
XMM-Newton Science Analysis System Page: 1

badpixfind

June 2, 2019

Abstract

The badpixfind task searches for ‘bad’ pixels (whether ‘hot’, ‘dead’, ‘flickering’
etc.) and therefore as pixels containing no useful data. A file, containing information
on the position and the type of defect of the bad pixels, is produced.

1 Instruments/Modes

Instrument Mode

EPIC MOS imaging

EPIC PN imaging

2 Use

pipeline processing yes (see comments)
interactive analysis yes

3 Description

badpixfind searches for pixels identified as containing no useful data, and uses this information to
produce an output file. This output file can then be used by the task badpix to append the information
to the events file. A bad pixel map (or mask) can also be produced.

An important point regarding the bad pixels is that there are essentially three separate (though not
exclusive) sets of bad pixels that must be dealt with. These are (1) the bad pixels uplinked to the
satellite and eliminated on-board, (2) the bad pixels identified in the Current Calibration File (CCF) but
not uplinked, and (3) the bad pixels associated with the particular observation in question. badpixfind
searches for this third set of bad pixels, which may of course, contain within it part (or all) of the other
two sets.

There are two modes to badpixfind. Mode 1 involves all the searching and statistical techniques and
makes up the bulk of the task. Within mode 1 (searchbadpix=’Y’, [=default]), the user can search for...

1 Hot and dead pixels. The user is able to specify maximum and minimum allowed values (via the
parameters lothresh and hithresh) to screen for hot and dead pixels. These threshold levels can be



XMM-Newton Science Analysis System Page: 2

input (via the parameter thresholdlabel) in terms of number of counts, count rate, or percentages of
the peak value in the dataset. In cases of supposed hot pixels, the pixel in question and its neighbours are
compared with the local PSF to check whether the pixel is genuinely ’hot’ or may be due to a source [see
comments]. Here the user can set the cellsize of the box around the hot pixel to be compared with the
PSF (total box width = twice cellsize +1). Here, known uplinked bad pixels and previously found bad
pixels are removed from the PSF comparison. The user can also set the parameter narrowerthanpsf.
This is a measure of how much more compact the pixel and its neighbours are when compared with the
PSF (1 means of similar width, greater than 1 means that feature is narrower than the PSF, and hence
likely a bad pixel [if narrowerthanpsf is set to zero, the PSF comparison is removed and all hot features,
whether sources, bad pixels or whatever, can be found]). Essentially, narrowerthanpsf is the ratio A/B,
where A is the ratio of the target (bad) pixel to the total (twice cellsize +1 by twice cellsize +1)
square, and B is the equivalent for the PSF. The user may also set a backgroundrate (ct/s/pix) here.
A negative value indicates that the mean value over the whole field is to be calculated and used. In
cases where very bright, extended sources exist (and thus the mean is not too representative of the true
background mean), a typical backgroundrate value should be given (see comments).

2 Hot and dead whole columns (channels) (withsearchbadcolumn=’Y’). Here a column may appear
bad because of a small number of individual pixels that are bad (these perhaps, depending on the
threshold levels, being detected by the previously described part of the task), or it may be bad because
the entire column as a whole appears bad. Via the parameter columnsearchlabel, one can specify
whether the minimum and maximum column threshold values (locolthresh & hicolthresh) refer to
the total counts/count rate of the column or to the median value within each column. The median choice
is more sensitive to finding bad whole columns with no particularly bad pixels within them. Again, the
threshold levels can be input (via the parameter thresholdlabel) in terms of number of counts, count
rate, or percentages of the peak value in the dataset.

3 Flickering pixels. The parameter flickertimesteps sets the number of ‘timesteps’ into which the
dataset can be split (if flickertimesteps is set to 1, no attempt is made to seach for flickering pixels).
Here, each pixel is searched for significant variations. In the case of low count pixels, the distribution
of counts per timestep is compared with a Poisson distribution, and a Kolmogorov-Smirnov (KS) test is
applied. Pixels with a KS-statistic above the input threshold flickerksthresh are deemed flickering.
In the high count pixel case, a chi-squared statistic about the mean counts per timestep is calculated.
Pixels with a reduced chi-squared statistic above the input threshold flickerchisqthresh are deemed
flickering. [see comments]

The whole of mode 1 above can be performed between user-defined energy bands, via the parame-
ters loenergythresh and hienergythresh (in keV). Also, the high threshold values hithresh and
hicolthresh can (in the thresholdlabel = COUNTS or RATE cases) refer to either a total count
or countrate value or to a count or countrate value above the (either set or calculated) background
(backgroundrate). This choice is set via the parameter threshabovebackground.

