
XMM-Newton Science Analysis System Page: 1

asmooth

June 2, 2019

Abstract

This task smooths FITS images either simply or adaptively, with options to mask,

weight and exposure-correct.

1 Instruments/Modes

asmooth is not XMM-specific: it can be applied to any FITS image.

2 Use

pipeline processing yes
interactive analysis yes

3 Description

This task smooths FITS images by a weighted cyclic convolution. The convolution procedure itself is
described in section 3.1. There are many ways in which the user can specify the convolver (see section
3.3). The user can also supply an exposure map (section 3.5), a weight image (section 3.4) and/or an
output mask image (also section 3.4). An image of the variance (square of the standard deviation) of the
input image may also be supplied, and an image of the variance of the smoothed image obtained (section
3.2).

3.1 Convolution details

A cyclic convolution of an input image Ix,y weighted by wx,y gives output Ox,y according to the following
prescription:

Ox,y = C

∑M

i=L

∑Q

j=P ci,j wx−i,y−j Ix−i,y−j

∑M

i=L

∑Q

j=P ci,j wx−i,y−j

, (1)

where cx,y is the convolver and

XMM-Newton Science Analysis System Page: 2

C =

M
∑

x=L

Q
∑

y=P

cx,y.

The indices x − i and y − j are calculated modulo the image sizes X and Y respectively, that is, they
wrap around the image limits. This cyclic property is unavoidable if it is desired to make efficient use of
the Fourier transform in performing the convolution. Potentially this is a nuisance because it means, for
example, that values at the left-hand edge of the image can become mixed with values on the right-hand
edge, and so forth. The task avoids this by padding the image with zero-valued pixels in both x and y
directions. The pad size is equal to the width of the convolver in that direction. If there are multiple
convolvers (see sections 3.3.4, 3.3.5 and 3.3.6), the largest convolver sizes are used.

In fact the ‘blank space’ areas around the edges of the image are handled in three steps, as below.

1. If a smaller rectangle can be excised from the input image such that all the pixels of the
excess are zero-valued, this is done.

2. The pad described above is added.

3. The Fast Fourier Transform (FFT) algorithm used by the task works most efficiently if each
dimension of the image is a multiple of 2, 3, 5 or 7. For each dimension of the working
image, asmooth calculates the next largest integer which obeys this condition and adds
further blank space to increase the dimension to that value.

After the convolution is done, before the output is written to file, the process is reversed: the pad is first
cut away, then the original amount of blank space is restored.

The convolution may be done either directly or via FFT. If left to itself, the task will try to use the
method which is quickest. If the image is large and the number of convolvers small, this will generally be
the FFT method; however direct convolution becomes more efficient if the image is divided into many
small patches of different convolution. If the user desires the convolutions to be unilaterally performed
using one method or another, they should make use of the forcecalctype and calcbyfft parameters.

The two methods produce identical outputs except for small differences caused by different propagation
of rounding errors. However the FFT method will, because it always acts on the whole image, in general
leave few if any pixels in the output which are exactly equal to zero. Use of a mask (section 3.4) or an
exposure map (section 3.5) can be helpful in this instance.

3.2 Variance images

The user has the opportunity both to supply a variance image of the input and to receive a variance
image of the smoothed output. (A variance image is an image of the variances, that is the squares of the
standard deviations, in the values of the input or output images.) A variance image is supplied by setting
parameter readvarianceset=‘yes’ and naming the image dataset in invarianceset; the variance of the
outset can be obtained via parameters writevarianceset and outvarianceset.

If the task is required to make use of the variance (either because the user has set writevarianceset=‘yes’
or smoothstyle=‘adaptive’), but none is supplied by the user, the task assumes that the input image
inset is Poissonian - that is, that the image itself is a reasonable estimate of its own variance.1 In this

1For small values this becomes a poor approximation. If the matter is of importance, an iterative procedure in which

the smoothed variance is fed back into the task might be worth trying.

XMM-Newton Science Analysis System Page: 3

case naturally only insets with pixel values >= 0 are accepted. If a variance set is supplied, all pixel
values of the variance image must be >= 0, but the pixels of inset may have any value.

If writevarianceset=‘yes’, the task calculates the variance in the smoothed output image outset. The
variance σ2(y) of a linear combination y =

∑

i aixi of independent variates xi is given by

σ2(y) =
∑

i

a2i σ
2(x).

(Note there is no connection between the σ used here and the σ used in section 3.3.1 to signify the
characteristic width of a gaussian! I’m using the same symbol for two different things, but hopefully this
won’t be too confusing.) By applying this to equation 1 we get

σ(O)x,y = C

√

∑M

i=L

∑Q

j=P c2i,j w2

x−i,y−j σ2(I)x−i,y−j

∑M

i=L

∑Q

j=P ci,j wx−i,y−j

, (2)

where σ(I)x,y is the standard deviation of the input image and σ(O)x,y that of the output.

3.3 Ways of specifying the convolvers

In all the following descriptions, the convolving function is designated by cx,y, where x and y are integer
pixel numbers. Convolvers must necessarily be of finite extent, hence are only defined over a rectangular
array.

It is necessary to have some way to determine the ‘phase’ of any convolver: ie, which pixel of the convolver
array should be taken to have row and column indices y and x equal to zero. The rule applied by asmooth

is as follows. If the convolver has for example N rows, then row 1 plus the integer2 part ofN/2 is taken
as the zeroth row. This means that if N is odd, the central row is the zeroth row, ie the row indices are
taken to extend from −(N − 1)/2 to (N − 1)/2; if N is even, the row indices run from −N/2 to N/2− 1.
The same rule is applied to the columns.

3.3.1 Single gaussian convolver

smoothstyle=‘simple’, convolverstyle=‘gaussian’.

