanY

type(SpacecraftAttitudeType), intent(in) :: scAttitude

real(double), intent(in) :: timeStamp

real(single), optional, intent(out) :: detX,&

detY

real(double), optional, intent(out) :: thetaArcsec,&

phi

end subroutine tanToInstScalar

subroutine tanToInstVector(tanX, tanY, refRaDeg, refDecDeg, scAttitude&

, timeStamp, detX, detY, thetaArcsec, phi)

real(double), intent(in) :: refRaDeg,&

refDecDeg,&

tanX(:),&

tanY(size(tanX))

type(SpacecraftAttitudeType), intent(in) :: scAttitude

real(double), intent(in) :: timeStamp

real(single), optional, intent(out) :: detX(size(tanX)),&

detY(size(tanX))

real(double), optional, intent(out) :: thetaArcsec(size(tanX)),&

phi(size(tanX))

end subroutine tanToInstVector

subroutine tanToInstArray(tanX, tanY, refRaDeg, refDecDeg, scAttitude&

, timeStamp, detX, detY, thetaArcsec, phi)

real(double), intent(in) :: refRaDeg,&

refDecDeg,&

tanX(:,:),&

tanY(size(tanX,1),&

size(tanX,2))

type(SpacecraftAttitudeType), intent(in) :: scAttitude

real(double), intent(in) :: timeStamp

real(single), optional, intent(out) :: detX(size(tanX,1),&

size(tanX,2)),&

detY(size(tanX,1),&

size(tanX,2))

real(double), optional, intent(out) :: thetaArcsec(size(tanX,1),&

size(tanX,2)),&

phi(size(tanX,1),&

size(tanX,2))

end subroutine tanToInstArray

end interface

Effectively this is just tanToRaDec (section ??) followed by raDecToInst (section ??).

NOTE this function requires the cal to have been set to the correct instrument before the call.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 37

6.11 instToRaw

interface instToRaw

subroutine instToRawScalarInt16(rawX, rawY, detX, detY, thetaArcsec, phi)

real(single), intent(in), optional :: detX,&

detY

real(double), intent(in), optional :: thetaArcsec,&

phi

integer(int16), intent(out) :: rawX,&

rawY

end subroutine instToRawScalarInt16

subroutine instToRawVectorInt16(rawX, rawY, detX, detY, thetaArcsec, phi)

real(single), intent(in), optional :: detX(size(rawX)),&

detY(size(rawX))

real(double), intent(in), optional :: thetaArcsec(size(rawX)),&

phi(size(rawX))

integer(int16), intent(out) :: rawX(:),&

rawY(size(rawX))

end subroutine instToRawVectorInt16

subroutine instToRawScalarReal32(rawXreal, rawYreal, detX, detY&

, thetaArcsec, phi, isOffChip)

real(single), intent(in), optional :: detX,&

detY

real(double), intent(in), optional :: thetaArcsec,&

phi

real(single), intent(out) :: rawXreal,&

rawYreal

logical(bool), intent(out), optional :: isOffChip

end subroutine instToRawScalarReal32

subroutine instToRawVectorReal32(rawXreal, rawYreal, detX, detY&

, thetaArcsec, phi, isOffChip)

real(single), intent(in), optional :: detX(size(rawXreal)),&

detY(size(rawXreal))

real(double), intent(in), optional :: thetaArcsec(size(rawXreal)),&

phi(size(rawXreal))

real(single), intent(out) :: rawXreal(:),&

rawYreal(size(rawXreal))

logical(bool), intent(out), optional :: isOffChip(size(rawXreal))

end subroutine instToRawVectorReal32

end interface

These subroutines convert to chip coordinates (ie, the RAWX/Y or PIXCOORD1 system) from instrument-
centric coordinates, the latter being either the DETX/Y (the same, up to a scalar multiple, as the CAM-
COORD2 system) or the TELCOORD system, depending on which of the optional variables detX, detY ,
thetaArcsec and phi the caller has supplied.

The ‘int16’ routines employ the cal calls CAL camCoord1ToChipCoord and CAL chipCoordToPixCoord1.
However, these calls have two drawbacks: firstly, they return integer values, and secondly, they are only

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 38

valid ‘on-chip’. However there are occasions when it is desirable to obtain finer precision in the chip
coordinates and also to be able to out of the strict range. For this reason I wrote the ‘real32’ routines.
The latter do not use the cal calls mentioned above. Instead they first move forward by calculating the
instrument-centric coordinates of the corners of the CCD; this information is then iused to perform a
linear back-transformation of the input instrument-centric coordinates. The logical variable isOffChip
is also set.

NOTE this subroutine requires the cal to have been set to the correct instrumentId, ccdChipId and (if
instrumentId is EMOS1 or EMOS2) ccdNodeId before the call.

6.12 rawToInst (rawToDet)

interface rawToInst

subroutine rawToInstScalar(rawX, rawY, detX, detY, thetaArcsec, phi)

integer(int16), intent(in) :: rawX,&

rawY

real(single), intent(out) :: detX,&

detY

real(double), intent(out) :: thetaArcsec,&

phi

end subroutine rawToInstScalar

subroutine rawToInstVector(rawX, rawY, detX, detY, thetaArcsec, phi)

integer(int16), intent(in) :: rawX(:),&

rawY(size(rawX))

real(single), intent(out) :: detX(size(rawX)),&

detY(size(rawX))

real(double), intent(out) :: thetaArcsec(size(rawX)),&

phi(size(rawX))

end subroutine rawToInstVector

subroutine rawToInstArray(rawX, rawY, detX, detY, thetaArcsec, phi)

integer(int16), intent(in) :: rawX(:,:),&

rawY(size(rawX,1),size(rawX,2))

real(single), intent(out) :: detX(size(rawX,1),size(rawX,2)),&

detY(size(rawX,1),size(rawX,2))

real(double), intent(out) :: thetaArcsec(size(rawX,1)&

,size(rawX,2)),&

phi(size(rawX,1),size(rawX,2))

end subroutine rawToInstArray

end interface

These subroutines convert from chip coordinates (ie, the RAWX/Y or PIXCOORD1 system) to instrument-
centric coordinates, the TELCOORD system (thetaArcsec and phi), as well as the DETX/Y (detX and
detY) (the same, up to a scalar multiple, as the CAMCOORD2 system) in unit of pixels, i.e., not mm
as cal supplies. The cal calls CAL rawXY2mm and CAL camCoord2ToTelCoord are employed.

NOTE this function requires the cal to have been set to the correct instrumentId, ccdChipId and (if
instrumentId is EMOS1 or EMOS2) ccdNodeId before the call. This routine does not alter the random-
ization state of CAL. Hence if you want an identical result every time you call this subroutine,

call CAL_setState(randomize=.false.)

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 39

should be set beforehand.

The subroutine rawToDet() is identical to this, except it does not return the TELCOORD system
variables (thetaArcsec and phi).

6.13 getThetaPhiMaps

subroutine getThetaPhiMaps(wcs, scAttitude, timeStamp, thetaMap, phiMap)

type(WcsT), intent(in) :: wcs

type(SpacecraftAttitudeType), intent(in) :: scAttitude

real(double), intent(in) :: timeStamp

real(double), intent(out) :: thetaMap(:,:),&

phiMap(size(thetaMap,1)&

, size(thetaMap,2))

end subroutine getThetaPhiMaps

This subroutine returns two arrays in the sky image coordinate system defined by the WCS structure wcs:
one containing the θ and the other the φ value at that pixel; θ and φ being the instrument-mirror-centric
TELCOORD-system polar coordinates.

6.14 skyToCartesian

interface skyToCartesian

function skyToCartesianSingle(ra, dec) result(vector)

real(single), intent(in) :: ra, dec

real(single) :: vector(3)

end function skyToCartesian

function skyToCartesianDouble(ra, dec) result(vector)

real(double), intent(in) :: ra, dec

real(double) :: vector(3)

end function skyToCartesian

end interface

Returns a vector of direction cosines of the celestial coordinates ra and dec. NOTE ra and dec must be
in radians.

6.15 cartesianToSky

subroutine cartesianToSky(vector, ra, dec)

real(double), intent(in) :: vector(3)

real(double), intent(out) :: ra, dec

end subroutine cartesianToSky

Takes a vector of direction cosines and returns the corresponding celestial coordinates ra and dec. NOTE
ra and dec are in radians.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 40

6.16 telCoordToDetXY

interface telCoordToDetXY

subroutine telCoordToDetXYScalar(thetaArcsec, phi, detX, detY)

real(double), intent(in) :: phi, thetaArcsec

real(single), intent(out) :: detX, detY

end subroutine telCoordToDetXYScalar

subroutine telCoordToDetXYVector(thetaArcsec, phi, detX, detY)

real(double), intent(in) :: phi(:), thetaArcsec(size(phi))

real(single), intent(out) :: detX(size(phi)), detY(size(phi))

end subroutine telCoordToDetXYVector

end interface

Takes a position in the TELCOORD system and returns it in DETXY (ie, in CAMCOORD2 multiplied
by a factor to convert mm at the focal plane (the unit of CAMCOORD2) to units of 0.05 arcsec (the unit
of DETXY)).

6.17 detXYToTelCoord

interface detXYToTelCoord

module procedure detXYToTelCoordScalar

module procedure detXYToTelCoordVector

end interface

Takes a position in the DETXY (ie, in CAMCOORD2 multiplied by a factor to convert mm at the focal
plane (the unit of CAMCOORD2) to units of 0.05 arcsec (the unit of DETXY)) system and returns it
in TELCOORD.

6.18 detXY unit definition

The coordinate module also contains the following line:

real(single), public, parameter :: detUnitArcsec = 0.05

A better place for this would arguably be in a .par file somewhere.

6.19 angleBetweenCelCoords

interface angleBetweenCelCoords

function angleBetweenCelCoordsSingle(vectorA, vectorB, isRadian) result(angle)

real(single) :: angle

real(single), intent(in) :: vectorA(2), vectorB(2)

logical, intent(in), optional :: isRadian

end function angleBetweenCelCoordsSingle

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 41

function angleBetweenCelCoordsDouble(vectorA, vectorB, isRadian) result(angle)

real(double) :: angle

real(double), intent(in) :: vectorA(2), vectorB(2)

logical, intent(in), optional :: isRadian

end function angleBetweenCelCoordsDouble

end interface angleBetweenCelCoords

Returns the angle between the two pair of input celestial coordinates. The default unit is radian (isRadian
is T), but can be degree (isRadian is F).

7 An additional layer over the DAL which implements some
short cuts

Module name: dal aux

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)

This module contains subroutines designed to augment the Data Access Layer routines for accessing data
in FITS files (see the dal library). The subroutines perform some short cuts I have found useful.