Within mode 2 of badpixfind, the user can explicitly flag invalid pixels or sets of pixels via the list
parameters rawxlist, rawylist, typelist and yextentlist.

After searching for pixels which may contain double (or more) entries, and warning the user thereof, a
final output file is constructed, containing for each bad pixel (or, to be precise, for each set (in RAWY-
extension) of bad pixels), the position RAWX/RAWY, any extent in the Y direction, and the type of
fault; 1 Hot, 2 Flickering, 3 Dead. Statistics as to the input file values are provided also by the task,
before and after the individual sections of the task.

A badpixfind map may be produced via the parameter withbadpixmap. Here an image is formed whereby
bad pixels (and if desired, surrounding neighbours [chosen via the parameter mappixcellsize]) are
assigned a value of zero, good pixels a value of one. This map includes the pixels found by the current
badpixfind run, and the XMM-uplinked bad pixels contained within the CCF. Furthermore, regions
outside the field of view (FOV) can be set to zero in the map via the parameter withfovmask. This map



XMM-Newton Science Analysis System Page: 3

can be used in evselect to select images, spectra or time series with these pixels ignored (e.g. to produce
a background [source and bad pixel/column-removed] lightcurve).

4 Parameters

This section documents the parameters recognized by this task (if any).
Parameter Mand Type Default Constraints

eventset yes string
input events file (either single-chip event file from epframes or emevents, or merged, calibrated multi-
chip event file)

searchbadpix no logical Y Y/N
search for bad pixels?

withsearchbadcolumn no logical N Y/N
search for bad total columns?

userflagbadpix no logical N Y/N
user-flag specific (sets of) bad pixels?

thresholdlabel no string rate peak/counts/rate
Thresholds (all) choice - thresholds refer to percentage of PEAK value in the dataset, to count RATE or
to pure COUNTS

ccd no integer 1 1-12
chip on which to search bad pixels if task is run on multi-chip event list

lothresh no real 0.0 ≥ 0 (≤ 100 for thresh-
oldlabel=peak)

Low threshold value for dead pixel search (searchbadpix=Y)

hithresh no real 0.005 ≥ 0 (≤ 100 for thresh-
oldlabel=peak)

High threshold value for hot pixel search (searchbadpix=Y)

loenergythresh no real 0.0 0.0-30.0)
Low energy (in keV) bound for searching

hienergythresh no real 30.0 0.0-30.0)
High energy (in keV) bound for searching

cellsize no integer 2 1-10
Cell size for PSF comparison (total width: 1 + 2×cellsize )

narrowerthanpsf no real 3.0 ≥ 0
PSF-pixel(s) compactness comparison - 1, equal to PSF, >1, more compact, and hence likely, not a source

backgroundrate no real 0.00001
Background rate (ct/s/pix) - if negative, mean over entire field assumed

threshabovebackground no logical N Y/N



XMM-Newton Science Analysis System Page: 4

determine whether hithresh and hicolthresh refer to values above the background rate (Y) or as total
values (N)

columnsearchlabel no string median median/total
withsearchbadcolumn=Y thresholds choice - locolthresh & hicolthresh refer to TOTAL column
value or MEDIAN column value

locolthresh no real 0.0 ≥ 0 (≤ 100 for thresh-
oldlabel=peak)

Low threshold value for dead column search (withsearchbadcolumn=Y)

hicolthresh no real 0.0015 ≥ 0 (≤ 100 for thresh-
oldlabel=peak)

High threshold value for hot column search (withsearchbadcolumn=Y)

flickertimesteps no integer 1 ≥ 1 (≤∼ 15 [see com-
ments])

Number of timesteps to search for flickering pixels

flickerksthresh no real 0.55 0-1
K-S threshold for low count flickering pixels

flickerchisqthresh no real 15.0 ≥ 0
Reduced Chi-sq threshold for high count flickering pixels

rawxlist no integer
list

1-600

List of user-flagged RAWX values (userflagbadpix=Y)

rawylist no integer
list

1-600

List of user-flagged RAWY values (userflagbadpix=Y)

typelist no integer
list

1-5

List of user-flagged TYPE values (userflagbadpix=Y)

yextentlist no integer
list

1-600

List of user-flagged YEXTENT values (userflagbadpix=Y) [Note: these four ‘lists’ must contain equal
number of entries]

badpixset no string badpixfind.fits
output file from badpixfind containing set of bad pixels (input to badpix

withbadpixmap no logical N Y/N
Create bad pixel image map?