The convolving kernel is a rotationally-symmetric gaussian, truncated onto a square array of side length
2N + 1:

cx,y = A exp(−[x2 + y2]/2σ2) for |x|, |y| ≤ N , 0 else.

The width σ is read from the parameter width and N is set equal to 1 plus the integer part of 5σ. If
normalize=‘yes’, A is set from

A−1 =
N
∑

x=−N

N
∑

y=−N

exp(−[x2 + y2]/2σ2);

2‘Integer’ in the present document always means truncated rather than rounded.

XMM-Newton Science Analysis System Page: 4

otherwise A = 1.

3.3.2 Single top-hat convolver

smoothstyle=‘simple’, convolverstyle=‘tophat’.

The convolving kernel approximates a filled circle, viz:

cx,y = A for x2 + y2 ≤ r2, 0 else.

The radius r is read from the parameter width. The convolver array is again square and of side length
2N + 1, where N equals the integer part of r. If normalize=‘yes’, A−1 is set from

∑∑

c as before,
otherwise A = 1.

3.3.3 Single square-box convolver

smoothstyle=‘simple’, convolverstyle=‘squarebox’.

This simple convolver is a square array of side equal to 1 + 2×(the integer part of width) and value
specified by A, which is calculated as in the previous two sections.

3.3.4 Multi-convolver smoothing

smoothstyle=‘withset’.

In this mode, different parts of the image may be smoothed by different convolvers. A list or library of con-
volvers is required, also an ‘index’ image which shows those parts of the image to be smoothed by each con-
volver. These are supplied in the form of a FITS dataset, as described in section 7. Separate parameters
inconvolversarray and inindeximagearray are provided for the convolver list and the index image, so
these may be stored either in the same dataset or in two different datasets. The image inindeximagearray
must have the same dimensions as inset, and the maximum value of inindeximagearraymust not exceed
the number of convolvers in inconvolversarray.

Regardless of the value of withweightset (see section 3.4 for the use of weight and mask images),
the convolution within each index ‘patch’ is always a weighted convolution, the weight being 1 (or 1×
the weightset image if this is supplied) within the patch allocated to that convolver and 0 outside it.
Likewise, the result of each patch convolution is masked by the patch (ANDed with the outmaskset mask
if this is supplied) before being added to the output image. In future a parameter may be provided to
allow the user to switch off this patch weighting and masking if desired.

If the user desires the convolvers to be normalized, the normalizeset parameter should be set.

3.3.5 Adaptive smoothing

smoothstyle=‘adaptive’.

This is exactly the same as the patchwork convolution described in section 3.3.4, except here the task
calculates the library of convolvers and the associated index image itself.

XMM-Newton Science Analysis System Page: 5

Adaptive smoothing is designed for Poissonian images made by counting photons or events. (Note that
all images made by XMM instruments have this character.) For such non-negative images it is convenient
to define the signal-to-noise ratio (SNR) at each pixel as the value at that pixel divided by its standard
deviation. The intent of adaptive smoothing is to produce an output image in which the SNR at each
pixel is as close as possible to the constant value given in parameter desiredsnr. Through this process,
fainter areas become more thoroughly smoothed than brighter areas. This implies that the detail which
one wishes to preserve from smoothing should be bright rather than dark - it would not be advisable, for
example, to adaptively smooth an image of absorbing dust filaments on a bright background.

The convolvers are normalized gaussians of the form described in section 3.3.1. The exact distribution
of their widths is not of primary importance so long as there are enough of them within a wide enough
range to cater for the variations in SNR of the input image. There are several ways in which the
widths of the gaussians can be established. Firstly, the user can provide a list of widths directly via the
userwidths parameter; alternatively, the user can provide minimum and maximum values (parameters
minwidth and maxwidth), specify the number of convolvers (nconvolvers) and the scaling rule to be
used (widthliststyle), and allow the task to calculate the widths.

The relation between input and output standard deviation is given by equation 2. For the square,
symmetric gaussian convolvers of section 3.3.1 this becomes

σ(O)x,y = C

√

∑N

i=−N

∑N

j=−N c2i,j w2

x−i,y−j σ2(I)x−i,y−j

∑N

i=−N

∑N

j=−N ci,j wx−i,y−j

,

giving the following equation for the signal-to-noise ratio of the smoothed image:

SNR(O)x,y =

∑N

i=−N

∑N

j=−N ci,j wx−i,y−j Ix−i,y−j
√

∑N

i=−N

∑N

j=−N c2i,j w2

x−i,y−j σ2(I)x−i,y−j

. (3)

As described in section 3.2, the user can either supply an explicit image of the variance σ2(I)x,y of the
input image, or this can be left implicit by leaving readvarianceset at its default value of ‘no’. In the
latter case, the task works under the assumption that the input image is Poissonian and thus may be
used as an estimate of its own variance.

It is not possible to invert equation 3 so as to arrive at the required width of the gaussian convolver
needed to give SNR(O)x,y =desiredsnr at each (x, y). Instead the solution must be found iteratively.
The procedure used by asmooth is simple and therefore robust: for each image pixel, the task starts
at the broadest gaussian in its library and works through the library until |SNR(O)x,y−desiredsnr|
reaches a minimum.

The task actually makes two passes through the library of gaussians: the first as described above, to
calculate the index image; the second refers to the index image while performing the convolution, exactly
as described in section 3.3.4.

Note that variance values = 0 are permitted. This leaves open the possibility that the denominator of
equation 3 may be zero-valued at some (x, y). Equation 3 is not calculated for such pixels: they are
instead simply allocated in the index image to the first, ie broadest, gaussian.

Occasionally it is useful to be able to apply the adaptive smoothing calculated for one image to another.
The smoothing information can be stored to file in two ways: either directly as a set of convolver images
plus an index image (via parameters writeconvolvers, outconvolversset and outindeximageset), or
via a template image (writetemplateset and outtemplateset). To find out how to make use of these
files, look in sections 3.3.4 and 3.3.6 respectively.