7.1 splitSetTabName

subroutine splitSetTabName(setTabName, setName, tabName, noColonFound, useBlock)

character(*), intent(in) :: setTabName

character(*), intent(out) :: setName, tabName

logical, intent(out), optional :: noColonFound

logical, intent(in), optional :: useBlock

end subroutine splitSetTabName

The parameter type ‘table’ (see param) accepts a string consisting of a dataset name followed by a colon
followed by a binary table name. If the user forgets to include the colon + table name, the resulting
dal error is not very helpful as an indication of what has gone wrong. Personally I find it more useful
to have as the default behaviour in this case that the first table in the dataset should be opened, with
an accompanying warning. So I have written this routine splitSetTabName() to act as a trap for the
situation in which the user leaves off the colon+table name. The idea is that the string read from a
‘table’-type parameter is sent first to splitSetTabName(), which searches the string for a colon; if it finds
one, then it returns the before- and after-colon strings respectively in setName and tabName; if no colon
is detected, splitSetTabName() issues a warning (if noColonFound is not given), returns the entire string
in setName, and also attempts to extract the name of the first table in the dataset (unless useBlock is
given and is .false.) and returns this in tabName, which can be an empty string. In the latter case, if the
file does not exist and if noColonFound is not given, then it raises an error.

An example of how to use splitSetTabName() is as follows:

setTabName = stringParameter(’mytable’) ! this should be of param type ‘table’

call splitSetTabName(setTabName, setName, tabName)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 42

set = dataSet(setName, READ)

tab = table(set, tabName)

...

7.2 readArrayData

It is often useful to be able to read an array of any data type into a fortran array of a single data type.
The following interface covers just about every combination I could think of.

interface readArrayData

subroutine readArrayDataName1dReal32(imageSetName, vector)

character(*), intent(in) :: imageSetName

real(single), pointer :: vector(:)

end subroutine readArrayDataName1dReal32

subroutine readArrayDataName2dReal32(imageSetName, image)

character(*), intent(in) :: imageSetName

real(single), pointer :: image(:,:)

end subroutine readArrayDataName2dReal32

subroutine readArrayDataName3dReal32(imageSetName, cube)

character(*), intent(in) :: imageSetName

real(single), pointer :: cube(:,:,:)

end subroutine readArrayDataName3dReal32

subroutine readArrayDataName1dReal64(imageSetName, vector)

character(*), intent(in) :: imageSetName

real(double), pointer :: vector(:)

end subroutine readArrayDataName1dReal64

subroutine readArrayDataName2dReal64(imageSetName, image)

character(*), intent(in) :: imageSetName

real(double), pointer :: image(:,:)

end subroutine readArrayDataName2dReal64

subroutine readArrayDataName3dReal64(imageSetName, cube)

character(*), intent(in) :: imageSetName

real(double), pointer :: cube(:,:,:)

end subroutine readArrayDataName3dReal64

subroutine readArrayDataName2dBool(imageSetName, image)

character(*), intent(in) :: imageSetName

logical(bool), pointer :: image(:,:)

end subroutine readArrayDataName2dBool

subroutine readArrayDataName2dInt16(imageSetName, image)

character(*), intent(in) :: imageSetName

integer(int16), pointer :: image(:,:)

end subroutine readArrayDataName2dInt16

subroutine readArrayDataName2dInt32(imageSetName, image)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 43

character(*), intent(in) :: imageSetName

integer(int32), pointer :: image(:,:)

end subroutine readArrayDataName2dInt32

subroutine readArrayDataArray1dReal32(inArray, vector)

type(ArrayT), intent(in) :: inArray

real(single), pointer :: vector(:)

end subroutine readArrayDataArray1dReal32

subroutine readArrayDataArray2dReal32(inArray, image)

type(ArrayT), intent(in) :: inArray

real(single), pointer :: image(:,:)

end subroutine readArrayDataArray2dReal32

subroutine readArrayDataArray3dReal32(inArray, cube)

type(ArrayT), intent(in) :: inArray

real(single), pointer :: cube(:,:,:)

end subroutine readArrayDataArray3dReal32

subroutine readArrayDataArray1dReal64(inArray, vector)

type(ArrayT), intent(in) :: inArray

real(double), pointer :: vector(:)

end subroutine readArrayDataArray1dReal64

subroutine readArrayDataArray2dReal64(inArray, image)

type(ArrayT), intent(in) :: inArray

real(double), dimension(:,:), pointer :: image

end subroutine readArrayDataArray2dReal64

subroutine readArrayDataArray3dReal64(inArray, cube)

type(ArrayT), intent(in) :: inArray

real(double), dimension(:,:,:), pointer :: cube

end subroutine readArrayDataArray3dReal64

subroutine readArrayDataArray2dBool(inArray, image)

type(ArrayT), intent(in) :: inArray

logical(bool), dimension(:,:), pointer :: image

end subroutine readArrayDataArray2dBool

subroutine readArrayDataArray2dInt16(inArray, image)

type(ArrayT), intent(in) :: inArray

integer(int16), dimension(:,:), pointer :: image

end subroutine readArrayDataArray2dInt16

subroutine readArrayDataArray2dInt32(inArray, image)

type(ArrayT), intent(in) :: inArray

integer(int32), dimension(:,:), pointer :: image

end subroutine readArrayDataArray2dInt32

end interface

Boolean values are converted to real or integer 0s and 1s; real or integer are converted to boolean TRUE
if ¿ 0, FALSE otherwise.

Where the dimensions of the dataset array don’t match those of the to-be-returned pointer array, it is

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 44

eventually intended to convert these as follows:

Dims: Out 1 Out2 Out 3
In 1 simple -¿image(1,:) -¿cube(1,1,:)
In 2 take 1st row simple -¿ cube(1,:,:)
In 3 take 1st row, 1st plane take 1st plane simple
In ¿3 not supported not supported not supported

First rows or planes are always aligned with the biggest dimension(s).

However most of the inter-dimensional functionality is not yet in place.

Note that the returned pointer is not associated with any pointer allocated by a dal call such as, for
example:

arrayDataReal32 => real32Array2Data(inArray)

Where readArrayData is called with the name of image dataset, the dataset is released within the sub-
routine, and all such dataset pointers are at that time deallocated; if readArrayData is called instead
with the pointer inArray specified, the dataset and its array remain open, all dataset pointers which were
allocated within the subroutine also remain allocated, but deallocate in the normal way at the time the
calling routine releases the dataset (or its array). In either case, the returned pointer argument ‘vector’,
‘image’, or ‘cube’ REMAINS ALLOCATED and therefore should be expressely deallocated in the calling
routine via the fortran ‘deallocate’ statement.

7.3 addOrOpenColumn

function addOrOpenColumn(tab, colName, dataType, units, comment)&

result(col)

type(TableT), intent(in) :: tab

character(*), intent(in) :: colName

integer(int32), intent(in), optional :: dataType

character(*), intent(in), optional :: units, comment

type(ColumnT) :: col

end function addOrOpenColumn

This function opens the column if hasColumn(tab, colName) returns TRUE but adds a new column of
this name if not. If a new column is creatd, defaults for the optional arguments ‘dataType’, ‘units’ and
‘comment’ are REAL32, ‘’ and ‘’ respectively.

7.4 readColDataToFixed

This is similar in intention to readArrayData (subsection 7.2). The interface below covers most combi-
nations.

interface readColDataToFixed

subroutine readColToFixedNameReal32(tab, colName, colData)

type(TableT), intent(in) :: tab

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 45

character(*), intent(in) :: colName

real(single), intent(out) :: colData(:)

end subroutine readColToFixedNameReal32

subroutine readColToFixedNameReal64(tab, colName, colData)

type(TableT), intent(in) :: tab

character(*), intent(in) :: colName

real(double), intent(out) :: colData(:)

end subroutine readColToFixedNameReal64

subroutine readColToFixedNameInt8(tab, colName, colData)

type(TableT), intent(in) :: tab

character(*), intent(in) :: colName

integer(int8), intent(out) :: colData(:)

end subroutine readColToFixedNameInt8

subroutine readColToFixedNameInt16(tab, colName, colData)

type(TableT), intent(in) :: tab

character(*), intent(in) :: colName

integer(int16), intent(out) :: colData(:)

end subroutine readColToFixedNameInt16

subroutine readColToFixedNameInt32(tab, colName, colData)

type(TableT), intent(in) :: tab

character(*), intent(in) :: colName

integer(int32), intent(out) :: colData(:)

end subroutine readColToFixedNameInt32

subroutine readColToFixedNameStr(tab, colName, colData)

type(TableT), intent(in) :: tab

character(*), intent(in) :: colName

character(*), intent(out) :: colData(:)

end subroutine readColToFixedNameStr

subroutine readColToFixedNameBool(tab, colName, colData)

type(TableT), intent(in) :: tab

character(*), intent(in) :: colName

logical(bool), intent(out) :: colData(:)

end subroutine readColToFixedNameBool

subroutine readColToFixedCol2dReal32(col, colData)

type(ColumnT), intent(in) :: col

real(single), intent(out) :: colData(:,:)

end subroutine readColToFixedCol2dReal32

subroutine readColToFixedCol2dReal64(col, colData)

type(ColumnT), intent(in) :: col

real(double), intent(out) :: colData(:,:)

end subroutine readColToFixedCol2dReal64

subroutine readColToFixedColReal32(col, colData)

type(ColumnT), intent(in) :: col

real(single), intent(out) :: colData(:)

end subroutine readColToFixedColReal32

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 46

subroutine readColToFixedColReal64(col, colData)

type(ColumnT), intent(in) :: col

real(double), intent(out) :: colData(:)

end subroutine readColToFixedColReal64

subroutine readColToFixedColInt8(col, colData)

type(ColumnT), intent(in) :: col

integer(int8), intent(out) :: colData(:)

end subroutine readColToFixedColInt8

subroutine readColToFixedColInt16(col, colData)

type(ColumnT), intent(in) :: col

integer(int16), intent(out) :: colData(:)

end subroutine readColToFixedColInt16

subroutine readColToFixedColInt32(col, colData)

type(ColumnT), intent(in) :: col

integer(int32), intent(out) :: colData(:)

end subroutine readColToFixedColInt32

subroutine readColToFixedColStr(col, colData)

type(ColumnT), intent(in) :: col

character(*), intent(out) :: colData(:)

end subroutine readColToFixedColStr

subroutine readColToFixedColBool(col, colData)

type(ColumnT), intent(in) :: col

logical(bool), intent(out) :: colData(:)

end subroutine readColToFixedColBool

end interface

The rules for conversion between datatypes are the same as for readArrayData (subsection 7.2). There
is at present no conversion between non-string data and a string-valued ‘colData’ argument.

Note that the argument ‘colData’ is NOT a pointer and thus should be made the same size as the column
to be read in the calling program.