withfovmask no logical N Y/N
Mask out regions outside of the field of view (FOV) in map?

mappixcellsize no integer 1 ≥ 0, ≤ 10
Bad cell surrounding bad pixel in map (total width: 1 + 2 × mappixcellsize )

badpixmap no string badpixmap.fits
Bad pixel image map file name



XMM-Newton Science Analysis System Page: 5

(note: Default settings are reasonable for MOS analysis, and very conservative for pn analysis [see
comments for discussion])

5 Errors

This section documents warnings and errors generated by this task (if any). Note that warnings and
errors can also be generated in the SAS infrastructure libraries, in which case they would not be docu-
mented here. Refer to the index of all errors and warnings available in the HTML version of the SAS
documentation.

badInput (error)
No, or incorrectly named extension in input events file

badInstrument (error)
Instrument not supported

badMode (error)
Mode not supported

noBadpixfindModes (error)
No badpixfind modes chosen

nonEqualLists (error)
userflagbadpix lists (rawx, rawy, type, yextent) must be of equal size

badThresholds (error)
low threshold values must be less than high threshold values (also, for thresholdlabel =
PEAK, threshold values must be in range 0–100

userListValuesOutOfRange (error)
some userflagbadpix list input values are invalid

badLothresh (error)
Lothresh value finds too many (>10000) dead pixels - dataset is probably filled with many
zeros

noGoodPixsFound (warning)
No good pixels found
corrective action: Continue with ‘thresholds OK?’ message

eventsOutOfWindow (warning)
Events found outside of RAWX/RAWY window - these are ignored
corrective action: Continue with warning message

eventsOutOfOrder (warning)
Events out of time order - flickering analysis may be in error
corrective action: Continue with warning message

insufficientData (warning)
insufficient data (events/timeslots) to perform flickering analysis - aborted
corrective action: Continue with warning message - no flickering analysis



XMM-Newton Science Analysis System Page: 6

findRealSources (warning)
Chosen narrowerthanpsf parameter is very low - real sources may be found
corrective action: Continue with warning message

badEnergyThresholds (warning)
hienergythresh must be greater than loenergythresh - no Energy filtering performed
corrective action: Continue with no energy filtering

lowExposure (warning)
Exposure time very low - spurious bad pixels may be found (low number statistics)
corrective action: Continue with warning message

6 Input Files

1. Either raw single-chip event list from epframes or emevents or final merged, calibrated,
multi-chip event list. Attributes read are: WINDOWX0 WINDOWY0 WINDOWDX WINDOWDY EXPOSURE(MOS)
LIVETIME(pn) LIVETInn(pn).

7 Output Files

1. File containing the RAWX/RAWY of the bad (sets of) pixels, any extent in the Y direction,
and the type of fault. The extension name is BADPIX, and the columns are named RAWX,
RAWY, TYPE and YEXTENT. This file can be accessed by badpix. Attributes written are:
TELESCOP INSTRUME CCDID EXP ID OBS ID QUADRANT CCDNODE(MOS) WINDOWX0 WINDOWY0

WINDOWDX WINDOWDY.

2. Optional map of the bad pixels found. Zero values exist at the RAWX/RAWY positions
of the bad pixels found in the current badpixfind run, the previously uplinked CCF bad
pixels, and optionally, their neighbours. Values of unity are given to the good pixels. The
keyword GOODPIX (number of good pixels in map) is written to the map header.

8 Algorithm

subroutine badpixfind

* Get input file, parameters, instrument, mode, ccdid, exposure, obsid

* set state of CAL

* exit if no modes chosen (searchbadpix=N, userflagbadpix=N)

* check userflagbadpix lists are of equal size

* open output file

* get uplinked bad pixels from CCF

* get ‘image’ sizes and origin values, start times and end times

* form images in memory from input events file, selecting energy band if

required (in case of MOS, call pattern backprojecting and selecting

subroutines to get true image)

* if MOS and flicker, get timestep indices - form ‘flicker’ array

* calculate and output (to screen) initial pixel statistics

* if required, calculate and output (to screen) initial column statistics



XMM-Newton Science Analysis System Page: 7

* call mode_1 (searchbadpix), and mode_1 column analysis

(withbadcolumnsearch) (+ PSF comparison), if required.

set of procedures (max/min threshold) techniques performed on image

* if hot pixel found - check edge effects - compare with PSF, using

only good pixels (no uplinked or found bad pixels)

- return measure of comparison with PSF

* if requested, perform flickering analysis (low and high count cases)

* Obtain badpix set (for mode1) (RAWX, RAWY, Y-extent, fault type)