XMM-Newton Science Analysis System Page: 6

3.3.6 Smoothing from an adaptive template

smoothstyle=‘template’.

Suppose you wish to make a false-colour image from several images of the same piece of sky taken in
different energy bands (or at different values of any other quantity). If the input images are event-
based images of low exposure it may be rewarding to adaptively smooth them before combining them
into a colour image. However, if each image is smoothed separately, in general convolvers of different
widths will be allocated to the same place in the sky in the different images. This can cause a sort
of chromatic aberration. To avoid this it is necessary to smooth each image according to the same
template. This template might for example be established by adaptively smoothing the sum of all
input images, then writing the result to file via the parameters writetemplateset and outtemplateset.
This template image just stores the characteristic width of the gaussian used to smooth each pixel
of the input image. If you select smoothstyle=‘template’ and supply the template set to parameter
smoothstyle=‘intemplateset’, you will get the same smoothing pattern for any inset.

The same result can be achieved through outconvolversset and outindeximageset, which is a more
robust method. I’ll probably abandon the template facility eventually.

3.4 Weighting and masking

Images necessarily have sharp boundaries at their edges, and may in addition have sharp internal steps
between zero- and non-zero-valued pixels. Such steps become ‘smeared out’ through the convolution.
Smearing manifests itself as both ‘drooping’ of non-zero values as the edge is approached and ‘bleeding’
of non-zero values into the previously zero-valued area. A glance at equation 1 shows that drooping can
be avoided by supplying as weight image (parameters withweightset and weightset) something which
exhibits the same steps as the input image. Where this is the case, both numerator and denominator of
equation 1 fall to approximately half their usual values at pixels adjacent to an image step to zero; if no
weight image is supplied, all values of wx,y are set to 1, and thus only the numerator of 1 falls by about
half at such pixels, so also the result as a whole. An exposure map often serves very well as a weight
image. This can also prevent large noise fluctuations in areas of low exposure when the input image is
exposure-corrected before smoothing (see section 3.5).

Droop correction by weighting carries on in principle even outside the area of the input image which
was non-zero-valued. This facility can be used to interpolate over gaps or holes in the input and weight
images. However such extrapolation becomes increasingly noisy far from the step as fewer and fewer
non-zero pixels of the input and weight images overlap the convolver. Indeed such extrapolation cannot
extend further than the convolver array dimensions from non-zero areas of the weight image, else the
denominator of equation 1 would become zero.

This extrapolation can be controlled by supplying asmooth with a mask image via parameters withoutmaskset
and outmaskset. The mask actually has two effects: only pixels for which the mask is TRUE contribute
to the convolution; and convolution is only performed for pixels for which the mask is TRUE. In fact we
should rewrite equation 1 to read

Ox,y = C δx,y

∑M

i=L

∑Q

j=P δx−i,y−j ci,j wx−i,y−j Ix−i,y−j

∑M

i=L

∑Q

j=P δx−i,y−j ci,j wx−i,y−j

+ (1− δx,y)Ix,y, (4)

where δx,y represents the mask.

Note from section 7 that the image supplied to outmask may have any numeric data type. The exposure

XMM-Newton Science Analysis System Page: 7

map for example is often a convenient choice.

If the absolute value of the numerator of equation 1 falls below a certain minimum value, the task will do
the following: (i) issue the warning outMaskTooNarrow; (ii) set the value of that pixel in the outset to
zero; (iii) set the respective pixel of an internal logical image to TRUE. This logical image of pixels where
weighted smoothing could not be carried out can be written to file by setting writebadmaskset=‘yes’.

An example of a situation in which a small amount of controlled extrapolation is desirable is in the
creation of background maps by smoothing. Bright sources should be removed from any image before
smoothing it to create such a map. However if pixels in the neighbourhood of sources are simply set
to zero, smoothing won’t remove the resulting holes in the image, just blur them. The surrounding
background values can be interpolated into the holes by supplying a weight image (eg the exposure map)
with a matching set of holes. Provided the holes do not approach the convolver array dimensions in size,
the holes should become completely filled in. Note that if a mask is also used, the mask should not have
holes cut in it at the source positions. In total, the recommended procedure is as follows:

1. Make a source-mask image which has holes at source locations. From its appearence the
name of ‘cheese mask’ suggests itself. (Unfortunately the present sas offers no easy way to
do this.)

2. Multiply the input image by the cheese mask. Let us call the result the cheesed input image.

3. Multiply the exposure map by the cheese mask. Let us call the result the cheesed weight
image.

4. Call asmooth as follows:

asmooth inset=<cheesed input image>

withweightset=yes weightset=<cheesed weight image>

withoutmaskset=yes outmaskset=<original exposure map>

If you still get the ‘outMaskTooNarrow’ warning, you will either have to reduce the size of some of the
holes or use a broader convolver.

Note that, although the exposure map is recommended for three separate inputs of asmooth (weightset,
outmaskset and expimageset), these three functions are separate and should not be confused.

3.5 Correcting for exposure before smoothing

Different sections of an image may have different exposure. Few problems are likely to be encountered
where the exposure gradient is small compared to the characteristic width of the convolver. Sharp vari-
ations in exposure (such as occur for example in image mosaics) will however become blurred through
the smoothing. The obvious remedy for this is to divide the input image by the exposure map be-
fore smoothing. This facility is provided in asmooth through the parameters withexpimageset and
expimageset.