7.5 readColDataToPtr

These are exactly the same as those routines described in subsection 7.4, except that now the argument
‘colData’ is a pointer array. This allows the calling routine to avoid having to size it before the call to
readColDataToPtr, on the other hand ‘colData’ should now be DEALLOCATED by the calling program
after use. As with readArrayData (subsection 7.2), there is no association between ‘colData’ and the
dataset pointers opened within the subroutine, which are either disassociated within the subroutine (if
readColDataToPtr was called with the column name) or at the time the calling program releases the
dataset (if readColDataToPtr was called with the column pointer).

interface readColDataToPtr

subroutine readColToPtrName2dReal32(tab, colName, colData)

type(TableT), intent(in) :: tab

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 47

character(*), intent(in) :: colName

real(single), pointer :: colData(:,:)

end subroutine readColToPtrName2dReal32

subroutine readColToPtrName2dReal64(tab, colName, colData)

type(TableT), intent(in) :: tab

character(*), intent(in) :: colName

real(double), pointer :: colData(:,:)

end subroutine readColToPtrName2dReal64

subroutine readColToPtrNameReal32(tab, colName, colData)

type(TableT), intent(in) :: tab

character(*), intent(in) :: colName

real(single), pointer :: colData(:)

end subroutine readColToPtrNameReal32

subroutine readColToPtrNameReal64(tab, colName, colData)

type(TableT), intent(in) :: tab

character(*), intent(in) :: colName

real(double), pointer :: colData(:)

end subroutine readColToPtrNameReal64

subroutine readColToPtrNameInt8(tab, colName, colData)

type(TableT), intent(in) :: tab

character(*), intent(in) :: colName

integer(int8), pointer :: colData(:)

end subroutine readColToPtrNameInt8

subroutine readColToPtrNameInt16(tab, colName, colData)

type(TableT), intent(in) :: tab

character(*), intent(in) :: colName

integer(int16), pointer :: colData(:)

end subroutine readColToPtrNameInt16

subroutine readColToPtrNameInt32(tab, colName, colData)

type(TableT), intent(in) :: tab

character(*), intent(in) :: colName

integer(int32), pointer :: colData(:)

end subroutine readColToPtrNameInt32

subroutine readColToPtrColReal32(col, colData)

type(ColumnT), intent(in) :: col

real(single), pointer :: colData(:)

end subroutine readColToPtrColReal32

subroutine readColToPtrColReal64(col, colData)

type(ColumnT), intent(in) :: col

real(double), pointer :: colData(:)

end subroutine readColToPtrColReal64

subroutine readColToPtrColInt8(col, colData)

type(ColumnT), intent(in) :: col

integer(int8), pointer :: colData(:)

end subroutine readColToPtrColInt8

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 48

subroutine readColToPtrColInt16(col, colData)

type(ColumnT), intent(in) :: col

integer(int16), pointer :: colData(:)

end subroutine readColToPtrColInt16

subroutine readColToPtrColInt32(col, colData)

type(ColumnT), intent(in) :: col

integer(int32), pointer :: colData(:)

end subroutine readColToPtrColInt32

end interface

The rules for conversion between datatypes are the same as for readArrayData (subsection 7.2). There
is at present no conversion between non-string data and a string-valued ‘colData’ argument.

7.6 minNonNullValue

This and the following subroutine are useful if you want to find min and max values of a column (at
present restricted to REAL32 and REAL64 data types) but have reason to fear that nulls may be present.
Real-valued nulls can do funny things to fortran minval() and maxval() functions.

interface minNonNullValue

subroutine minNonNullValueSingle(tab, colName, minValue, allRowsNull)

type(TableT), intent(in) :: tab

character(*), intent(in) :: colName

real(single), intent(out) :: minValue

logical(bool), intent(out) :: allRowsNull

end subroutine minNonNullValueSingle

subroutine minNonNullValueDouble(tab, colName, minValue, allRowsNull)

type(TableT), intent(in) :: tab

character(*), intent(in) :: colName

real(double), intent(out) :: minValue

logical(bool), intent(out) :: allRowsNull

end subroutine minNonNullValueDouble

end interface

7.7 maxNonNullValue

interface maxNonNullValue

subroutine maxNonNullValueSingle(tab, colName, maxValue, allRowsNull)

type(TableT), intent(in) :: tab

character(*), intent(in) :: colName

real(single), intent(out) :: maxValue

logical(bool), intent(out) :: allRowsNull

end subroutine maxNonNullValueSingle

subroutine maxNonNullValueDouble(tab, colName, maxValue, allRowsNull)

type(TableT), intent(in) :: tab

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 49

character(*), intent(in) :: colName

real(double), intent(out) :: maxValue

logical(bool), intent(out) :: allRowsNull

end subroutine maxNonNullValueDouble

end interface

7.8 getDataType

This function returns the dataType (see dal) of a given FITS-image or table-column. For the input FITS
filename, the form of ‘ABC.fits:TABNAME’ is allowed, where the TABNAME is the name of the FITS
extention of interest. The priority order for the table-name (tabName) in given setTabName, extention
number (extNum) and extention name (extName) explicitly given is

extName > tabName > extNum,

that is, extName is always considered first if given. Note that if the given extName (or tabName) is an
empty string, it is ignored and the next highest priority one is used.

interface getDataType

function getDataTypeFromName(setTabName, extNum, extName, colName) result(iType)

integer :: iType

character(*), intent(in) :: setTabName

integer, intent(in), optional :: extNum

character(*), intent(in), optional :: extName, colName

end function getDataTypeFromName

function getDataTypeFromSet(set, extNum, extName, colName) result(iType)

integer :: iType

type(DataSetT), intent(in) :: set

integer, intent(in), optional :: extNum

character(*), intent(in), optional :: extName, colName

end function getDataTypeFromSet

function getDataTypeFromTab(tab, colName) result(iType)

integer :: iType

type(TableT), intent(in) :: tab

character(*), intent(in) :: colName

end function getDataTypeFromTab

end interface

7.9 getTypeName

This function returns the string expression for the given Integer as the datatype. This is meant to be
used (mainly) in debugging. See /packages/dal/interface/dal.f90 for detail re the definition.

interface getTypeName

subroutine getTypeName(inInt, outStr)

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 50

integer, intent(in) :: inInt

character(*), intent(out) :: outStr

end subroutine getTypeName

end interface

7.10 getAttributeTypeName

This function returns the string expression for the given Integer as the data-attribute-type. This is meant
to be used (mainly) in debugging. See /packages/dal/interface/dal.f90 for detail re the definition.

interface getAttributeTypeName

subroutine getAttributeTypeName(inInt, outStr)

integer, intent(in) :: inInt

character(*), intent(out) :: outStr

end subroutine getAttributeTypeName

end interface

8 Poissonian statistics and source detectability in this regime

Module name: detection stats

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)

The subroutines in this module deal broadly with source detection in the Poissonian regime.

8.1 Integrated χ
2 probability

This subroutine gives the probability Pχ(χ
2; ν) of exceeding chi2 for a given number of degrees of freedom

ν, i.e., the single-sided integrated probability, where Px(x
2; ν) is the chi2 probability distribution function

(e.g., see Appendix C.4 in Bevington & Robinson (1992, “Data reduction and error analysis for the
physical sciences”, 2nd edition)).

subroutine integratedChi2Prob(chi2, degFree, probability, status)

real(single), intent(in) :: chi2

integer, intent(in) :: degFree ! or real(single)

real(single), intent(out) :: probability

integer, intent(out), optional :: status

end subroutine integratedChi2Prob

The optional argument status is returned as follows;

Status Description
n(n > 0) (status in incompleteGammaQ; see math utils, Section

0 Normal end
-1 When the given chi2 ≤ 0
-2 When the given degFree ≤ 0

n(n < −2) ((status in incompleteGammaQ) −2; see math utils,

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 51

8.2 Poisson probability

This returns the probability P (i) of the occurrence of an integer i according to the Poisson distribution

P (i) =
aiexp(−a)

i!

where a is the average or expectation value of i.

Note that the argument may also be a real number. In this case what is returned is

p(r) =
arexp(−a)

Γ(r + 1)

The value p is not quite a probability density: it would need to be normalized by

∫ inf

0

dr
arexp(−a)

Γ(r + 1)

in order for this to be true. However it does have the property that, if r = i, p(r) = P (i).

interface poissonProb

real function poissonProbSingle(av, realI)

real(single), intent(in) :: av, realI

end function poissonProbSingle

real function poissonProbInt32(av, i)

real(single), intent(in) :: av

integer(int32), intent(in) :: i

end function poissonProbInt32

end interface

8.3 Integrated Poisson probability

This function returns the probability that an integer random variable which obeys a Poisson distribution
about an average ‘av’ will EQUAL OR EXCEED ‘i’.

real(single) function integratedPoissonProb(av, i)

real(single), intent(in) :: av

integer, intent(in) :: i

end function integratedPoissonProb

8.4 Source detection limits

The logic of source detection goes as follows. Let us assume to begin with that there is no source at a
given location, only background. Let us calculate the probability that the observed counts at that location

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 52

are due solely to background. If this probability is less than a specified value, our initial assumption was
incorrect and there is in fact a source at that location.

The routines described in the present section are designed to take as arguments the probability cutoff
(actually a cutoff in likelihood is used) and the background, or expectation value for the counts, and use
them to calculate the minimum value of source counts which is detectable at those levels.

To elaborate: given a discrete probability distribution p(j) of event counts j, any sample value c is
associated with a certain probability pint (and therefore likelihood L = −ln(pint)) of it not being due to
chance. This probability is obtained by summing the probability values p(j) from j = c to j = inf. For
p given by the Poisson distribution, this sum is equal to the incomplete gamma function P (c, a), where
a is the expectation value of c. In mathematical terms, the Poissonian likelihood is thus

L = −ln[P (c, a)]. (1)

(Note: This is ONLY true if the uncertainty in the background or expectation value is insignificant.)
The two subroutines described in the present section invert equation 1 to return that value of c which is
associated with specified L and a.

8.4.1 Single-band detection

interface minDetPoissonCounts

subroutine minDetPoissonCountsScalar(bkgCount, likelihoodCutoff&

, detectableSrcCount, detectableSrcCountUncert, status)

real(single), intent(in) :: bkgCount, likelihoodCutoff

real(single), intent(out) :: detectableSrcCount

real(single), intent(out) :: detectableSrcCountUncert

integer, intent(out), optional :: status

end subroutine minDetPoissonCountsScalar

8.4.2 Parallel detection over N bands (with no assumptions made about source spectrum)

Here the situation is a little more complicated. If nothing can be assumed about the spectra of the
sources, the best detection strategy appears to be as follows:

• Detect in each band separately.

• Calculate likelihood values according to equation 1.

• Add the band likelihoods together for each position.

This sum over likelihoods itself follows a Poisson-like distribution. It can thus be shown that the overall
likelihood for any given value of this sum being not due to chance, ie, the overall likelihood Ltotal that
there is a source at this position, is given by

Ltotal = −ln{1− P
[

f(N),
N
∑

i=1

Li

]

}.