* calculate and output (to screen) new pixel statistics

* call mode_2, if required

explicitly flag pixels as bad, the user having given RAWX, RAWY,

Y-extent and type of fault as input lists

* Obtain badpix set (for mode2) (RAWX, RAWY, Y-extent, fault type)

* Check badpix sets (mode1 and mode2) for redundancy/duplication

* calculate and output (to screen) final pixel statistics

* Combine individual badpix sets into output file

* Create, if required, bad pixel map (with optional FOV masking)

* Add attributes and history

end subroutine badpixfind

9 Comments

• To quote fhelp cleansis (the ASCA equivalent routine) - Warning: This is an analysis tool,
not a program to run blindly: Clean, check, repeat.

• As regards how much of the badpixfind routine can safely be incorporated into the PPS,
we believe that the number of bad pixels found by badpixfind may depend sensitively on
the input parameters (thresholds etc.). The task has been and is being developed so that an
automatic running (and importantly, usage in badpix) can be performed. Tests on many
datasets have been performed to find the most favourable parameter settings (which will
be different for MOS and pn). The default settings have been set to reasonable values for
MOS analysis. They are very conservative for pn analysis however, a more favourable pn pa-
rameter setting being: hithresh=0.0045 withsearchbadcolumn=Y hicolthresh=0.00105
backgroundrate=0.0001 loenergythresh=0.14 hienergythresh=10.0 narrowerthanpsf=1.5

• The searching algorithms within badpixfind can be performed within user-defined energy
ranges. This will make any automatic usage of badpixfind a little safer, the noiser, very low
energy photons being ignorable. For PN, the events are selected via their PHA values, for
MOS, via their ENERGYE1 values.

• It is possible for a bad pixel map to be produced (with optionally, areas outside the FOV
masked out also). This is described throughout the task description (see especially the user’s
description and the parameters and examples section). This map can be fed into evselect

to create ‘masked’ images, lightcurves etc.

• Searching for ‘flickering’ pixels is possible, as described in the user’s description. This, as
with all of the mode 1 routines, must not be used blindly - any number of effects could
lead to a ‘flickering’ pixel (a bright source/feature passing briefly into the pixel, a gen-
uinely variable source, CCD edge effects etc). It is recommended that a smallish number of
flickertimesteps is used (∼5). Larger numbers lead to lots more small number statistics
and sometimes (especially for MOS) very large arrays.



XMM-Newton Science Analysis System Page: 8

• It is believed that this task is inapplicable to timing and burst modes, and will not be
accessed.

• In obtaining the exposure information, for the pn, the LIVETIME attribute is read. For MOS,
the EXPOSURE attribute is read. In the case of merged, calibrated event lists the LIVETInn

attribute corresponding to the appropriate chip is read for both PN and MOS.

10 Future developments

• Some procedures for mode 1 may need to be developed further.

• Work is in progress to find optimum MOS and pn parameter settings for automatic PPS
usage.

11 Examples

• badpixfind eventset=mosevents.dat (default automatic MOS PPS setting)

• badpixfind narrowerthanpsf=1.5 backgroundrate=0.0001 hithresh=0.0045 hicolthresh=0.00105
withsearchbadcolumn=y loenergythresh=0.14 hienergythresh=10.0 eventset=pnevents.dat (rec-
ommended automatic PN PPS setting)

• badpixfind eventset=mosevents.dat thresholdlabel=peak backgroundrate=-1 hithresh=90 flick-
ertimesteps=5 flickerksthresh=0.52 flickerchisqthresh=12 (bad pixels brighter than 90% of
the peak brightness are searched for, as are flickering pixels with variabilities in excess of
the given flicker thresholds)

• badpixfind eventset=mosevents.dat searchbadpix=n userflagbadpix=y rawxlist=”3 6” rawylist=”5
8” typelist=”4 4” yextentlist=”2 2” badpixset=bpxfmos.fits (just mode 2 (explicit user flag-
ging) is used to create two entries in output file bpxfmos.fits)

• badpixfind eventset=pnevents.dat threshabovebackground=Y withbadpixmap=Y hithresh=0.00025
withsearchbadcolumn=y hicolthresh=0.00007 backgroundrate=-1 loenergythresh=7.0 hiener-
gythresh=15.0 narrowerthanpsf=0.0 withfovmask=Y (detects bad pixels/columns and also
sources in a hard energy band, the thresholds set according to a calculated background
level, producing a background mask [badpixmap.fits] with the FOV masked out, usable (in
evselect) to create a background spectrum/lightcurve etc)

References