Clearly, the division by exposure cannot be done at pixels where the exposure map is zero-valued. The
task handles such pixels by setting the corresponding pixels of the weight image to zero. (Whether or not
the user explicitly supplies a weight image, an internal weight image is always constructed; the difference
being that if withweightset=‘no’, the entire internal weight image is initially set equal to 1.) Note that
this also takes care of ‘droop’ at image edges in the same way as is described in section 3.4; however the
output image may still contain noise at places where the exposure gradient is very large. The only way
to avoid such noise is to supply the exposure map also as a weight image.

XMM-Newton Science Analysis System Page: 8

If you wish to create a background map in counts per pixel from an XMM exposure in which the exposure
time varies significantly between CCDs, then you will need to remultiply the the output image by the
exposure map; if however you wish to create a mosaic from several different cameras or pointings, you
may wish not to do so. For this reason, remultiplication by the exposure map has been made optional
via the remultiply parameter.

3.5.1 Exposure division, variance and adaptive smoothing

A further matter to consider is the effect of exposure correction on the variance map. Since variance is the
square of standard deviation, the obvious thing to to is to divide the input variance image by the square
of the exposure map ǫ. (Remember that, regardless of the value of readvarianceset, the task makes
use of an internal variance image if either writevarianceset=‘yes’ or smoothstyle=‘adaptive’.) For all
choices of smoothstyle but ‘adaptive’, this makes sense. However, recall that adaptive smoothing makes
use of the input variance to calculate the signal-to-noise ratio (SNR) of the input image. From equation
3 one can see that correct division of variance by exposure squared produces the following equation for
SNR:

SNR(O)x,y =

∑N

i=−N

∑N

j=−N ci,j (wx−i,y−j/ǫx−i,y−j) Ix−i,y−j
√

∑N

i=−N

∑N

j=−N c2i,j (w2

x−i,y−j/ǫ
2

x−i,y−j) σ
2(I)x−i,y−j

. (5)

This treatment of variance will produce an image in which short-exposure areas are more heavily smoothed
than long-exposure areas. Short-exposure areas will in other words exhibit broader spatial variation -
they will appear more ‘out of focus’. This can be irritating. An alternative approach is provided via the
parameter expmapuse. If this is set to ‘samesnr’ (the default), equation 5 is employed. If expmapuse
is instead set to ‘samesize’, the input variance is divided by ǫ ×max(ǫ) instead of by ǫ2. The effect on
the output of the ‘samesize’ selection is to leave areas of the image of shorter exposure with a similar
distribution of spatial frequencies to, but larger noise brightness amplitude than, areas of longer exposure.
Note that this ONLY affects the SNR calculation: if the variance of the output image is also desired, this
is calculated according to equation 2 in the standard way.

3.5.2 Smoothing of mosaics

Image mosaics assembled from several separate pointings look better if the result is divided by the
mosaiced exposure and then smoothed. The withexpimageset facility of asmooth allows you to do
this. Users who wish to make mosaics from XMM EPIC data however need to exercise some caution.
The largest component of the exposure spatial variation in XMM EPIC images is the mirror vignetting
function, which changes typically by a factor of three between the optic axis and the edge of the field
of view. The problem is that a significant fraction of the background in such images arises from sources
(eg cosmic-ray fluorescence, soft protons, electronic noise) which are subject to little or no vignetting.
Dividing an image which comprises a flat part plus a vignetted part by a purely vignetted function is
going to leave one with an output image which appears to have a hollow centred on the optic axis - ie, is
anti-vignetted. It is therefore advisable to subtract the flat background component first before dividing
by the exposure map. NOTE however that this will destroy the Poisson nature of the input image, which
introduces a couple of complications: firstly, if you also want the variance of the output, you will need to
explicitly supply an invarianceset and not leave it to the task to calculate it; secondly, if you want to
adaptively smooth your mosaic (see section 3.3.5) you will have to adopt a more complicated procedure
than usual.

The recommended procedure for producing simply-smoothed mosaics is as follows:

XMM-Newton Science Analysis System Page: 9

1. Make a mosaic of the raw images.

2. Make a mosaic of the exposure maps.

3. Make a mosaic of the nonvignetted background (NVB) maps. (It is hoped that in future
there will be a sas task which will be able to decompose XMM EPIC background into its
various components; unfortunately, for the present you are on your own.)

4. Subtract the NVB mosaic from the raw mosaic.

5. Do

asmooth inset=<(raw-NVB) mosaic> smoothstyle=simple

withexpimageset=yes expimageset=<exp img mosaic> remultiply=no

If you also want a map of the output variance, add to this

readvarianceset=yes invarianceset=<raw mosaic>

writevarianceset=yes outvarianceset=<pick a name>

The recommended procedure for producing adaptively-smoothed mosaics is as follows:

1. Make a mosaic of the raw images.

2. Make a mosaic of the exposure maps.

3. Make a mosaic of the nonvignetted background (NVB) maps. (It is hoped that in future
there will be a sas task which will be able to decompose XMM EPIC background into its
various components; unfortunately, for the present you are on your own.)

4. Adaptively smooth the raw mosaic and save the convolvers using parameters writeconvolvers,
outconvolversset and outindeximageset. I don’t at present have a recommendation for
use of withexpimageset or expmapuse at this stage: best to experiment to see which pro-
duces the most acceptable eventual output.

5. Subtract the NVB mosaic from the raw mosaic.

6. Do

asmooth inset=<(raw-NVB) mosaic> smoothstyle=withset

inconvolversarray=<conv set saved from step 4>

inindeximagearray=<index img saved from step 4>

readvarianceset=yes invarianceset=<raw mosaic>

withexpimageset=yes expimageset=<exp img mosaic> remultiply=no

4 Parameters

This section documents the parameters recognized by this task (if any).
Parameter Mand Type Default Constraints

inset yes dataset
The image dataset to be smoothed.