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 53

where f(x) approximates a linear function of x of slope 1. Monte Carlo studies indicate that f(2) ∼ 2,
f(5) ∼ 4, f(10) ∼ 8 and so forth; however eboxdetect at the present time assumes that f(N) = N ;
hence that (arguably not quite correct) assumption has been built into the present subroutine as well.

subroutine minDetPoissonCountsVector(bkgCounts, likelihoodCutoff&

, detectableSrcCounts, detectableSrcCountsUncert, srcCountRatios, status)

real(single), intent(in) :: srcCountRatios(:),&

bkgCounts(size(srcCountRatios)),&

likelihoodCutoff

real(single), intent(out) :: detectableSrcCounts(&

size(srcCountRatios))

real(single), intent(out) :: detectableSrcCountsUncert(&

size(srcCountRatios))

integer, intent(out), optional :: status

end subroutine minDetPoissonCountsVector

end interface minDetPoissonCounts

8.5 Integrated Gaussian probability

This function returns the probability that a gaussian-distributed variable y will depart from the mean
ymean by greater than abs(y − ymean). For values obeying a gaussian distribution of standard deviation
σ, the probability P of a given y value (or greater) occurring by chance is

P (y) = 1− erf
[

abs(y − ymean)/σ
√
2
]

.

function integratedGaussProb(testY, meanY, sigma) result(probability)

real(single), intent(in) :: testY, meanY, sigma

real(single) :: probability

end function integratedGaussProb

8.6 ‘Degrees of freedom’ for a sum of likelihoods

function calcChi2HalfDegFree(numLikelihoods) result(f)

integer(int16), intent(in) :: numLikelihoods

real(single) :: f

end function calcChi2HalfDegFree

A sum over likelihoods seems to have a probability distribution similar to that of a χ2 distribution with
2f degrees of freedom. The factor f is approximately equal to the number of likelihoods in the sum but
not quite. However for the time being (until more accurate information is available, that is) it is assumed
that the equality holds exactly.

9 DSS utilities

Module name: dss aux

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 54

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)

The routines are designed to act as an additional layer over the dsslib library. They implement many
useful short cuts.

Full information about the Data Sub Space (DSS) should of course be sought in the dsslib task docu-
mentation. However a few explanatory words here would not be out of place.

The function of the DSS is to store information about the criteria used to select events. Thus an XMM
event list may contain a DSS if it has been filtered in some way; XMM products such as light curves or
spectra, which have been created from event lists, nearly always filtered, may also contain them.

The formal structure of a DSS comprises a list of components, each of which may contain a list of filters.
Suuposedly the selection should be reconstructed by ANDing all the filters for each component then
ORing all the components, but many filter types (eg GTIs) imply a logical OR internal to the filter.

The DSS is implemented in terms of keywords and extensions, but it is not intended that the user should
need to know how the DSS is encoded in these things: the dsslib library supplies subroutines to permit
basic access to the DSS details without this knowledge.

9.1 Routines which involve the whole DSS

9.1.1 hasDss

Tests whether a dataset, array or table has a Data Sub Space (DSS) attached.

logical(bool) function hasDssSet(set)

type(DataSetT), intent(in) :: set

end function hasDssSet

logical(bool) function hasDssArray(inArray)

type(ArrayT), intent(in) :: inArray

end function hasDssArray

logical(bool) function hasDssTab(tab)

type(TableT), intent(in) :: tab

end function hasDssTab

logical(bool) function hasDssBlock(inBlock)

type(BlockT), intent(in) :: inBlock

end function hasDssBlock

9.1.2 dumpDss

Dumps contents of a DSS to STDOUT.

subroutine dumpDssBlock(inBlock)

type(BlockT), intent(in) :: inBlock

end subroutine dumpDssBlock

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 55

subroutine dumpDssPointer(dssPointer)

type(DssT), intent(in) :: dssPointer

end subroutine dumpDssPointer

subroutine dumpDssComponent(dssComp)

type(DScompT), intent(in) :: dssComp

end subroutine dumpDssComponent

9.2 Routines which return information about DSS components

Each DSS component contains several filters. Each filter is associated with the name of the event-list col-
umn (called in DSS-speak the ’axis’ name) which was filtered (for some filter types, eg REGIONFILTERT,
two names are supplied), plus a specification for a set of values of that (or those) column(s).

9.2.1 getNum1stDssCompWithValue

Returns the number of the first component which has a filter of the specified column or ’axis’ name which
passes the specified value. This searches only filters on single columns.

Note that the component number is meaningful for several dsslib calls, eg dssComponent(). Component
numbers start from zero.

subroutine getNum1stDssCompWithValue(dssPointer, axisName, axisValue&

, firstCompNum, filterType)

type(DssT), intent(in) :: dssPointer

character(*), intent(in) :: axisName

real(single), intent(in) :: axisValue

integer, intent(out) :: firstCompNum

integer, intent(in), optional :: filterType

end subroutine getNum1stDssCompWithValue

9.2.2 numDssCompsOfAxis

Returns the number of components which have at least 1 filter on the specified axis. (Note that this
searches only filters on single columns.)

integer function numDssCompsOfAxis(dssPointer, axisName)

type(DssT), intent(in) :: dssPointer

character(*), intent(in) :: axisName

end function numDssCompsOfAxis

9.2.3 numDssCompsWithValue

Returns the number of components which have a filter of the specified column or ’axis’ name which passes
the specified value. This searches only filters on single columns.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 56

integer function numDssCompsWithValue(dssPointer, axisName, axisValue)

type(DssT), intent(in) :: dssPointer

character(*), intent(in) :: axisName

real(single), intent(in) :: axisValue

end function numDssCompsWithValue

9.3 Routines which return information about the filters in a specific compo-
nent

9.3.1 valueIsPassedByDssComp

Returns TRUE if the component has a filter of the specified column or ’axis’ name which passes the
specified value. This searches only filters on single columns.

logical(bool) function valueIsPassedByDssComp(dssComp, axisName, axisValue)

type(DScompT),intent(in) :: dssComp

character(*), intent(in) :: axisName

real(single), intent(in) :: axisValue

end function valueIsPassedByDssComp

9.3.2 anyFilterOfThisAxis

Returns TRUE if the component has a filter of the specified column or ’axis’ name. This searches only
filters on single columns.

logical(bool) function anyFilterOfThisAxis(dssComp, axisName)

type(DScompT), intent(in) :: dssComp

character(*), intent(in) :: axisName

end function anyFilterOfThisAxis

9.3.3 numFiltersOfAxis

Returns the number of filters on the specified column or ’axis’ name. This searches only filters on single
columns.

integer function numFiltersOfAxis(dssComp, axisName)

type(DScompT), intent(in) :: dssComp

character(*), intent(in) :: axisName

end function numFiltersOfAxis

9.3.4 get1stFilterThisAxis

Returns the handle of the first filter on the specified column or ‘axis’ name. This searches only filters on
single columns.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 57

subroutine get1stFilterThisAxis(dssComp, axisName, firstFilter, status)

type(DScompT), intent(in) :: dssComp

character(*), intent(in) :: axisName

type(DSfilterT), intent(out) :: firstFilter

integer, intent(out) :: status

end subroutine get1stFilterThisAxis

9.3.5 allFiltersPassValue

This returns true EITHER if the specified component contains no filter on the specified axis OR all of
the filters of this component and on this axis pass the specified value.

NOTE: In the original version, it calls dssFilterName(filter), which may cause Segmenation Fault
at the time of writing (Apr 2011). Therefore it is rewritten with dssHasFilter(). The algorithm is not
completely identical, however, in the practical cases it should not cause any trouble, especially if the FITS
files do not contain multiple DSS in the same dssComp with the same axis name and filterName (which
should not be the case in any FITS file). Note that the original and revised algorithms are switched via
a parameter isUsed dssFilterName.

The revised algorithm is as follows:

1. Prepare the array AryIdFilterT=(/ RANGEFILTERT, REGIONFILTERT, ... /). Then, the loop
over i = (1..7):

2. Check whether a filter with the given axisName for AryIdFilterT(i) exists.

3. If so, check the consistency with the given axisValue in the filter.

4. Those results are stored in filterOnThisAxisExists(i) and valueIsPassed(i). For example, if
i == 2, then that is for filterType==REGIONFILTERT (for the given dssComp and axisName).

5. Finally returns true/false, as described at the top of this comments here.

logical(bool) function allFiltersPassValue(dssComp, axisName, axisValue, filterType)

type(DScompT), intent(in) :: dssComp

character(*), intent(in) :: axisName

real(single), intent(in) :: axisValue

integer, intent(in), optional :: filterType

end function allFiltersPassValue

9.3.6 valueIsPassedByFilter

Returns TRUE if the specified filter passes the value.

logical(bool) function valueIsPassedByFilter(value, filter)

real(single), intent(in) :: value

type(DSfilterT), intent(in) :: filter

end function valueIsPassedByFilter

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 58

9.4 Routines which act on DSS RangeT scalars

The DSS structure type RangeT is described in dsslib. It specifies a lower and an upper bound to an
interval on the real line, and the types of these bounds. Possible types are INCLUSIVE (which means the
bound is included in the interval), EXCLUSIVE (which means the bound is not included in the interval)
and UNDEFINED in which case there is no bound at this end of the interval.

Note that the integer constants INCLUSIVE, EXCLUSIVE and UNDEFINED are defined in dsslib.

9.4.1 copyRange

Copies one range structure to another.

function copyRange(inRange) result(outRange)

type(RangeT), intent(in) :: inRange

type(RangeT) :: outRange

end function copyRange

9.4.2 checkRangeOverlap

This function compares two ranges to see if they overlap, and if not, which is higher than the other. An
integer value is returned, which has the posisble values BOVERLAPSA, BISTOOHIGH, BISTOOLOW.
These integer constants are defined in the present module.

function checkRangeOverlap(rangeA, rangeB) result(status)

type(RangeT), intent(in) :: rangeA, rangeB

integer :: status

end function checkRangeOverlap

9.4.3 andRangePair

This subroutine takes two overlapping ranges and returns a single range which contains the region of
overlap.

Note that the function will not work UNLESS THE RANGES OVERLAP as tested by checkRangeOver-
lap() (see section 9.4.2).

function andRangePair(rangeA, rangeB) result(andedRanges)

type(RangeT), intent(in) :: rangeA, rangeB

type(RangeT) :: andedRanges

end function andRangePair

9.4.4 orRangePair

This subroutine takes two overlapping ranges and returns a single range which contains the sum of the
two ranges.

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 59

Note that the function will not work UNLESS THE RANGES OVERLAP as tested by checkRangeOver-
lap() (see section 9.4.2).

function orRangePair(rangeA, rangeB) result(oredRanges)

type(RangeT), intent(in) :: rangeA, rangeB

type(RangeT) :: oredRanges

end function orRangePair

9.4.5 valueIsWithinRange

Returns TRUE if the value is within the specified range.

logical(bool) function valueIsWithinRangeSingle(value, range)

real(single), intent(in) :: value

type(RangeT), intent(in) :: range

end function valueIsWithinRangeSingle

logical(bool) function valueIsWithinRangeInt32(value, range)

integer(int32), intent(in) :: value

type(RangeT), intent(in) :: range

end function valueIsWithinRangeInt32

9.5 Routines which act on DSS RangeT vectors

See section 9.4 for some additional information about the dsslib RangeT structure type.

The routines in the present section deal with vectors of ranges.