XMM-Newton Science Analysis System Page: 10

outset no dataset outimage.ds
The resulting smoothed data set.

tempset no dataset tempimage.ds
Name for a temporary dataset (only important if one is running several parallel asmooths).

smoothstyle no string adaptive simple—adaptive—withset—template
The type of smoothing desired.

convolverstyle no string gaussian gaussian—tophat—squarebox
This parameter is read if smoothstyle=‘simple’ is chosen and prescribes the shape or type of convolver
to use to smooth the image.

width no real 5.0 pixels 0.0 ≤ width ≤ 100.0
pixels

This parameter is read if smoothstyle=‘simple’ is chosen. It governs the width of the various types of
simple convolver. See section 3.3 for further details.

normalize no boolean yes
This parameter is read if smoothstyle=‘simple’ is chosen. If set, the convolver is divided by its array
sum before use. See section 3.3 for further details.

withuserwidths no boolean no
This parameter is read if smoothstyle=‘adaptive’ is chosen. If set, the task reads a list of gaussian-
convolver sigma values from the userwidths parameter. See section 3.3.5 for further details.

userwidths yes real list 0 0.0 ≤ userwidths ≤
100.0 pixels

The list of gaussian-convolver sigma values read when withuserwidths=‘yes’. The values must occurr
in a monotonically increasing sequence. See section 3.3.5 for further details.

nconvolvers no integer 20 2 ≤ nconvolvers ≤
126

If smoothstyle=’adaptive’ is chosen but withuserwidths=‘no’, the task constructs a library of nconvolvers
gaussian convolvers. See section 3.3.5 for further details.

minwidth no real 0.0 pixels 0.0 ≤ minwidth ≤
100.0 pixels

If smoothstyle=’adaptive’ is chosen but withuserwidths=‘no’, the task constructs a library of gaussian
convolvers which have sigma values ranging from minwidth to maxwidth. See section 3.3.5 for further
details.

maxwidth no real 10.0 pixels 0.0 ≤ maxwidth ≤
100.0 pixels

If smoothstyle=’adaptive’ is chosen but withuserwidths=‘no’, the task constructs a library of gaussian
convolvers which have sigma values ranging from minwidth to maxwidth. See section 3.3.5 for further
details.

widthliststyle no string linear linear—log—sqrt
If smoothstyle=’adaptive’ is chosen but withuserwidths=‘no’, the task constructs a library of gaus-
sian convolvers. The sigma values of successive gaussians are spaced according to widthliststyle. See
section 3.3.5 for further details.

desiredsnr no real 10.0 0.0 < desiredsnr

Desired signal-to-noise ratio in an adaptively-smoothed image.

XMM-Newton Science Analysis System Page: 11

writetemplateset no boolean yes
After completion of (adaptive) smoothing, save an image of the convolver widths to a file name specified
by outtemplateset. See section 3.3.6 for further details.

outtemplateset no dataset template.ds
Name of the template image to be written when writetemplateset=‘yes’. See section 3.3.6 for further
details.

writeconvolvers no boolean no
After completion of (adaptive) smoothing, save details of the convolvers used to files named in parameters
outconvolversset and outindeximageset. See section 3.3.4 for a description of how these files can be
used.

outconvolversset no dataset outconvolvers.ds
If writeconvolvers=‘yes’, the task writes images of all the convolvers to this dataset. It is recommended
that outindeximageset and outconvolversset be the same dataset. See section 3.3.4 for a description
of how this file can be used.

outindeximageset no dataset outindeximage.ds
If writeconvolvers=‘yes’, the task writes an index image to this dataset. It is recommended that
outindeximageset and outconvolversset be the same dataset. See section 3.3.4 for a description of
how this file can be used.

inconvolversarray no array inconvolvers.ds:CONV 000
This parameter is read if smoothstyle=‘withset’. inconvolversarray is the name of a dataset + ar-
ray which contains images of all the convolvers to be used. An index image specified in parameter
inindeximagearray is also needed. See section 3.3.4 for further details.

withindeximagearray no boolean yes
This parameter is read if smoothstyle=‘withset’. It specifies whether to also look for an index image
dataset+array.

inindeximagearray no array inindeximage.ds:INDEXIMG
This parameter is read if smoothstyle=‘withset’ and withindeximagearray=‘yes’. inindeximagearray
is the name of a dataset + array which contains an index image, which shows which convolver should be
used to smooth which part of the input image in inset. Images of the convolvers are read from parameter
inconvolversarray. See section 3.3.4 for further details.

normalizeset no boolean no
This parameter is read if smoothstyle=‘withset’. If set, the convolvers read from parameter inconvolversarray
are divided by their array sums before use.

intemplateset no dataset template.ds
This parameter is read if smoothstyle=‘template’ and contains the name of the template image to be
read. See section 3.3.6 for further details.

nopslimit no real 500000 > 0
See developers’ notes.

forcecalctype no boolean no
Force the use of either all direct processing or all Fourier-domain (see developers’ notes).

calcbyfft no boolean yes
If forcecalctype is set, this parameter controls which of the two methods to use for the whole image:
FFT convolution if true, direct convolution otherwise (see developers’ notes).

XMM-Newton Science Analysis System Page: 12

readvarianceset no boolean no
If set, the task reads from parameter invarianceset an image of the variances (squares of the standard
deviations) of the input image values.

invarianceset no dataset invariance.ds
The name of the dataset which contains an image of the variances (squares of the standard deviations)
of the input image values.

writevarianceset no boolean no
If set, the task writes to parameter outvarianceset an image of the variances (squares of the standard
deviations) of the output image values.

outvarianceset no dataset outvariance.ds
The name of the dataset to contain an image of the variances (squares of the standard deviations) of the
output image values.

withweightset no boolean no
If this is set, the task reads an image of weights from parameter weightset. See section 3.4 for further
details.

weightset no dataset weight.ds
The image of weights read by the task if withweightset=‘yes’. See section 3.4 for further details.

withoutmaskset no boolean no
If this is set, the task reads a mask image from parameter outmaskset. See section 3.4 for further details.

outmaskset no dataset outmask.ds
The mask image read by the task if withoutmaskset=‘yes’. All pixels of inset for which the mask is
FALSE are left unchanged. outmaskset may be of any numeric data type: values > 0 translate to TRUE,
the rest FALSE. See section 3.4 for further details.

writebadmaskset no boolean no
If this is set, the task writes to parameter badmaskset a logical-valued image which flags those pixels for
which the weighted convolution could not be performed. See section 3.4 for further details.

badmaskset no dataset badmask.ds
The image of bad-result flags which is written by the task if writebadmaskset=‘yes’. See section 3.4 for
further details.

withexpimageset no boolean no
If this is set, the task reads an exposure map from parameter expimageset. See section 3.5 for further
details.

expimageset no dataset expmap.ds
The exposure map read by the task if withexpimageset=‘yes’. See section 3.5 for further details.

expmapuse no string samesnr samesize—samesnr
This parameter is read if withexpimageset=‘yes’. It governs the treatment of variance when adpative
smoothing is desired. See section 3.5 for further details.

remultiply yes boolean no
This parameter is read if withexpimageset=‘yes’. If remultiply=‘yes’, the output image is remultiplied
by expimageset before it is saved to file; otherwise not. See section 3.5 for further details.

XMM-Newton Science Analysis System Page: 13

5 Errors

This section documents warnings and errors generated by this task (if any). Note that warnings and
errors can also be generated in the SAS infrastructure libraries, in which case they would not be docu-
mented here. Refer to the index of all errors and warnings available in the HTML version of the SAS
documentation.

outMaskWrongSize (error)
outmaskset and inset have different dimensions.

wholeImageUnmasked (error)
There are no TRUE-valued pixels in outmaskset.

weightImageWrongSize (error)
weightset and inset have different dimensions.

exposureMapWrongSize (error)
expimageset and inset have different dimensions.

weightImageNegativeValues (error)
Some of the pixels of weightset have negative values.

weightImageAllZero (error)
All the pixels of weightset are zero-valued.

varianceImageWrongSize (error)
invarianceset and inset have different dimensions.

varianceImageNegativeValues (error)
Some of the pixels of invarianceset have negative values.

inImageNegativeValues (error)
No variance image was supplied, so the task has tried to use the inset as its own variance
image. However this is not possible because some of the pixels of inset are negative-valued.

badConvolverStyle (error)
The value of parameter convolverstyle was not recognized.

badExpMapUse (error)
The value of parameter expmapuse was not recognized.

badSmoothStyle (error)
The value of parameter smoothstyle was not recognized.

badUserWidths (error)
The list of convolver widths userwidths was found not to be monotonically increasing, as
it should be.

badWidthRange (error)
The value of maxwidth was found to be less than or equal to minwidth.

tooManyConvolvers (error)
More than 999 convolvers were generated while trying to calculate a library of convolvers
from the template image intemplateset.

XMM-Newton Science Analysis System Page: 14

badWidthScaleStyle (error)
The value of parameter widthliststyle was not recognized.

noConvolvers (error)
The user has set smoothstyle=‘adaptive’ and withuserwidths=‘yes’, but hasn’t supplied
any convolvers in userwidths.

convolverWidthsBadOrder (error)
The list of convolver widths userwidths was found not to be monotonically increasing, as
it should be.

minConvolverWidthEqualsZero (error)
This won’t work with widthliststyle=log - in this case the user must specify a minwidth

greater than zero.

badIndexImage (error)
The maximum index found in the index image exceeds the number of convolvers.

zeroNormConvolver (error)
The sum of the convolver elements is zero. Such convolvers are not allowed.

indexImageWrongSize (error)
inindeximagearray and inset have different dimensions.

indexImageNegativeValues (error)
Some of the pixels of inindeximagearray have negative values.

uselessVarianceImage (warning)
The user has requested writevarianceset=’yes’, but the configuration of the task is such
that no variance set has been calculated. That is, a variance set for the smoothed output is
only calculated if readvarianceset=‘yes’ or smoothstyle=‘adaptive’.
corrective action: A zero-valued variance set is written anyway.

outMaskTooNarrow (warning)
This happens if there are substantial zero-valued areas of weightset which are not masked
by outmaskset. The user can avoid this by either reducing the size of the holes in weightset

or increasing the coverage of outmaskset.
corrective action: Pixels where this occurs are set to zero in outset and flagged in badmaskset.

dynamicRangeTooLarge (warning)
The dynamic range is calculated by dividing max(abs(I)) by median(abs(I), I ne 0), where I is
the weighted, exposure-corrected input image. If this value is larger than a cutoff (currently
40000), this warning is issued.
corrective action: No action.

onlyOneConvolver (warning)
The user has set smoothstyle=‘adaptive’ and withuserwidths=‘yes’, but has only supplied
one convolver in userwidths.
corrective action: Task proceeds as normal.

negativeValuesInOutput (warning)
This warning only occurs if inset, weightset and all convolvers are everywhere non-
negative. In this case one might expect that all values of the output image would also
be non-negative. However, small negative values can sometimes occur if the FFT was used
in the convolution. The user probably ought to check the output to make sure that it looks
ok.
corrective action: Such pixels are set to zero.

XMM-Newton Science Analysis System Page: 15

negativeValuesInVarianceOutput (warning)
Small negative values can sometimes occur if the FFT was used in the convolution. Even if
this was the case, the user probably ought to check the output variance image to make sure
that it looks ok. If the FFT was not used then it probably indicates a bug and you should
contact the code developer.
corrective action: Such pixels are set to zero.