9.5.1 rangesAreWellFormed

A RangeT vector (of size N) is defined as well-formed if and only if it obeys the following conditions:

• Only the lowest and highest bounds of the sequence of ranges are permitted to be of type UNDE-
FINED.

• For each range for which neither the lower or upper bound is of type UNDEFINED (ie, for each
internal range in the sequence), the upper bound value must exceed the lower bound value unless
both both bound types are INCLUSIVE, in which case the upper bound value may equal the lower
bound value. In other words, each range must encompass some non-empty set of real numbers.

• For all i from 1 to N-1, the upper bound of range i must be less than the lower bound of range
i+1, unless both bounds are of type EXCLUSIVE, in which case the upper bound of range i may
equal the lower bound of range i+1. In other words, the gap between two adjacent ranges must
encompass some non-empty set of real numbers.

Note that any ranges pointer can be brought into valid condition by passing it through the subroutine
correctRanges() (section 9.5.4).

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 60

logical(bool) function rangesAreWellFormed(ranges)

type(RangeT), intent(in) :: ranges(:)

end function rangesAreWellFormed

9.5.2 copyRanges

Copies one vector of ranges to another.

NOTE! You should deallocate the pointer outRanges() after use.

subroutine copyRanges(inRanges, outRanges)

type(RangeT), intent(in) :: inRanges(:)

type(RangeT), pointer :: outRanges(:)

end subroutine copyRanges

9.5.3 readRanges

The function of this subroutine is to return a vector containing all the ranges from all filters on the axis
‘axisName’.

NOTE! The returned pointer ranges() should be deallocated after use.

% subroutine readRangesDss(dssPointer, axisName, ranges, dssConstraints)

subroutine readRangesDss(dssPointer, axisName, ranges)

type(DssT), intent(in) :: dssPointer

character(*), intent(in) :: axisName

type(RangeT), pointer :: ranges(:)

% type(dssConstraintType), intent(in), optional :: dssConstraints(:)

end subroutine readRangesDss

subroutine readRangesComp(dssComp, axisName, ranges)

type(DScompT), intent(in) :: dssComp

character(*), intent(in) :: axisName

type(RangeT), pointer :: ranges(:)

end subroutine readRangesComp

9.5.4 correctRanges

This takes a vector of ranges and returns them in a well-formed sequence (see section 9.5.1). Note that
the argument is a pointer because the operation may change the number of elements.

subroutine correctRanges(ranges)

type(RangeT), pointer :: ranges(:)

end subroutine correctRanges

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 61

9.5.5 integrateRanges

This is a function to perform numerical integration of y(x) (using the trapezoid rule) over a set of discrete
ranges specified via the xRanges argument.

NOTE! (i) The values in the vector x() should be in increasing order. (ii) The ranges may occur in any
order, but are otherwise assumed to be well-formed. (iii) If any upper range bound is undefined, the
upper x value is used instead for that range bound; likewise for undefined lower bounds.

!*** should change it so that the ranges are required to be well-formed. This would make the routine
less general but makes the accepted properties of ranges simpler.

interface integrateRanges

function integrateRangesScalar(x, y, xRange) result(approxIntegral)

real(single), intent(in) :: x(:), y(size(x))

type(RangeT), intent(in) :: xRange

real(single) :: approxIntegral

end function integrateRangesScalar

function integrateRangesVector(x, y, xRanges) result(approxIntegral)

real(single), intent(in) :: x(:), y(size(x))

type(RangeT), intent(in) :: xRanges(:)

real(single) :: approxIntegral

end function integrateRangesVector

end interface

9.5.6 andRangesPair

This function takes as input two sequences of ranges and returns a sequence which contains all overlaps
between the input ranges.

Points to note:

• The input range sequences must be well-formed (see section 9.5.1). The output is well-formed.

• The function returns a pointer argument. Deallocating this correctly is a little tricky, and I may
eventually turn this (and all similar functions) into a subroutine. The function should NOT be
called iteratively as in the following example:

andedRanges => andRangesPair(andedRanges, rangesB)

The memory that the pointer andedRanges pointed to before the call now has no pointer to it,
since at the moment the call is executed andedRanges is reassigned to the same memory that the
function points to, which was newly assigned during the call. The initial memory pointed to by
andedRanges therefore cannot now be deallocated. Better would be:

tempAndedRanges => andRangesPair(andedRanges, rangesB)

deallocate(andedRanges)

andedRanges => tempAndedRanges

Then later, when appropriate, deallocate(andedRanges) for the final time.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 62

% function andRangesPair(rangesA, rangesB, doChecks) result(andedRanges)

function andRangesPair(rangesA, rangesB) result(andedRanges)

type(RangeT), intent(in) :: rangesA(:), rangesB(:)

type(RangeT), pointer :: andedRanges(:)

% logical(bool), intent(in), optional :: doChecks

end function andRangesPair

9.5.7 orRangesPair

This function takes as input two sequences of ranges and returns a sequence which contains the sum of the
input ranges. The returned sequence of ranges is well-formed but, in contrast to the function andRange-
sPair(), the inputs are not required to be well-formed. NOTE however that the same considerations re
pointer deallocation also apply here.

function orRangesPair(rangesA, rangesB) result(oredRanges)

type(RangeT), intent(in) :: rangesA(:), rangesB(:)

type(RangeT), pointer :: oredRanges(:)

end function orRangesPair

9.5.8 dumpRanges

Prints the ranges to standard output.

subroutine dumpRanges(ranges)

type(RangeT), intent(in) :: ranges(:)

end subroutine dumpRanges

***** andIntervals

9.6 Routines which deal with DSS GTI filters

GTIs are contained in structures of type IntervalT, which is defined in the module caltypes. This is
similar to RangeT except that no type is given for the upper and lower bounds. Where I have translated
GTIs into ranges (see for example section 9.6.3) I have taken the lower GTI bound to be INCLUSIVE
and the upper to be EXCLUSIVE. A well-formed sequence of GTIs (of size N) should therefore obey the
following criteria:

• For each GTI in the sequence, the upper bound value must exceed the lower bound value.

• For all i from 1 to N-1, the upper bound of GTI i must be less than the lower bound of GTI i+1.

There are currently no routines to test or correct the format of non-well-formed sequences of GTIs.

See also section 17.

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 63

9.6.1 readGtis

This subroutine extracts from the DSS the sequence of GTIs used to filter events on a specified CCD chip.
(The routine assumes that all events which occur on a given CCD chip share a common GTI selection.)

The pointer gti() should be deallocated after use.

subroutine readGtis(set, inBlock, ccdNum, gti)

type(DataSetT), intent(in) :: set

type(BlockT), intent(in) :: inBlock

integer, intent(in) :: ccdNum

type(IntervalT), pointer :: gti(:)

end subroutine readGtis

9.6.2 getGtiFromFilter

This subroutine extracts a GTI sequence from a single DSS filter.

The pointer gti() should be deallocated after use.

subroutine getGtiFromFilter(set, filter, gti)

type(DataSetT), intent(in) :: set

type(DSfilterT), intent(in) :: filter

type(IntervalT), pointer :: gti(:)

end subroutine getGtiFromFilter

9.6.3 andGtis

This function takes as input two sequences of GTIs and returns a sequence which contains all overlaps
between the input GTIs. The function makes use of the function andRangesPair() (see section 9.5.6) and
similar considerations apply.

function andGtis(gtiA, gtiB) result(andedGti)

type(IntervalT), intent(in) :: gtiA(:), gtiB(:)

type(IntervalT), pointer :: andedGti(:)

end function andGtis

9.7 Routines which deal with DSS bitmask filters

The format of DSS bit masks is a bit more complicated than it used to be. Basically a bit mask is an
integer (in SAS useage usually 32 bits in size), each bit of which is intended to be interpreted in a boolean
sense. However the dsslib call dssFilterMask() now returns two pointers, onBitMasks and offBitMasks,
each of which contains a sequence of masks.

The pointers onBitMasks and offBitMasks are supposed to always be the same size, although there is
nothing at the API level to force this to be the case. This is a little unfortunate perhaps and to correct

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 64

this I have defined in the present module a structure BitMaskT which contains an ’on’ mask and an ’off’
mask.

9.7.1 getBitMasksFromFilter

This subroutine acts as a wrapper around the dsslib routine dssFilterMask(). It retrieves the on and off
bit masks from the specified DSS filter, checks that they are the same size, and returns them in a pointer
bitMaskPtr of type BitMaskT.

subroutine getBitMasksFromFilter(filter, bitMaskPtr)

type(DSfilterT), intent(in) :: filter

type(BitMaskT), pointer :: bitMaskPtr(:)

end subroutine getBitMasksFromFilter

9.7.2 allBitsEquiv

This function tests all the values of the specified bit in the on-masks for logical equivalence and all the
values in the off-masks for equivalence and returns TRUE if the equivalence holds. Note that bitNum
starts at zero.

Examples:

Element number on-bits off-bits
1 0010010101101 1010110101100
2 1110101001110 1001010101001
3 0110010100110 1000110001010
4 0110111001110 0010010100101
5 0010000101101 0000111100011

Taking the right-most bit of each mask to be bit 0, bits 2, 4, 9 and 10 of the on-masks are equivalent,
whereas bits 4, 7 and 11 of the off-masks are equivalent. Hence allBitsEquiv() would return TRUE for
bitNum=4 but not otherwise.

logical(bool) function allBitsEquiv(bitMasks, bitNum)

type(BitMaskT), intent(in) :: bitMasks(:)

integer(int32), intent(in) :: bitNum

end function allBitsEquiv

10 Subroutines for dumping test output to file or STDOUT

Module name: dump

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 65

10.1 String content

Many ASCII codes are not associated with a printable character and thus it can be hard to determine
all the characters in a string just by printing it to standard output. The present subroutine takes a
string, chops it into individual characters, and prints the ASCII code of each character plus its associated
printable character, if there is one.

subroutine dumpString(str)

character(*), intent(in) :: str

end subroutine dumpString

10.2 Dumping images to FITS array

It is sometimes convenient to dump a 2-D array to a FITS dataset, without worrying about attributes
or data type. The various overloadings of dumpImageToFits allow one to write an array of any numeric
data type supported by the dal.

interface dumpImageToFits

subroutine dumpImageToFitsSingle(image, setName)

real(single), intent(in) :: image(:,:)

character(*), intent(in) :: setName

end subroutine dumpImageToFitsSingle

subroutine dumpImageToFitsDouble(image, setName)

real(double), intent(in) :: image(:,:)

character(*), intent(in) :: setName

end subroutine dumpImageToFitsDouble

subroutine dumpImageToFitsInt8(image, setName)

integer(int8), intent(in) :: image(:,:)

character(*), intent(in) :: setName

end subroutine dumpImageToFitsInt8

subroutine dumpImageToFitsInt16(image, setName)

integer(int16), intent(in) :: image(:,:)

character(*), intent(in) :: setName

end subroutine dumpImageToFitsInt16

subroutine dumpImageToFitsInt32(image, setName)

integer(int32), intent(in) :: image(:,:)

character(*), intent(in) :: setName

end subroutine dumpImageToFitsInt32

The output data type for the last is actually 8-bit integer:

subroutine dumpImageToFitsBool_temp(image, setName)

logical(bool), intent(in) :: image(:,:)

character(*), intent(in) :: setName

end subroutine dumpImageToFitsBool_temp

end interface dumpImageToFits

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 66

11 Routines which deal with the geometry of ellipses

Module name: ellipse

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)

This module contains several routines for processing ellipses.

11.1 ‘Rotated’ and ‘phase’ formats

Dealing with ellipses is complicated by the fact that there are at least two convenient ways to parameterise
an ellipse, which I will call the ‘rotated’ and ‘phase’ forms. In the ‘rotated’ form the ellipse is specified
by two semiaxes Rx and Ry and a an angle of rotation α. In these terms the ellipse is specified most
transparently by three equations:

x2
0

R2
x

+
y20
R2

y

= 1 (2)

x = x0 cos(α)− y0 sin(α)

y = y0 cos(α) + x0 sin(α).

The ellipse in ‘phase’ format is specified by two amplitudes Ax and Ay and a phase φ by two parametric
equations in θ as follows:

x = Ax cos(θ) (3)

y = Ay cos(θ + φ). (4)

If an ellipse is thought of as a squashed circle, θ is the angle around the original circle.

Rotations of coordinate system are easily accommodated in the ‘rotated’ format; changes of aspect ratio
of the coordinate system are better accommodated in the ‘phase’ format.

Subroutines are given for translating between the two formats:

subroutine ellipsePhaseToAngle(xAmp, yAmp, phase&

, shortSemiAxis, longSemiAxis, rotatedAngle)

real(single), intent(in) :: xAmp, yAmp, phase

real(single), intent(out) :: longSemiAxis, shortSemiAxis, rotatedAngle

end subroutine ellipsePhaseToAngle

subroutine ellipseAngleToPhase(shortSemiAxis, longSemiAxis, rotatedAngle&

, xAmp, yAmp, phase)

real(single), intent(in) :: longSemiAxis, shortSemiAxis, rotatedAngle

real(single), intent(out) :: xAmp, yAmp, phase

end subroutine ellipseAngleToPhase

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 67

11.2 Is a given point inside a given ellipse?

Two routines are given for the two ellipse formats described above:

function pointInEllipseWithPhase(x, y, xAmp, yAmp, phase)

real(single), intent(in) :: x, y, xAmp, yAmp, phase

integer :: pointInEllipseWithPhase

end function pointInEllipseWithPhase

function pointInEllipseWithAngle(x, y, xSemiAxis, ySemiAxis, rotatedAngle)

real(single), intent(in) :: x, y, xSemiAxis, ySemiAxis, rotatedAngle

integer :: pointInEllipseWithAngle

end function pointInEllipseWithAngle

These functions return -1 if the point (x, y) lies fully within the ellipse; 0 if it is on the border; and 1 if
it is fully outside the ellipse.

11.3 Generating a set of points along an ellipse locus

subroutine calcEllipseFromAngle(xSemi, ySemi, angleDeg, xVals, yVals)

real(single), intent(in) :: xSemi, ySemi, angleDeg

real(single), intent(out) :: xVals(:), yVals(size(xVals))

end subroutine calcEllipseFromAngle

Equation 2 can be decomposed into the following pair of parametric equations in θ:

x = Rx cos(θ)

y = Ry sin(θ).

θ here plays the same role as in equations 3 and 4. The subroutine returns points evenly distributed in θ.

The matching ‘phase’-style subroutine is

subroutine calcEllipseFromPhase(xAmp, yAmp, phase, xVals, yVals)

real(single), intent(in) :: xAmp, yAmp, phase

real(single), intent(out) :: xVals(:), yVals(size(xVals))

end subroutine calcEllipseFromPhase

Again the point coordinates returned in xVals and yVals are distributed evenly in θ.

11.4 EllipseT structure definition

A structure definition is provided:

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 68

type, public :: EllipseT

real(single) ::&

xAmp,&

yAmp,&

phase,& ! radians

shortSemiAxis,&

longSemiAxis,&

rotatedAngle ! radians

character(10) :: unit ! eg ’pixels’, ’detxy’, ’tanxy’

logical(bool) :: isCircle

end type EllipseT

An overloaded subroutine is also provided to initialize a variable of this type:

interface initializeEllipseT

subroutine initializeEllipseTScalar(ellipse)

type(EllipseT), intent(out) :: ellipse

end subroutine initializeEllipseTScalar

subroutine initializeEllipseTVector(ellipse)

type(EllipseT), intent(out) :: ellipse(:)

end subroutine initializeEllipseTVector

end interface

For scalar or vector ellipse the values set are:

ellipse%xAmp = 0.0

ellipse%yAmp = 0.0

ellipse%phase = 0.0

ellipse%shortSemiAxis = 0.0

ellipse%longSemiAxis = 0.0

ellipse%rotatedAngle = 0.0

ellipse%unit = ’none’

ellipse%isCircle = .false.

12 A module containing routines to give supplementary infor-
mation about EPIC

Module name: epic aux

Author: Masaaki Sakano (University of Leicester, mas@star.le.ac.uk)

Note that the contents of these routines should be ideally defined somewhere in the library of EPIC.

In the EPIC event files, they use Table names for the exposure in the form of

’EXPOSU’//ccdNodeNum

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 69

where ccdNodeNum is a serial number for ccdNum (CCD chip number) and nodeNum (chip node number
for MOSs, of which the default is 1 in almost all the actual observations except for a very few test
observations). ccdNodeNum is defined and hard-coded in the related tasks as

ccdNodeNum = 10× (nodeNumLocal− 1) + ccdNum. (5)

The following subroutines in this module give this relation.

function getCcdNodeNum(ccdNum, nodeNum) result(ccdNodeNum)

integer(int8), intent(in) :: ccdNum

integer(int8), intent(in), optional :: nodeNum

end function getCcdNodeNum

subroutine inverseCcdNodeNum(ccdNodeNum, ccdNum, nodeNum, instrumentId)

integer(int32), intent(in) :: ccdNodeNum

integer(int8), intent(out) :: ccdNum

integer(int8), intent(out), optional :: nodeNum

integer(int32), intent(in), optional :: instrumentId

end subroutine inverseCcdNodeNum

In the latter inverseCcdNodeNum(), if instrumentId is not given, CAL is read and is essential.

13 A module containing routines to perform calculations relat-
ing to exposure issues

Module name: exposure

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)

14 Some utilities and definitions for applications which make
use of the FFTW library

Module name: fftw aux

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)

This module is meant to be used in conjunction with the Fast Fourier Transform package fftw which
comes with the sas. The module contains a header in which some useful variables are declared, as well
as the following routine:

function findNextHighest2357multiple(i) result(result)

integer, intent(in) :: i

end function findNextHighest2357multiple

This function is designed to look for the smallest integer that satisfies the following conditions: (i) it is
greater than or equal to the argument i; (ii) it is a product only of the numbers 2, 3, 5 and 7. The fftw
transform works most efficiently on arrays which have dimensions which are products of small primes.

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 70

15 A module containing some useful type definitions

Module name: geometric types

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)

The module defines the following types:

type, public :: Point2dT

real(single) :: x, y

end type

type, public :: Point2dDbleT

real(double) :: x, y

end type

16 Routines for constructing histograms

Module name: histogram utils

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)

This module is still fairly undeveloped so I won’t document it yet.

17 Routines to manipulate data of type IntervalT (see caltypes)

Module name: intervals aux

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)

The routines in this module offer ways to manipulate data structures of type IntervalT, which is defined
in caltypes. These seem to be primarily of use for handling vectors of GTIs.

17.1 intervalsAreWellFormed

logical(bool) function intervalsAreWellFormed(intervals)

type(IntervalT), intent(in) :: intervals(:)

end function intervalsAreWellFormed

Many of the other functions in the present section don’t work unless the intervals are ‘well-formed’. I
define a well-formed vector of type IntervalT as obeying two conditions: (i) for each interval, the lower
value must be ¡ the upper; (ii) the upper value of interval i must be ¡ the lower value of interval i+1. The
function returns FALSE if either condition is disobeyed.

See section 9.5.1 for analogous conditions on structures of RangeT type.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 71

17.2 isWithinInterval

logical(bool) function isWithinInterval(time, intervals, includeBoundary)

real(double), intent(in) :: time

type(IntervalT), intent(in) :: intervals(:)

logical(bool), intent(in), optional :: includeBoundary

end function isWithinInterval

The argument ‘time’ is tested to see if it falls within any of the intervals. If optional argument ‘in-
cludeBoundary’ is included and set to TRUE, interval boundaries are considered: that is, for example, if
time=intervals(i)

NOTE! This function requires the intervals to be well-formed (see section 17.1).

17.3 andIntervals

interface andIntervals

subroutine andIntervalsBothScalar(intervalA, intervalB, andedIntervals)

type(IntervalT), intent(in) :: intervalA, intervalB

type(IntervalT), pointer :: andedIntervals(:)

end subroutine andIntervalsBothScalar

subroutine andIntervalsOneVector(intervalA, intervalsB, andedIntervals)

type(IntervalT), intent(in) :: intervalA, intervalsB(:)

type(IntervalT), pointer :: andedIntervals(:)

end subroutine andIntervalsOneVector

subroutine andIntervalsBothVector(intervalsA, intervalsB, andedIntervals)

type(IntervalT), intent(in) :: intervalsA(:), intervalsB(:)

type(IntervalT), pointer :: andedIntervals(:)

end subroutine andIntervalsBothVector

end interface

In all cases the intervals are first converted to RangeT structures as follows:

range%lower%type = INCLUSIVE

range%upper%type = EXCLUSIVE

range%lower%value = interval%lower

range%upper%value = interval%upper

In this form, they can be ANDed together by use of the dss aux call andRangesPair (see section 9.5.6)

NOTE! This function requires the intervals to be well-formed (see section 17.1).

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 72

17.4 orIntervals

interface orIntervals

subroutine orIntervalsBothScalar(intervalA, intervalB, oredIntervals)

type(IntervalT), intent(in) :: intervalA, intervalB

type(IntervalT), pointer :: oredIntervals(:)

end subroutine orIntervalsBothScalar

subroutine orIntervalsOneVector(intervalA, intervalsB, oredIntervals)

type(IntervalT), intent(in) :: intervalA, intervalsB(:)

type(IntervalT), pointer :: oredIntervals(:)

end subroutine orIntervalsOneVector

subroutine orIntervalsBothVector(intervalsA, intervalsB, oredIntervals)

type(IntervalT), intent(in) :: intervalsA(:), intervalsB(:)

type(IntervalT), pointer :: oredIntervals(:)

end subroutine orIntervalsBothVector

end interface

In all cases the intervals are first converted to RangeT structures as follows:

range%lower%type = INCLUSIVE

range%upper%type = EXCLUSIVE

range%lower%value = interval%lower

range%upper%value = interval%upper

In this form, they can be ORed together by use of the dss aux call orRangesPair (see section 9.5.7)

NOTE! This function requires the intervals to be well-formed (see section 17.1).