6 Input Files

The input FITS images listed below need not be XMM images and all of them (even the mask) can be
of any numeric data type output by evselect, eg int8, int16, int32, real32 or real64. All optional images
(except the convolvers in inconvolversarray) must however be of the same dimensions as the inset.

1. (Mandatory) inset: the image to be smoothed.

2. (Optional) inconvolversarray: both this file and inindeximagearray are read when
smoothstyle = ‘withset’. inconvolversarray should contain a cube or 3-dimensional
array which is a stack of convolver images. The first two dimensions of the cube must be
the common x and y dimensions of the convolver arrays; the third dimension must equal
the number of convolvers. Convolvers are assigned an index which is their position (starting
with 1) along the third-dimension sequence. A convolver of index i is then used to smooth
portions of the image for which the inindeximagearray value is also i.

In the future this specification may be expanded to accommodate convolvers of varying array
size.

3. (Optional) inindeximagearray: both this file and inconvolversarray are read when
smoothstyle = ‘withset’. inindeximagearray should contain a 2-dimensional array. The
values of this array after rounding to the nearest integer are taken to refer to the convolvers
in the list read from inconvolversarray. The ith convolver in this list is then used to
smooth portions of the image for which the inindeximagearray value is also i.

4. (Optional) intemplateset: this file is read when smoothstyle=‘template’. It should
contain a 2-dimensional array in the primary extension. The value of a given pixel of
intemplateset is taken to be the characteristic width (sigma value) of the gaussian con-
volver to be used to smooth the corresponding pixel of inset. This facility doesn’t offer any
advantages over the smoothstyle=‘withset’ and I will eventually delete it.

5. (Optional) invarianceset: this file is read when readvarianceset=‘true’. It should con-
tain a 2-dimensional array in the primary extension. The array values should be the variances
(ie, squares of standard deviations) in the values of inset. If the task needs these variances,
but readvarianceset=‘no’, the task assumes that inset is Poissonian and thus can be
used as an approximation of its own variance.

6. (Optional) weightset: this file is read when withweightset=‘true’. It should contain a
2-dimensional array in the primary extension. The array values are used as the weights w
in equation 1 or 4.

7. (Optional) outmaskset: this file is read when withoutmaskset=‘true’. It should contain a
2-dimensional array in the primary extension. The array values are translated to logicals by
replacing values > 0 by TRUE, the rest FALSE. The array values perform as the δ values
in equation 4.

The parameter name is now (with the abolition of the corresponding ‘inmask’) is a little
misleading and I think I’ll replace it in the next version with plain ‘maskset’.

XMM-Newton Science Analysis System Page: 16

8. (Optional) expimageset: this file is read when withexpimageset=‘true’. It should contain
a 2-dimensional array in the primary extension. The array values should record the exposure
of inset, if this is a well-defined quantity.

7 Output Files

All outputs are arrays in FITS datasets.

1. outset: The smoothed image. This has data type REAL32. Attributes (and DSS, if present)
are copied from the input image.

2. (Optional) outtemplateset: this is only available from smoothstyle=‘adaptive’. The array
has data type REAL32. The value of a given pixel of outtemplateset is the characteristic
width (sigma value) of the gaussian convolver which was used to smooth the corresponding
pixel of inset. This facility doesn’t offer any advantages over the smoothstyle=‘withset’
and I will eventually delete it.

3. (Optional) outconvolversset: this is only available from smoothstyle=‘adaptive’ and is
written in conjunction with outindeximageset. The sequence of convolver images used in
the adaptive smoothing is written to a cube or 3-dimensional array of REAL32 data type,
named CONV 000. (It is recommended that outindeximageset and outconvolversset be
the same dataset.) Convolver arrays which are smaller than the largest convolver array are
padded to the maximum size with zeros. The first two dimensions of the cube record the
now common x and y dimensions of these arrays; the third dimension records their position
in the sequence.

4. (Optional) outindeximageset: this is only available from smoothstyle=‘adaptive’ and
is written in conjunction with outconvolversset. The index image is written to a 2-
dimensional array, of INTEGER32 data type, named INDEXIMG. (It is recommended that
outindeximageset and outconvolversset be the same dataset.) Its values correspond
to the sequence position of the corresponding convolver: the ith convolver in the sequence
stored in outconvolversset was used to smooth those portions of the image for which the
outindeximageset value is also i.

5. (Optional) outvarianceset: this records the variances (squares of standard deviations) in
the smoothed image. Equation 2 shows how these values are calculated. The array has data
type REAL32.

6. (Optional) badmaskset: this ought to be a boolean array but the best I can manage at the
moment is INTEGER8. Non-zero values are taken to indicate TRUE. Values are set TRUE
where the task was unable to evaluate the fraction in equation 4 because the denominator
was close to zero.

8 Algorithm

read parameters;

read --inset;

if (--withoutmaskset) {

read --outmaskset;

} else {

XMM-Newton Science Analysis System Page: 17

outMask = TRUE;

}

if (--withweightset) {

read --weightset;

} else {

weightImage = 1;

}

weightImage = weightImage / maxval(weightImage)

(xyLimits) = &findWidthOfBlackBorder(inImage);

inImage = &cutBorder(inImage, xyLimits);

outMask = &cutBorder(outMask, xyLimits);

weightImage = &cutBorder(weightImage, xyLimits);

if (--withexpimageset) {

read --expimageset;

expImage = &cutBorder(expImage, xyLimits);

where(expImage>0) {

inImage = inImage / expImage;

} elsewhere {

inImage = 0;

weightImage = 0;

}

}

Choice of smoothing type:

if (--smoothstyle=’simple’) {

if (--convolverstyle=’gaussian’) {

convolvers(1) = &makeGaussianConvolver;

} elsif(--convolverstyle=’tophat’) {

convolvers(1) = &makeTopHatConvolver;

} elsif(--convolverstyle=’squarebox’) {

convolvers(1) = &makeBoxConvolver;

}

} elsif(--smoothstyle=’template’) {

(indexImage, convolvers) = &makeConvolversFromTemplate;

} elsif(--smoothstyle=’withset’) {

(indexImage, convolvers) = &readConvolversFromSets;

} elsif(--smoothstyle=’adaptive’) {

Adaptive smoothing calculation of convolvers:

if (--readvarianceset) {

read --invarianceset;

varianceImage = &cutBorder(varianceImage, xyLimits);

} else {

if (--withexpimageset) {

varianceImage = inImage * expMapImage;

Because inImage has already been divided by expMapImage, and we

need to reverse that.