18 Least-squares fitting routines

Module name: linear

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)

Contains some routines to do with least-squares estimation and solution of linear equations.

18.1 stdDev

function stdDev(vector)

real(single), intent(in) :: vector(:)

real(single) :: stdDev

end function stdDev

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 73

This find the average < v > of the input values vi, then estimates the scatter or standard deviation σ of
these values from

σ2 =
1

N − 1

N
∑

i

(vi− < v >)2.

18.2 fitLine

subroutine fitLine(x, y, intercept, slope, variance, covar, status)

real(single), intent(in) :: x(:), y(size(x))

real(single), intent(out) :: intercept, slope

real(single), intent(out), optional :: variance, covar(2, 2)

integer, intent(out), optional :: status

end subroutine fitLine

This fits a straight line to the set of points defined by x and y. The solution method is the standard one
which assumes uncertainty in the y values only and solves the normal equations to arrive at a solution
which minimizes the sum of the squares of the y-separation between the resulting line and each point.

18.3 fitPolynomial

subroutine fitPolynomial(x, y, coeffs, yVar, pinMask, chi2, errMatrix, status)

real(single), intent(in) :: x(:),&

y(size(x))

real(single), intent(inout) :: coeffs(:)

real(single), intent(in), optional :: yVar(size(x))

logical(bool), intent(in), optional :: pinMask(size(coeffs))

real(single), intent(out), optional :: chi2,&

errMatrix(size(coeffs),&

size(coeffs))

integer, intent(out), optional :: status

end subroutine fitPolynomial

This subroutine fits a polynomial to the set of points defined by x and y. The order of the polynomial is
given by the size of the vector ‘coeffs’. As per usual, only the y values are assumed to have significant
uncertainties. The subroutine solves normal equations to arrive at a solution which minimizes χ2 between
the data and the fitted polynomial.

Some or all of the coefficients can be ’pinned’ or not fitted. These values should be supplied in the vector
‘coeff’ (note that this is of intent ‘inout’ as required). The appropriate members of ‘pinMask’ should
be set to TRUE; all other members of ‘pinMask’ should of course be FALSE. For example, suppose it
was desired to fit to the data a function of the form y(x) = a + cx2. This is equivalent to fitting a full
quadratic function to the data, but with the linear coefficient pinned at 0. To achieve this result, ‘coeff’
and ‘pinMask’ should be of size 3, with the following values set:

coeff(2) = 0.0

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 74

pinMask = /(.false. .true. .false.)/

The general form of the normal equations in the event of pinning is perhaps best illustrated by using the
above example. In this case the equations are

Note that the matrix of uncertainties in the fitted coefficients as well as the χ2 value at the optimum are
also returned.

18.4 solveLinearTriDiag

18.5 solveLinearEquations

18.6 invertPosDefMatrix

19 Miscellaneous mathematical utilities

Module name: math utils

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)

20 Function minimization routines

Module name: minimizations

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)

21 Helper subroutines for handling ODF (OAL)

Module name: oal aux

Author: Masaaki Sakano (University of Leicester, mas@star.le.ac.uk)

In any of the following task, the environmental variable SAS ODF should be properly set before the call.

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 75

21.1 printODFProposal

Dumps the proposal information derived from the ODF.

interface printODFProposal

subroutine printODFProposal(proposalInfo, printHeader)

type(ProposalInfoType), intent(in) :: proposalInfo

logical, intent(in), optional :: printHeader

end subroutine printODFProposal

end interface

The optional parameter printHeader specifies whether the header is also printed to STDOUT (T) or
not (F). The default is True.

Note that proposalInfo is obtained via

call OAL_proposalInfo(proposalInfo)

22 List Parsing

Module name: parse list mod

Author: Dean Hinshaw (NASA/GFSC, dah@milkyway.gsfc.nasa.gov)

This subroutine parses a string containing a delimited list into an array of strings, one element for each
member of the list. The calling sequence is:

SUBROUTINE parse_list(in_str, out_array, in_delim)

CHARACTER(LEN=*), DIMENSION(:), POINTER :: out_array

CHARACTER(LEN=*), :: in_str

CHARACTER(LEN=1), OPTIONAL, INTENT(IN) :: in_delim

where in str is the string to be parsed, out array is returned array of strings, and in delim is the
delimeter seperating the list items. in delim is an optional parameter, and if not given defaults to a
space. Note that in any case list items may not contain spaces. The user also must take care that the
pointer passed as out array has sufficient length to hold the parsed strings.

Additional, if in str begins with an “@”, then the string is taken as a filename the list items, one item
for each line of the file.

23 A tool to regrid data from one 2D pixel grid to another

Module name: polygon

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 76

24 Contains an analytic approximation to the off-axis PSF, and
routines to sample it.

Module name: psf ims

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)

25 Routines to return random numbers in various distributions

Module name: random aux

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)

26 Array Reallocation

Module name: reallocate

Author: Dean Hinshaw (NASA/GFSC, dah@milkyway.gsfc.nasa.gov)

This subroutine can be used to reallocate memory space for a pointer to an array, retaining any data
already stored in the array. The calling sequence is:

SUBROUTINE realloc_real32(p, n)

INTEGER, INTENT(in) :: n

where p can have any of the possible specifications:

REAL(KIND=single), POINTER, DIMENSION(:) :: p

REAL(KIND=double), POINTER, DIMENSION(:) :: p

INTEGER(KIND=int8), POINTER, DIMENSION(:) :: p

INTEGER(KIND=int16), POINTER, DIMENSION(:) :: p

INTEGER(KIND=int32), POINTER, DIMENSION(:) :: p

LOGICAL(KIND=bool), POINTER, DIMENSION(:) :: p

CHARACTER(LEN=*), POINTER, DIMENSION(:) :: p

and n is the size of the reallocated array. The lower bound value of the old array is retained.

If n is greater than the original array size, then the all data from the old array is retained, and the array
values greater then the original array size are undefined. If n is less than the original array size, then the
first n data elements from the old array are retained.

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 77

27 Utilities to rebin 1D or 2D data between parallel pixel grids

Module name: rebinners

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)

28 Utilities to regrid 1D or 2D data between parallel pixel grids

Module name: regridders

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)
Masaaki Sakano (University of Leicester, mas@star.le.ac.uk)

28.1 Calculates OldPixelCorners via an Affine transform

interface calcOldPixelCornersAffine

subroutine calcOldPixelCornersAffineDouble(oldPixelCorners &

, oldAryEdgesInfo, newAryEdgesInfo, mtrxLinTrans, vecTranslate)

type(Point2dT), intent(out) :: oldPixelCorners(:,:)

type(AryEdgesInfoT), intent(in) :: oldAryEdgesInfo, newAryEdgesInfo

real(double), intent(in) :: mtrxLinTrans(2,2), vecTranslate(2)

end subroutine calcOldPixelCornersAffineDouble

subroutine calcOldPixelCornersAffineSingle(oldPixelCorners &

, oldAryEdgesInfo, newAryEdgesInfo, mtrxLinTrans, vecTranslate)

type(Point2dT), intent(out) :: oldPixelCorners(:,:)

type(AryEdgesInfoT), intent(in) :: oldAryEdgesInfo, newAryEdgesInfo

real(single), intent(in) :: mtrxLinTrans(2,2), vecTranslate(2)

end subroutine calcOldPixelCornersAffineSingle

end interface

This subroutine gives an array oldPixelCorners as an argument to pass to regridCartesian(), when
an Affine transformation (A and B) as given below is the coordinate transformation used in regridding,

(x_new) (x_old)

() = A * () + B

(y_new) (y_old)

(a b) (x_old) (e)

= () () + ()

(c d) (y_old) (f)

where the matrix A (=mtrxLinTrans) is a component for the linear transformation and B (=vecTranslate)
is for the translation (a.k.a. parallel move). Note

(a b) (mtrxLinTrans(1,1) mtrxLinTrans(1,2))

() = ()

(c d) (mtrxLinTrans(2,1) mtrxLinTrans(2,2))

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 78

The returned oldPixelCorners can be directly passed to regridCartesian().

Note oldPixelCorners can contain the values which are out of the boundary of newAryEdgesInfo, such
as zero or negative values.

Among the input arguments, the size of oldPixelCorners has to be larger by 1 than those specified in
oldAryEdgesInfo%arySize.

type(Point2dT) is defined in geometric types. type(AryEdgesInfoT) is defined in oldAryEdgesInfo

and newAryEdgesInfo is defined in array utils.

As examples,
(A) When oldAry(1:5,1:5), newAry(1:5,1:5), identical transformation.

oldPixelCorners(1,1)\%x,y == (0.5, 0.5)

oldPixelCorners(6,6)\%x,y == (5.5, 5.5)

(B) When oldAry(1:5,1:5), newAry(-1:6,0:8), identical transformation.

oldPixelCorners(1,1)\%x,y == (2.5, 1.5)

oldPixelCorners(3,1)\%x,y == (4.5, 1.5)

because the respective indices of 3rd and 2nd for X and Y in newAry correspond to (1,1) in oldAry.

28.2 Regrids in the Cartesian coordinates

interface regridCartesian

subroutine regridScalar(oldPixelCorners, oldImage, newImage, status&

, testFlagArg, averagingStyle)

real(single), intent(in) :: oldImage(:,:)

type(Point2dT), intent(in) :: oldPixelCorners(size(oldImage,1)+1&

,size(oldImage,2)+1)

real(single), intent(out) :: newImage(:,:)

integer, intent(out), optional :: status

logical(bool), intent(in), optional :: testFlagArg

character(*), intent(in), optional :: averagingStyle

end subroutine regridScalar

subroutine regridScalarDouble(oldPixelCorners, oldImage, newImage, status&

, testFlagArg, averagingStyle)

real(single), intent(in) :: oldImage(:,:)

type(Point2dDbleT), intent(in) :: oldPixelCorners(&

size(oldImage,1)+1,&

size(oldImage,2)+1)

real(single), intent(out) :: newImage(:,:)

integer, intent(out), optional :: status

logical(bool), intent(in), optional :: testFlagArg

character(*), intent(in), optional :: averagingStyle

end subroutine regridScalarDouble

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 79

subroutine regridVector(oldPixelCorners, oldImages, newImages, status&

, testFlagArg, averagingStyle)

real(single), intent(in) :: oldImages(:,:,:)

type(Point2dT), intent(in) :: oldPixelCorners(&

size(oldImages,2)+1,&

size(oldImages,3)+1&

)

real(single), intent(out) :: newImages(:,:,:)

integer, intent(out), optional :: status

logical(bool), intent(in), optional :: testFlagArg

character(*), intent(in), optional :: averagingStyle

end subroutine regridVector

end interface

This subroutine is intended to allow rebinning of an image from one cartesian coordinate system to
another. Now, we define here an image as a two-dimensional array of uniform rectangular pixels. If we
change the coordinate system, this image becomes distorted. It is nice to be able to convert it once again
to an array of rectangular pixels, but this time in the new coordinate system. This involves taking each
of the old, distorted pixels and dividing its contents up among the new pixels. It is assumed here that (i)
the distorted pixel still has straight ’sides’, ie it is a quadrilateral (a polygon for generality); (ii) that the
value within the old pixel is evenly distributed through the pixel (this assumption MAY BE INVALID

for extremely nonlinear distortions); (iii) that the distorted pixel is not folded over – ie that no two of its
sides cross; (iv) that the old pixels are not greatly larger than the new - the present algorithm still works
ok in such a regime, but the result will look ‘steppy.’ In this case an interpolation algorithm would yield
smoother-looking results.

The relation between the old and new coordinate systems is here entirely contained within the input
array oldPixelCorners. This gives the coordinates of each pixel in the array oldImage, expressed in the
wcs ‘pixel’ system of newImage. What does ‘wcs pixel system’ mean? It means that the width and height
of pixels in newImage are both equal to 1.0 and the centre of the pixel newImage(1,1) is at (1.0, 1.0).

NOTE newImages is NOT defined if any error is detected before processing.

Note type(Point2dT) is defined in geometric types.

29 Short cuts to saving (or overwriting) output images

Module name: save image

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)
Masaaki Sakano (University of Leicester, mas@star.le.ac.uk)

The subroutines/functions in this module provide functions/subroutines to save a Fortran array as a
FITS image.

29.1 saveDetImage(): Save DETX/DETY images

Subroutine to save a DETX/DETY image from a given 2-dimensional array.

xmmsas_20230412_1735-21.0.0

XMM-Newton Science Analysis System Page: 80

interface saveImage

subroutine saveDetImageDouble(detImage, detImageSetName \&

, detImageEdgesInfo, templateFitsSetName, wcsExtended, detWcs \&

, strTelescop, strInstrum)

real(double), intent(in) :: detImage(:,:)

character(*), intent(in) :: detImageSetName

type(aryEdgesInfoT), intent(in), optional :: detImageEdgesInfo

character(*), intent(in), optional :: templateFitsSetName, strTelescop, strInstrum

type(WcsAxesExtendedT), intent(in), optional :: wcsExtended

type(WcsT), intent(in), optional :: detWcs

end subroutine saveDetImageDouble

subroutine saveDetImageSingle()

real(single), intent(in) :: detImage(:,:)

end subroutine saveDetImageSingle

subroutine saveDetImageInt32()

end subroutine saveDetImageInt32

subroutine saveDetImageInt16()

end subroutine saveDetImageInt16

subroutine saveDetImageInt8()

end subroutine saveDetImageInt8

end interface

As for the input array (detImage), all the Real and Integer types are allowed, and that is the only
difference in the interface.

detImageSetName is the output FITS filename. clobber is taken into account.

detImageEdgesInfo (optional) is the frame information of the input array. (The type is defined in
array utils). If not given, it is calculated via getDetImageEdgesInfo().

wcsExtended can be given instead of, or in addition to, detImageEdgesInfo in order to directly control
the coordinate information in the output header attributes. In that case, make sure

wcsExtended%withPhysical == .true.

if you want to add the PHYSICAL coordinates information in the output file. If both wcsExtended and
detWcs are given, the WCS information is overwritten, where possible, according to detWcs at the end.
Obviously detWcs can not include any PHYSICAL coordinate information.

If templateFitsSetName is given, all the primary header attributes except for those for DSS and WCS
are copied to the output file.

TELESCOP attribute can be directly specified via strTelescop; otherwise, unless templateFitsSetName
is given and has the attribute, the default ‘XMM’ is written in the output file.

INSTRUME attribute can be directly specified via strInstrum (string), such as (EMOS1—EMOS1—EPN);
in default this routine does nothing about it.

29.1.1 Examples

call saveDetImage(detImage, ’outimage.ds’)

call saveDetImage(detImage, ’outimage.ds’, templateFitsSetName=’event.FIT’)

call saveDetImage(detImage, ’outimage.ds’, strInstrum=’EMOS1’)

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 81

29.2 getDetImageEdgesInfo(): Get a default frame information for a DET
image

interface getDetImageEdgesInfo

subroutine getDetImageEdgesInfoDouble(detImage, outBinSizeXY, outOffsetXY)

real(double), intent(in) :: detImage(:,:)

real(single), intent(in), dimension(2), optional :: outBinSizeXY, outOffsetXY

type(aryEdgesInfoT) :: getDetImageEdgesInfo

end subroutine getDetImageEdgesInfoDouble

subroutine getDetImageEdgesInfoSingle()

end subroutine getDetImageEdgesInfoSingle

subroutine getDetImageEdgesInfoInt32()

end subroutine getDetImageEdgesInfoInt32

subroutine getDetImageEdgesInfoInt16()

end subroutine getDetImageEdgesInfoInt16

subroutine getDetImageEdgesInfoInt8()

end subroutine getDetImageEdgesInfoInt8

end interface

As for the input array (detImage), all the Real and Integer types are allowed, and that is the only
difference in the interface.

outBinSizeXY (optional) is a 1-dimensional array with the size of 2. The default is (/ 80.0, 80.0 /).

outOffsetXY (optional) is a 1-dimensional array with the size of 2; if outOffsetXY=(/a, b/) is given,
the (a,b) in PHYSICAL coordinates is located at the centre of the array. In default, (a, b)==(0.0, 0.0).

This function returns type(aryEdgesInfoT) (defined in array utils).

30 Quick Sorting

Module name: sort mod

Author: Clive Page (University of Leicester, cgp@star.le.ac.uk)

This module contains subroutines to sort a data array into ascending order using Hoare’s quick-sort
algorithm. There is a generic interface which supports data types INTEGER, REAL, DOUBLE PRECISION,
and CHARACTER (any length).

The simplest call is:

CALL quick_sort(array)

The array argument has INTENT(INOUT) and returns the data sorted into ascending order.

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 82

In some cases it is desirable to know the original order of the data points, for example to sort another
array in the same way. In this case an optional second argument may be given; it returns an integer array
of the same size containing numbers in the range 1 to size(array) which tell you the original position of
each element returned sorted. For example if you do:

unsorted_array = array

call quick_sort(array, index)

then unsorted array(index(i)) = array(i) for all i in [lbound(array), ubound(array)]. Note that array is
always returned sorted, whether index is supplied or not. This can be something to be careful of. Suppose
you have a data structure array which you want to sort in order of one of its constituents, for example a
structure that stores gtis:

type :: gtiType

real(kind(0d0)) :: time

logical :: isStart

end type gtiType

type(gtiType) :: gtiArray(100)

! Fill gtiArray

In this case to sort the logicals as well you will need to do something like the following:

type(gtiType) :: temp_gtiArray(size(gtiArray))

temp_gtiArray%time = gtiArray%time

call quick_sort(temp_gtiArray%time, index)

do i = 1, size(gtiArray)

temp_gtiArray(i)%isStart = gtiArray(index(i))%isStart

! NOT temp_gtiArray(i) = gtiArray(index(i))!! The times are already sorted.

end do

gtiArray = temp_gtiArray

Note that the quick-sort algorithm is on average about twice as fast as heap-sort but becomes much
slower for special cases. This quick-sort algorithm was designed to cope with nearly-sorted data as well
as random data without any significant degradation in speed. Note that it is not a stable sort, i.e. equal
values will not necessarily remain in the same relative order.

31 A routine which returns circles or ellipses to mark source
locations

Module name: source cutouts

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 83

32 1D and 2D cubic-spline routines

Module name: splines

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)

33 Miscellaneous utilities

Module name: ssc misc

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk) (except for getFreeIoUnit)

33.1 Find a Free I/O Unit

Author: Clive Page (University of Leicester, cgp@star.le.ac.uk)

This subroutine returns a number of a free I/O unit, i.e. one that is not currently allocated to and file.
The calling sequence is:

33.2 stripStr()

subroutine stripStr(inStr, outStr, isPreceedingOnly)

character(*), intent(in) :: inStr

character(*), intent(out) :: outStr

logical, intent(in), optional :: isPreceedingOnly ! .false. in default.

end subroutine stripStr

This “strips” the input string, namely removes the preceeding and trailing spaces, tabs, line-feeds,
carriage-returns. If isPreceedingOnly is given and TRUE, no trailing space is deleted.

33.3 splitStr()

subroutine splitStr(inStr, outStrAry)

character(*), intent(in) :: inStr

character(*), pointer :: outStrAry(:) ! intent(out)

end subroutine splitStr

This “splits” the given string with the delimeter of consecutive spaces into an array, and returns it as the
pointer character array.

outStrAry should not be initialised before the call. NOTE make sure to deallocate outStrAry(:) after
the call.

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 84

34 Some functions for testing/debugging

Module name: test utils

Author: Masaaki Sakano (University of Leicester, mas@star.le.ac.uk)

The subroutines/functions in this module provide functions that are useful in testing (and possibly
debugging).

34.1 isNearlyEqual(): Comparing numbers with a given precision

This function returns .true. if the given pair of values agree with each other in the given precision
(order), or .false. otherwise.

LOGICAL(bool) FUNCTION isNearlyEqual(cmp, compared, precision)

REAL, intent(in) :: cmp, compared ! or INTEGER

INTEGER, intent(in) :: precision

END FUNCTION isNearlyEqual

For the pair of the first two arguments, any combination of int8, int16, int32, single and double is
allowed.

34.1.1 Examples

isNearlyEqual(1110, 1112, 3) returns .true.
isNearlyEqual(1.2, 1.0, 3) returns .false.
isNearlyEqual(1.234, 1.231, 3) returns .true.
isNearlyEqual(1.2349, 1.2351, 3) returns .true.

35 Routines to perform hyperbolic distortion of values in the
interval [0:1]

Module name: warp utils

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)

36 Utilities to assist in the reading and manipulation of WCS
keywords

Module name: wcs aux

Author: Ian Stewart (University of Leicester, ims@star.le.ac.uk)

xmmsas 20230412 1735-21.0.0

XMM-Newton Science Analysis System Page: 85

37 Utilities to assist development in Perl

Module name: SSCLib

Author: Masaaki Sakano (University of Leicester, mas@star.le.ac.uk)

See the header of the library code for detail. You may want to read it by, for example, cd /YOUR/DIR;

pod2man SSCLib.pm | tbl | neqn | nroff -h -man | less

38 General coordinates class in Perl

Module name: Coords

Author: Masaaki Sakano (University of Leicester, mas@star.le.ac.uk)

See the header of the library code for detail. You may want to read it by, for example, cd /YOUR/DIR;

pod2man Coords.pm | tbl | neqn | nroff -h -man | less

39 Celestial coordinates utilities in Perl

Module name: CelCoords

Author: Masaaki Sakano (University of Leicester, mas@star.le.ac.uk)

See the header of the library code for detail. You may want to read it by, for example, cd /YOUR/DIR;

pod2man CelCoords.pm | tbl | neqn | nroff -h -man | less

References

xmmsas 20230412 1735-21.0.0