XMM-Newton Science Analysis System Page: 18

} else {

varianceImage = inImage;

}

}

if (--withexpimageset) {

if (--expmapuse=’samesnr’) {

where(expImage>0) {

varianceImage = varianceImage / expImage / expImage;

} elsewhere {

varianceImage = 0;

}

} else {

where(expImage>0) {

varianceImage = varianceImage / expImage / maxval(expImage);

} elsewhere {

varianceImage = 0;

}

}

}

convolvers = &calculateConvolverLibrary;

where(outMask) {

indexImage = 1;

} elsewhere {

indexImage = 0;

}

smoothedImage = 0.0;

rmsSmoothedImage = 0.0;

i = 1;

smoothedImage = smoothedImage + &patchSmooth(convolvers(i)

, weightImage, mask=(indexImage==i));

rmsSmoothedImage = rmsSmoothedImage + sqrt(&patchSmooth(convolvers**2(i)

, weightImage, mask=(indexImage==i)));

where(indexImage == i) {

where(! failureMask) {

where(rmsSmoothedImage>0 && smoothedImage>0) {

bestSnr = smoothedImage / rmsSmoothedImage;

where(bestSnr > desiredSnr) {

This means that we are still

smoothing too hard, and need to try this pixel again with a

narrower gaussian. Therefore increment the index:

indexImage = i + 1;

}

}

}

}

foreach(i = 2, numConvolvers) {

XMM-Newton Science Analysis System Page: 19

secondBestSnr = bestSnr;

smoothedImage = smoothedImage + &patchSmooth(convolvers(i)

, weightImage, mask=(indexImage==i));

rmsSmoothedImage = rmsSmoothedImage + sqrt(&patchSmooth(convolvers**2(i)

, weightImage, mask=(indexImage==i)));

where(indexImage == i) {

where(failureMask) {

indexImage = i - 1; # This pixel didn’t fail for the previous

value of index (=> next larger gaussian), otherwise it would

never have got here. Hence we will drop the index value for

this pixel back to this last known ’good’ value.

} elsewhere {

where(rmsSmoothedImage>0 && smoothedImage>0) {

bestSnr = smoothedImage / rmsSmoothedImage;

} elsewhere {

bestSnr = 0;

}

where(bestSnr > desiredSnr) {

This means that we are still

smoothing too hard, and need to try this pixel again with a

narrower gaussian. Therefore increment the index:

indexImage = i + 1;

} elsewhere { # go to the value that gave the best SNR:

where(abs(secondBestSnr-desiredSnr)<abs(bestSnr-desiredSnr)) {

indexImage = i - 1;

Otherwise, leave indexImage at i.

}

}

}

}

}

where(indexImage > numConvolvers) {indexImage = numConvolvers;}

}

Do the smoothing:

smoothedImage = 0.0;

where(outMask) {smoothedImage = inImage;}

failureMask = FALSE;

foreach(i = 1, numConvolvers) {

patchMask = outMask && (indexImage == i);

The actual convolution:

foreach(xi = outStartX, outFinisX) {

foreach(yi = outStartY, outFinisY) {

next if (! outMask(xi, yi));

summ = 0.0;

weight = 0.0;

XMM-Newton Science Analysis System Page: 20

foreach(cxi = 1, convolverXSize) {

xxi = (cxi - 1 - halfConvolverXSize) - xi;

foreach(cyi = 1, convolverYSize) {

yyi = (cyi - 1 - halfConvolverYSize) - yi;

next if (weightImage(xxi, yyi) <= 0.0);

summ = summ + convolver(cxi, cyi) * inImage(xxi, yyi);

weight = weight + convolver(cxi, cyi) * weightImage(xxi, yyi);

}

}

if (weight >= minAllowedWeight) {

outImage(xi, yi) = summ * norm / weight;

} else {

outImage(xi, yi) = 0.0;

failureMask(xi, yi) = TRUE; # indicates those pixels where the

weight is too small.

}

}

}

}

Outputs:

if (--writevarianceset) {

outVarianceImage = &calculateOutVariance(inImage, weightImage, outMask

, indexImage, convolvers);

outVarianceImage = &restoreBlankBorder(outVarianceImage, xyLimits);

write to --outvarianceset;

}

where(failureMask) {smoothedImage = 0;}

if (--writebadmaskset) {

failureMask = &restoreBlankBorder(failureMask, xyLimits);

write to --badmaskset;

}

if (--smoothstyle=’adaptive’) {

if (--writetemplateset) {

templateImage = &calculateTemplateImage;

templateImage = &restoreBlankBorder(templateImage, xyLimits);

write to --outtemplateset;

}

if (--writeconvolvers) {

indexImage = &restoreBlankBorder(indexImage, xyLimits);

write indexImage to --outindeximageset;

write convolvers to --outconvolversset;

}

}

if (--withexpimageset) {

if (--remultiply) {

smoothedImage = smoothedImage * expMapImage;

XMM-Newton Science Analysis System Page: 21

}

}

smoothedImage = &restoreBlankBorder(smoothedImage, xyLimits);

write to --outset;

9 Comments

•

References

